http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

ISSN 1028-8880 DOI: 10.3923/pjbs.2023.529.533

Research Article Effect of Lactic Acid and pH of Probiotic Yogurt on Peak Production of Laying Hens

¹Alfinira Sekar Rosiyanti, ¹Lovita Adriani, ¹Rahmad Fani Ramadhan and ²Safri Ishmayana

¹Department of Livestock Nutrition and Feed Technology, Faculty of Animal Science, Padjadjaran University, West Java 45363, Indonesia ²Department of Chemistry, Faculty of Mathematics and Natural Science, Padjadjaran University, West Java 45363, Indonesia

Abstract

Background and Objective: Probiotic yogurt is beneficial for laying hens because it can improve the animal's hematological status which will improve livestock health, therefore it is hoped that probiotic yogurt can increase the production of laying hens. This research was conducted to determine the lactic acid levels and pH of probiotic yogurt, probiotic yogurt's effect on feed conversion ratio and total production of laying hens. **Materials and Methods:** The research was carried out using experimental methods using a Completely Randomized Design (CRD) with 5 treatments and 8 replications so the total sample was 40. The treatment consisted of PO: Basal ration; P1: Basal diet+2% probiotic powder B1 (*Bifidobacterium* spp. and *L. acidophilus*), P2: Basal ration+3% probiotic powder B1, P3: Basal diet+2% probiotic powder B2 (*L. bulgaricus*, *S. thermophilus*, *L. acidophilus* and *B. bifidum*) and P4: Basal ration+3% probiotic powder B2. The data were analyzed using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. **Results:** Lactic acid content in probiotic yogurts B1 is 0.945% and B2 is 0.638%. Based on the results of statistical analysis using the variance test, show that giving probiotic powder to laying hens has a significant effect on the feed conversion ratio and has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens has no significant effect on the production of laying hens during the peak period

Key words: Laying hens, probiotic powder, lactic acid, pH, egg production, feed conversion ratio

Citation: Rosiyanti, A.S., L. Adriani, R.F. Ramadhan and S. Ishmayana, 2023. Effect of lactic acid and pH of probiotic yogurt on peak production of laying hens. Pak. J. Biol. Sci., 26: 529-533.

Corresponding Author: Lovita Adriani, Department of Livestock Nutrition and Feed Technology, Faculty of Animal Science, Padjadjaran University, West Java 45363, Indonesia Tel: +62-818-0200-0111

Copyright: © 2023 Alfinira Sekar Rosiyanti *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Laying hens are a type of poultry that are kept specifically for their ability to produce eggs. Laying hens have been bred for increased performance, reduce stress level and improve gut health, impacting the production with good environmental conditions¹. Eggs are a livestock commodity that is very popular as a source of animal protein. Chickens are susceptible to disease, such as stress when heat stress is contaminated with microorganisms (bacteria, viruses and parasites) which disrupt the immune system and body metabolism. Infection of laying hens with E. coli and other pathogen bacteria can result in a significant decrease in egg production². In chicken farming, feed is the highest component of production costs, around 70-80% of the total production, so feed must be used efficiently. Laying farms require innovation to produce quality and efficient livestock products. Probiotics given in the layer I phase to laying hens (31-week-old chicken) can help maintain chicken intestinal health and increase egg production. Giving probiotics to laying hens can help improve egg production in laying hens³.

Probiotics can repair intestinal villi to increase absorption, besides that they can also increase metabolism and hormone synthesis which will increase the production of laying hens. Yogurt is a probiotic that contains lactic acid, bacteriocins and antioxidants which can increase digestibility and production in laying hens by suppressing the growth of pathogenic bacteria. Probiotics are live microbes that, when given in sufficient quantities, will provide health benefits to livestock that consume them⁴. The lactic acid content in yogurt can inhibit the growth of pathogenic bacteria because of the presence of non-pathogenic bacteria and the pH decreases so that pathogenic bacteria cannot survive.

In previous research, the use of bacteria is *Lactobacillus*, *Streptococcus thermophilus* and *Bifidobacterium bifidum*⁵. This research also uses these bacteria as cultures. The higher the number of microorganisms used, the faster the probiotic yogurt fermentation will be because more substrate is used. After the drying process, the total lactic acid bacteria was 1.6×10^7 CFU g⁻¹. These bacteria can produce lactic acid, bacteriocins and enzymes which can increase the digestibility and production of laying hens. The bacterial consortium utilizes lactic acid which is beneficial for the livestock's digestive tract. Lactic acid produced by lactic acid bacteria (LAB) will lower the pH thereby inhibiting pathogenic microbial contamination. Probiotics change the abundance and activity of microbes, which ultimately regulate the balance of the flora ecosystem in the small intestine.

This affects the host's metabolism and health⁶. In addition, probiotics promote the production of digestive enzymes and antibacterial substances that prevent the development of harmful bacteria⁷. Several researchers have administered probiotics with *Bacillus* spp., *Lactobacillus* spp. and *Bifidobacterium* spp., strains to late-phase laying hens. So, if chicken digestion is healthy then absorption will be better and cause production to increase. Therefore, it is necessary to research the lactic acid content and pH of probiotic yogurt and their effect on feed conversion and the total production of laying hens.

MATERIALS AND METHODS

Study area: This research was conducted in June to August, 2023 at the Biochemistry and Food Chemistry Laboratory of the Department of Chemistry and Faculty of Animal Husbandry, Universitas Padjadjaran.

Probiotic yogurt preparation: The bacteria used were obtained from Nanobio Laboratory. There are two consortiums used in this study, namely B1 and B2. The probiotics that will be used for the B1 consortium are *Bifidobacterium* spp. and *Lactobacillus acidophilus*, as well as the B2 consortium, namely *Streptococcus thermophilus*, *Lactobacillus bulgaricus*, *Lactobacillus acidophilus* and *Bifidobacterium bifidum* as much as 7.5% (v/v) were inoculated into 250 mL of de Man Rogosa and Sharpe (MRS) media and then incubated at 37°C for 24 hrs. Fresh milk from Koperasi Susu Bandung Utara (KPSBU Lembang) is pasteurized by heating at 70-80°C. Milk that has been heated and then cooled until the temperature of 45°C, then added with 7.5% consortium bacteria, then homogenized. The fermentation or incubation process lasts 14 hrs.

Analysis of lactic acid content and pH of probiotic yogurt:

Probiotic yogurt samples were tested for lactic acid content and pH. The probiotic yogurt used in this study was the first (B1) containing *Bifidobacterium* spp.+*L. acidophilus* and the second sample (B2) containing *Lactobacillus bulgaricus*, *Streptococcus thermophilus*, *Lactobacillus acidophilus*, *Bifidobacterium bifidum*. Lactic acid content was tested using the titration method and pH was measured using a pH meter starter 3100 M PH and Conductivity Bench production by OHAUS Instrument (Shanghai) Co. Ltd., 7F, Block 33, 680 Guiping Road Shanghai, 200233, China. The lactic acid value is calculated using the following formula:

$$Lactic \ acid \ (\%) = \frac{V_{\text{NaOH}} \times N_{\text{NaOH}} \times 90}{Volume \ sample \times 1000} \times 100$$

Table 1: List of probiotic yoghurt treatments in feed

Category	Treatment
T0	Basal feed only (no probiotics)
T1	Basal feed+2% B1 probiotic powder
T2	Basal feed+3% B1 probiotic powder
T3	Basal feed+2% B2 probiotic powder
T4	Basal feed+3% B2 probiotic powder

B1: Bifidobacteriumspp.,+Lactobacillus acidophilus, B2: Lactobacillus bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus and Bifidobacterium bifidum

Making probiotic powder: In the process of making probiotic powder, probiotic yogurt is added with encapsulant ingredients (skim milk and maltodextrin) then added to sterile distilled water (1/2 of the total volume of solution), then stirred and homogenized. Once homogeneous, the mixture is dried using a spray dryer with an inlet temperature of 160°C and an outlet of 65-70°C to produce probiotic yogurt in powder form.

Experimental procedure

Animal preparation: Forty laying hens, 31 weeks old, female were bred in Sapta Karya Megah and Intama. Laying hens were kept at 24-27°C under a 24 hrs light and 60% relative humidity, with food and water *ad libitum* for 6 weeks in Test Farm Faculty of Animal Husbandry, Universitas Padjadjaran. Laying hens were divided randomly into five group treatments. The control group which was not given the treatment as the control group (P0), group-1 was given treatment with 2% probiotic powder B1 (*Bifidobacteriums*pp. and *L. acidophilus*) (P1), group-2 was given treatment by 3% probiotic powder B1 (P2), group-3 was given treatment by 2% probiotic powder B2 (*L. Bulgaricus*, *S. thermophilus*, *L. acidophilus* and *B. bifidum*) (P3), group-4 was given treatment by 3% probiotic powder B2 (P4). All laying hens were habituated for 2 weeks prior to treatments.

Treatments: This treatment was carried out for 6 weeks. Laying hens were given five treatments and repeated eight times so that there were 40 experimental units, with each cage containing 1 laying hen. Each cage was labeled with a treatment and repetition number to facilitate observation and data collection. Probiotic mixed feed was given two times, i.e., in the morning and evening as much as 120 g/head/day and drinking was given *ad libitum*. Places for food and drinking places are always watched and cleaned to prevent disease. The treatments used can be seen in Table 1.

Feed conversion ratio (FCR): In this study, laying hens with the ISA Brown strain aged 31 weeks or who were in the first layer phase were used. Ration conversion calculates the amount of feed needed by chickens to produce one kilogram

of egg weight; the calculation method is the cumulative amount of feed consumed divided by the total weight of eggs produced. The remaining feed of the chicken is calculated every day, in addition to the weight of the eggs produced, which is also weighed every day. After that, all data were calculated and tallied at the end of the study.

Hen day production (HDP): Hen day production (HDP) calculates the average number of eggs produced by chickens for one day. The calculation of hen day production is done every day by dividing the number of eggs produced by the number of hens at that time.

Statistical analysis: All data were statistically analyzed by Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test using SPSS 22.0. Statistical significance was designated at p>0.05.

RESULTS AND DISCUSSION

Lactic acid content and pH of probiotic yogurt: The main principle of the yogurt-making process is fermentation with lactic acid bacteria. This research indicated that probiotic yogurt contains the starter bacteria *Bifidobacterium* spp.+ *L. acidophilus* (B1) has a higher lactic acid content and a lower pH than probiotic yogurt products *Lactobacillus bulgaricus*, *Streptococcus thermophilus*, *Lactobacillus acidophilus* and *Bifidobacterium bifidum* (B2). In B1 yogurt the lactic acid produced is 0.945% with a pH of 4.31. Meanwhile, B2 yogurt has a lower lactic acid content, namely 0.64% with a pH of 4.47.

The microbiological quality of yogurt affects the concentration of lactic acid, such as the content of Bifidobacterium enzyme which converts glucose and galactose into lactic acid. The formation of lactic acid does not inhibit bacterial growth, but lactic acid acts as a growth promoter for LAB itself⁸. The lactic acid bacteria content of probiotic yogurt in this study was in line with previous research which stated that the lactic acid content of *L. acidophilus* and *Bifidobacterium* spp., ranges from 0.81-0.95%⁹. Increasing the concentration of cow's milk and yogurt starter culture resulted in higher lactic acid content and lower pH values¹⁰.

The pH content of probiotic yogurt in this study was in line with research which stated that the pH content of *L. acidophilus* and *Bifidobacterium* spp., ranges from 4.29-4.53°. The higher the number of cultures used, the higher the increase in microbial activity and development so that it can increase the rate of breakdown of lactose into lactic acid, thereby reducing the pH value. Lactic acid is inversely

Table 2: Production of laying hens that have been treated with probiotic yogurt

		Group				
Experimental	T0	T1	T2	T3	T4	
FCR	2.01 ^a	2.10 ^{ab}	2.17 ^b	2.08 ^{ab}	1.98ª	
HDP	95.24	95.24	88.10	92.86	89.24	
Egg weight	56.05	55.20	51.79	55.89	57.25	

FCR: Feed conversion ratio, HDP: Hen day production, Significant^a = 0.084 and Significant^b = 0.149

proportional to pH because the greater the amount of lactic acid produced by lactic acid bacteria the lower the pH¹¹. Lactic acid bacteria demand nutrients in the medium and generate energy only during the breakdown of carbohydrates. The probiotic and postbiotic potential of lactic acid bacteria from artisanal dairy products against pathogens and found that the antibacterial activity of the LAB cultures resulted from the secretion of organic acids that lowered the pH¹².

Production of laying hens: Ration conversion is a measure used to assess the efficiency of use and quality of rations. A smaller conversion value indicates feed efficiency in egg production and no feed waste. A larger conversion value indicates waste due to the feed not being maximally beneficial to egg production¹³. The results of this study showed that giving probiotic yogurt did not make a real difference to feed conversion ratio (FCR), hen day production (HDP) and egg weight can be seen in Table 2.

The results showed that the administration of probiotic powder had no significant effect on HDP and egg weight, but had a significant on FCR. The different ratio conversion between the control treatment and the treatment using probiotics was caused by the consumption of more rations and the relatively larger weight of eggs causing smaller ratio conversion¹⁴. In this study, administration of probiotics had a significant effect on FCR but there was an increase in treatment P2 where the FCR value was higher. Thus, the treatment of rations using probiotics is significantly increased because it was in line with the amount of ration consumed and the weight of the eggs. As you can see, the average egg weight of P2 is lower compared to the other treatments. Lactic acid can increase egg-laying speed and improve egg quality due to its probiotic capabilities. This can be caused by the presence of beneficial microorganisms such as lactic acid bacteria which can improve intestinal health and nutrient absorption in chickens. The characteristics of probiotics are persistent in the digestive tract, attach to the epithelium or mucus and compete with the host microflora so they are good for livestock¹⁵. This is caused by the consumption of more feed and the relatively large weight of the eggs, so the conversion of the feed produced is smaller. In this study, there was only a

tendency for a decrease in feed conversion at P4, meaning that the dose in this treatment was optimal.

Many researchers show that giving probiotics to laying hens can improve egg production and increase ration efficiency¹⁶. Giving probiotics to laying hens can improve egg production, eggshell weight and reduce cholesterol levels in egg yolks¹⁷. However, in this study, giving probiotics had no significant effect on HDP and egg weight of laying hens. The age of the livestock used in this research was 31 days or 7 months, which is the peak production phase. Research shows that steroid hormones play a role in egg production in chickens. For example, steroid hormones have been shown to regulate the growth of chicken follicle walls, which is important for egg production¹⁸. Apart from that, at peak production, the genes that influence egg production are in good condition, so even if probiotics are given the effect is not optimal. At the peak of production, the chicken's digestive tract is well formed and has a stable microbiota, so it can be said that probiotics will not have a significant effect on the chicken's digestive tract. Previous research that was in their peak production period also had high production¹⁹. Egg production is known to have reached its peak if, for 5 consecutive weeks, the percentage of egg production no longer increases. The combination of probiotics had no effect on the performance of laying hens, but a significant increase in albumen crude protein content increased the quality of treated chicken eggs²⁰.

Further research on the bacteria in probiotic yogurt is needed to find out how the interactions between bacteria, as well as the administration of probiotic powder on ration conversion and total egg production in the final layer phase so that we can know for sure the specific role of these bacteria in inhibiting pathogenic bacteria in livestock.

CONCLUSION

The lactic acid content and pH of B1 (*Bifidobacterium* spp. + *L. acidophilus*) are better than B2 (*Lactobacillus bulgaricus*, *Streptococcus thermophilus*, *Lactobacillus acidophilus* and *Bifidobacterium bifidum*). However, giving probiotic yogurt to laying hens during the peak period did not have a significant effect on ration conversion and production of laying hens.

SIGNIFICANCE STATEMENT

Giving probiotic yogurt powder to chickens in the early egg-laying phase gives different results than giving probiotic yogurt powder to chickens in the final egg-laying phase. This manuscript also showed the probiotic yogurt's lactic acid content and pH. The study showed that giving probiotics to laying hens during their peak period did not have a significant effect because the cells in the chicken's body were in optimal condition. Giving probiotic yogurt in the final phase can improve the hematology of laying hens so that it is good for production. However, providing probiotic yogurt powder to chickens in the early laying phase increased production performance after 2 weeks of treatment, especially in T4.

ACKNOWLEDGMENT

Thank you to the Academic Leadership Grant Universitas Padjadjaran through Lovita Adriani Grant No: 1549/un6.3.1/PT.00/2023, which has funded this research.

REFERENCES

- Harrington, D., H. Hall, D. Wilde and W. Wakeman, 2020. Application of Aromatic Plants and their Extracts in the Diets of Laying Hens. In: Feed Additives: Aromatic Plants and Herbs in Animal Nutrition and Health, Florou-Paneri, P., E. Christaki and I. Giannenas (Eds.), Academic Press, Massachusetts, United States, ISBN: 9780128147009, pp: 187-203.
- Ismail, A.E. and H. Ibrahem, 2017. Bacterial causes of drop in egg production in laying hens and prevention by vaccination. Kafrelsheikh Vet. Med. J., 15: 29-42.
- 3. Hartono, M. and T. Kurtini, 2017. The effect of probiotic supplements on layer performance. J. Penelitian Pertanian Terapan, 15: 214-219.
- 4. Hill, C., F. Guarner, G. Reid, G.R. Gibson and D.J. Merenstein *et al.*, 2014. Expert consensus document: The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 11: 506-514.
- Adriani, L., D. Latipudin, I.M. Joni, C. Panatarani and G. Sania, 2021. Hematological status and egg production of laying hen with probiotic powder as feed supplements. IOP Conf. Ser.: Earth Environ. Sci., Vol. 902. 10.1088/1755-1315/902/1/012032.
- Feng, T. and Y. Liu, 2022. Microorganisms in the reproductive system and probiotic's regulatory effects on reproductive health. Comput. Struct. Biotechnol. J., 20: 1541-1553.
- Kumalasari, C., M. Muchtaridi, I. Setiawan and L. Adriani, 2020.
 The application of probiotic drying with simple methods and effect on blood cholesterol levels chicken broiler. Rasayan J. Chem., 13: 1719-1726.

- 8. Widiastuti, A. and Judiono, 2018. Effect of substitution of lablab bean *Juice purpureus* (L.) sweet and skim milk substitution organoleptic characteristic, pH value, and total lactic acid bacteria of lablab yoghurt [In Indonesian]. Media Gizi Indonesia, 12: 72-79.
- 9. Kök-Taş, T., A.C. Seydim, B. Özer and Z.B. Guzel-Seydim, 2013. Effects of different fermentation parameters on quality characteristics of kefir. J. Dairy Sci., 96: 780-789.
- 10. Amar, A., S. Makosim, S.T. Anggraeni and N. Listilia, 2021. The effect of saga milk (*Adenantera pavonina*, L.) and yogurt starter culture concentration on process of yogurt. Food Res., 5: 119-126.
- 11. Batubara, P.A.P., Desniar and I. Setyaningsih, 2019. Effect of probiotic lactic acid bacteria starter on chemical and microbiological changes in Russi [In Indonesian]. J. Teknologi Ind. Pangan, 30: 28-35.
- 12. Hussain, N., M. Tariq, P.E.J. Saris and A. Zaidi, 2021. Evaluation of the probiotic and postbiotic potential of lactic acid bacteria from artisanal dairy products against pathogens. J. Infect. Dev. Countries, 15: 102-112.
- 13. Sulaiman, D., N. Irwani and K. Maghfiroh, 2019. Production activities of ISA brown strain chicken at the age 24-28 weeks [In Indonesian]. J. Peternakan Terapan, 1: 26-31.
- 14. Xiang, Q., C. Wang, H. Zhang, W. Lai, H. Wei and J. Peng, 2019. Effects of different probiotics on laying performance, egg quality, oxidative status, and gut health in laying hens. Animals, Vol. 9. 10.3390/ani9121110.
- 15. Gaggia, F., P. Mattarelli and B. Biavati, 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food. Microbiol., 141: S15-S28.
- 16. Adriani, L., A. Mushawwir, C. Kumalasari, L. Nurlaeni, R. Lesmana and U. Rosani, 2021. Improving blood protein and albumin level using dried probiotic yogurt in broiler chicken. Jordan J. Biol. Sci., 14: 1021-1024.
- 17. Panda, A.K., M.R. Reddy, S.V.R. Rao and N.K. Praharaj, 2003. Production performance, serum/yolk cholesterol and immune competence of white leghorn layers as influenced by dietary supplementation with probiotic. Trop. Anim. Health Prod., 35: 85-94.
- 18. Lebedeva, I.Y., V.A. Lebedev, R. Grossmann and N. Parvizi, 2010. Age-dependent role of steroids in the regulation of growth of the hen follicular wall. Reprod. Biol. Endocrinol., Vol. 8. 10.1186/1477-7827-8-15
- 19. Purnavita, S., H.Y. Sriyana and S. Hartini, 2014. Engineering of the lactic acid production process from palm starch dregs waste as raw material for poly lactic acid. UNWAHAS Momentum J., 10: 14-18.
- Rezaeipour, M., M. Afsharmanesh and M.K. Bami, 2022. Evaluation of the effect of short-chain organic acids and probiotics on production performance, egg white quality, and fecal microbiota of laying hens. Comp. Clin. Pathol., 31: 621-626.