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Abstract

Background and Objective: Nicotine-relevant smoking causes many serious issues of environmental pollution and complicated harm
to human health. The present study aimed to evaluate the experimental effects of exposure to nicotine on the gene expression profiles
of rat brain tissues with differentially expressed genes (DEGs). Materials and Methods: The rat gene expression profiles of environmental
exposure to nicotine were initially screened and retrieved from the microarray dataset GSE59895 in the GEO database. Next, it was
analyzed with an integrated bioinformatics pipeline. The DEGs were analyzed in Limma and functional enrichment analyses of GO terms
and KEGG pathways were performed with clusterProfiler. The STRING online tools and Cytoscape StringApp were subsequently employed
to construct the protein-protein interaction (PPI) network, whereas key modules and hub genes were finally explored and visualized.
Results: There was total of 382 shared DEGs between different case groups in the experiment, whereas 9 common shared DEGs were
found among all three groups. The significant enrichments of 28 GO terms and 3 KEGG pathways were comprehensively analyzed with
corresponding functionally enriched genes. Then, 3 key modules and 10 hub genes were further identified and explored in the resulted
PPI network. In the disease-related signaling pathways, eleven potential neuropathic disease-related genes may complement the
treatment of neurodegenerative diseases. Conclusion: The study found that chronic exposure to nicotine would result in the differential
expression of the disease-related genes, whereas these DEGs might increase the environmental risks of Huntington’s disease, Alzheimer’s
disease and other multiple neurodegenerative diseases.
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INTRODUCTION

Smoking causes many serious environmental pollution
issues, including increased industrial and ecological
contaminations, human cancers and other physiological and
mental menaces, as well as many socio-economic problems'.
The harm of smoking to the public environment is obvious
and it is one of the biggest public health problems that
continue to threaten human health in the world™®. Smoking a
single cigarette may destroy the air quality 10 times or so in
merely 5 min. In a relatively enclosed room, no matter how
people increase their physical distance from smokers, they
cannot avoid the passive absorption of secondhand
smoke'713, Furthermore, the smoke fog produced by smoking
contains some pathogenic substances such as nicotine,
nitrogen dioxide, hydrocyanic acid, acrolein, arsenic and
even lead and mercury*%''2, The concentration of various
pathogenic substances in the smoke fog have exceeded the
industrial permit threshold, which is the highest concentration
of harmful gases stipulated by workers in advanced industrial
countries. The harm of cigarette smoke to the population
exceeds that of ordinary chemical gases in the industry. The
mixed smoke fog of nicotine, tar, carbon monoxide,
benzopyrene, aldehyde, cyanide and other harmful
substances is mainly produced during the burning of
cigarettes' 2, When people smoke, the mixed smoke fog is
expelled into the air with pathogenic substances like
nicotine>¢'*and nitrogen dioxide''2. In addition, the cigarette
butts produced by smoking are non-biodegradable garbage,
which will not only corrode the surrounding land but also
greatly reduce the ability of the land to retain water and
fertilizer. The cigarette butts in the earth deteriorate the water
quality and cause inconvenience to the utilization of water
resources too. Because cigarette butts are non-biodegradable
garbage, it is an integral part of the environmental pollution
caused by smoking, including second-hand smoking or
passive smoking?781013,

Smoking, including active or passive smoking, is a
complex individual behavior involving the interaction of
genetic, physiological and environmental factors'®'5-18, ASAE
crucial component of tobacco and nicotine can cause people
to become dependent on tobacco by acting on acetylcholine
receptors in the central nervous system, i.e. nicotine
dependence (or smoking addiction). It is an indisputable fact
that smoking is harmful to health and smoking may lead to
lung cancer. Millions of people die from lung cancer every
year and more than 85% of lung cancers are related to
smoking”'”'®28 The incidence of lung cancer ranks first
in the occurrences of malignant tumors in many countries.
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Long-term smoking is an important factor leading to lung
cancer. However, with the continuously increasing air
pollution, the attention of air quality in the environment is
strongly strengthened. Severe environmental pollutionis also
considered to be another important risk factor of increasing
the incidence and mortality of lung cancer''?3°, Recent
studies have shown that long-term exposure to high
concentrations of the inhalable particulates or particles in
the air will increase people’s risk of developing lung
cancer'7-911123132 Some researchers made detailed statistics of
the content of PM2.5 particles®**°. According to their statistical
data in indoor research, more than 60 known carcinogens
have been detected in the air environment where typical
cigarettes can produce smoke*33, For people who smoke for
a long time and usually in heavily smoking-polluted
environments, how do these two factors "combine" to
increase people’s risk of lung cancer? How do smoking and its
surrounding environmental pollution have an impact on the
morbidity and mortality of lung cancer? Despite increasing
genetic evidence of smoking-attributable diseases, the
detailed genotoxic pathways and susceptibility genetic
regulatory mechanisms underlying various smoking behaviors
are largely unclear. So far, genetic association studies have
revealed numerous gene variants underlying smoking-
attributable diseases. At present, the most extensively
investigated susceptibility genes are the studied various gene
members of the Nicotinic Acetylcholine Receptor (nAChR)
gene family, including o 2-a 7 and B 2-B 4453637,

Nicotine is not only the main addictive compound
causing smokers to continue their smoking behaviors butalso
a genotoxic contributor to the pathogenesis of cancers?=.
With increasing genetic evidence, it is revealed that nicotine
is a tertiary amine alkaloid believed to be the major enhancer
and addictive ingredient of tobacco smoked?'?#3840,
although the susceptibility genes and genetic loci of smoking
addiction are unclear yet. Biological targets of nicotine action
are different members of the neurotransmitter-gated ion
channel superfamily of the Nicotine Acetylcholine
Receptors (NAChRs)?'?%3%41 The nAChR molecule is a kind of
transmembrane allosteric protein that mediates transduction
of chemoelectric signals throughout the nervous system by
opening an intrinsic ionic channel***, Nicotine and its
receptors (nAChRs) play an important role in physiological
function and pathological processes by mediating a variety of
physiological processes and cellular signaling pathways*%42.In
physiology, nAChRs are responsible for muscle contraction,
nerve transmission, sensory transmission, etc. Meanwhile,
nAChRs are the key mediators of tobacco addiction and also
important therapeutic targets for diseases in pharmacology.
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The effects of exposure to nicotine mainly include impacts
on the respiratory system, nervous system, digestive system
and reproductive system in the human body to different
degrees. Chronic exposure to nicotine is liable to cause
neurological disorders, low immunity and immune system
monitoring, defense and adjustment problems, resulting in
neurological diseases, chronic cough, respiratory infection,
oral mucosa, emphysema, gastrointestinal dysfunction,
atherosclerotic plaques, heart head blood-vessel sclerosis,
multiple sclerosis and primary biliary cirrhosis. Severe cases of
exposure to nicotine could lead to lung cancer and even
death?910161820223031394043 Among the identified susceptibility
gene loci for smoking- attributable diseases, the most robust
replicated findings in genome-wide association studies are
those nAChR subunit variantsin the CHRNA5/A3/B4 cluster on
chromosome 15194446 CHRNB3/A6 on chromosome 8446
and CYP2A6/A7 on chromosome 194446 Those nAChR
subunit genes show a significant association with both
nicotine dependence and lung cancer**. However, the current
genetics-based evidence is still lacking for elucidating the
genotoxic pathways and carcinogenic mechanisms of
cigarette smoking-associated diseases with gene expression
profiles or shared functional expressed genes.

There are presently a few reports on the effects of
environmental exposure to nicotine on the gene expression
profiles in animal brain tissues. In the study, experimental
samples were selected and retrieved from the GEO database
in the National Center for Biotechnology Information (NCBI).
An integrated bioinformatics pipeline was used to screen
DEGs in the rat brain under the influence of nicotine. First,
DEGs were analyzed with Limma* and clusterProfiler*® in the
rat brain tissues after exposure to nicotine. Next, it was
projected to explore the crucial hub genes, signaling
pathways, biological processes and molecular functions of
these disease-related potential genes differentially
regulated by exposure to nicotine. Functional enrichment
analyses were performed on GO terms and KEGG
pathways of the differentially expressed genes. The PPI
network was finally constructed to figure out the key modules
and hub genes with those DEGs and their biological function
annotations. The study provided insights into the effects of
environmental exposure to nicotine on the gene expression

Table 1: Sample information in the GSE59895 dataset

profiles in rat brain tissues. The study may serve as a research
foundationforfurther attempts atanalyzing and exploring the
molecular mechanism of diseases related to exposure of
nicotine.

MATERIALS AND METHODS

Study duration and location: From 2021 to 2024, the study
was conducted to evaluate the effects of exposure to nicotine
on the gene expression profiles of rat brain tissues based on
the retrieved and downloaded microarray dataset in Fuyang
City, China.

Sample information: After screening in the GEO database in
NCBI with the searching keywords “(Rattus norvegicus) and
(Nicotine)”, the gene expression profiles of brain tissue were
selected and retrieved from the GEO database within the
microarray dataset GSE59895, which was initially uploaded by
the researchers at the National Institute of Environmental
Health Sciences’. In their experiment, complete drug matrix
datasets were designed for rat brains. Approximately 600
different compounds were profiled in up to 8 different rat
tissues by obtaining tissue samples from test compound-
treated and vehicle control-treated rats in biological triplicates
for gene expression analysis after 0.25, 1, 3 and 5 days of
exposure with daily dosing toxicants.

The GSE59895 datasetincludes the following samples, i.e.,
1 day of exposure to nicotine (including 1 case in the exposure
group and 3 cases in the control group), 3 days (3 cases in the
exposure group and 2 cases in the control group) and 5 days
(3 cases in the exposure group and 3 cases in the control
group) (Table 1). The microarray experimental platform is
GPL5425 GE Healthcare/Amersham Biosciences Codelink
Uniset RAT | Bioarray, Layout Exp5280X2-613.

Analyses of the experimental gene expression profiles:
The experimental gene expression profiles of rat brain
tissues were analyzed with the integrated bioinformatics
pipeline including Limma, clusterProfiler, StringApp, MCODE,
CytoHubba, BINGO and the other software packages. The
analysis was focused on the effects of the environmental
exposure to nicotine.

Treatment (day) Case group of exposure to nicotine Control group
1 GSM1450189 GSM145028, GSM1450281 and GSM1450282
3 GSM1450190, GSM1450191 and GSM1450192 GSM1450283 and GSM1450284

5 GSM1450193, GSM1450194 and GSM1450195

GSM1450285, GSM1450286 and GSM 1450287
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Identification of DEGs: The linear models of Limma version
3.44.37 were applied to analyze the difference in exposure to
nicotine at day 1, 3 and 5, respectively. The Limma software
mainly employs the following linear regression model to fit
each gene’s expression:

Y =B+ BiX, +BX, -+ B X, e

In which e is the residual term. The core Ranalysis code of
the Limma package is briefly listed as follows, i.e., “design
<-model.matrix(~0+factor(list))” and “df.matrix <-make
Contrasts(nicotine-normal, levels = list)". The set parameters
of adjusted p<0.05 (or adj.p.val<0.05) was adopted as
the standard of identifying DEGs, while the ggplot2
version 3.3.3%>%0 was used to map the volcanoes of identified
DEGs. Herein, the Venny online tool was used to intersect the
shared DEGs among three case groups of nicotine exposure.
These shared DEGs were used for subsequent analyses.

Functional enrichment analyses of GO terms and KEGG
pathways: The clusterProfiler version 3.16.1%¢ was used for
GO and KEGG analysis of shared DEGs. The adjusted p<0.05
(or adj.p.val<0.05) was considered biologically significant*.

PPI network and identification of key modules and hub
genes: The PPl network was constructed and visualized with
allthe annotated proteins available of the shared DEGs among
different case groups of rat exposure to nicotine using the
STRING online tool*' and the StringApp software in Cytoscape
version 3.8.0%. The searching algorithm in the MCODE
software® was employed to identify densely connected PPI
modules of the shared DEGs with the following parameters of
degree cutoff to 4, k-core to 4, max and depth to 100. The
MMC algorithm of the CytoHubba software®* was further
applied to identify all the potential disease-related DEGs.

Subsequently, the BINGO software® was adopted in the
functional enrichment analyses of GO terms and KEGG
pathwaysin subnetworks (PPl modules) on the disease-related
DEGs. The PPl network and subnetworks (PPl modules) were
further explored and displayed by the other Cytoscape
software and plugins.

RESULTS AND DISCUSSION

Assessment of experimental differential expression profiles
and identification of the shared DEGs: In the experiment,
linear models in the Limma software*” were applied to assess
the rat differential expression profiles and there were 1721,
64 and 1218 DEGs identified in the three case groups of
exposure to nicotine, respectively. Specifically, 1721 DEGs
were identified in the first day of exposure to nicotine
including 1056 up regulated genes and 665 down regulated
genes, whereas 64 DEGs were identified in the third day
of exposure to nicotine including 48 up regulated genes
and 16 down regulated genes. There were 1218 DEGs
identified in the 5 days of exposure to nicotine, among which
630 genes were up regulated and 588 genes were down
regulated (Fig. 1). Meanwhile, there were many shared DEGs
identified for the dealt trials of 1, 3 and 5 days of exposure to
nicotine with the newest version of Venny online tool*.
Specifically, there were 20 shared DEGs identified for the dealt
trials of 1 and 3 days of exposure to nicotine, 343 shared DEGs
identified for 1 and 5 days of exposure to nicotine and 37
shared DEGs discovered for the dealt trials of 3 and 5 days of
exposure to nicotine (Fig. 2). Furthermore, there were nine
common shared DEGs among all the three groups, including
Serpinil, RGD1565416, Slurp1, KB1, PGR, FRMD4A, PPP2R2C,
Rph3A and HtrA3. Subsequently, there were a total of 382
shared DEGs identified between different case groups of
exposure to nicotine.
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Fig. 1: Volcano maps of DEGs in different case groups
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Fig. 2: Veen map of overlapping DEGs among different case groups

In the study, nine common shared DEGs (SerpiniT,
RGD1565416, Slurp1,KB1,PGR, FRMD4A, PPP2R2C, Rph3Aand
HtrA3) were discussed with interest.

Serpinil: Mammalian serpin family | member 1 (Serpini1) is
also known as HNS-S1, HNS-S2, PI12 and neuroserpin. Rat
Slurp1is also named as the PI-12 and raPIT5a. Neuroserpin (or
Serpinil) is a neurogenic serine protease inhibitor involved in
the formation and connection of nerve cells and the plasticity
of synapses in the adult nervous system>*®°. Neuroserpin
(or Serpini1) is the tissue specific inhibitor and the tissue-type
plasminogen activator in physiological processes®®57:61-65,
They play a role in synaptic plasticity, memory or sterol
metabolism in normal physiological environments®6'42 while
they can also induce Alzheimer’s disease in pathological
environments>’ 63, Although neuroserpin is expressed during
late stage of neurogenesis in development, it was suggested
that neuroserpin might played some roles in early stage of
neurogenesis in adult rat hippocampus®. As an inhibitor of
extracellular plasminogen activator in the central nervous
system, neuroserpin regulates the hydrolytic activity of
fibrinolytic enzyme and plays roles in blood coagulation and
fibrinolysis and diseases®®. Neurofilamase inhibitory protein
was reported with a protective effect on the ischemic nervous
system%’, which agrees well with the enriched GO term
(GO:0002931) in this study. Short-term exposure to nicotine
among non-smokers significantly up-regulates the secretion
level of neuroserpin (or Serpini1)%, which participate in the
synaptic plasticity process. Conversely, abnormal expression
of neuroserpin (or Serpini1) may be associated with the
smoking-related neurodegenerative diseases®.
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RGD1565416: The protein expression of RGD1565416 is also
known as talin 2 (TIn 2 in abbreviation). Rat talin 2 function as
the scaffolding ligand protein to bridge cell-cell adhesion and
extracellular ligands, as well as transmembrane receptor
proteins’®7>. The talin 2 serves as a second control for integrin
binding, cell-cell adhesion and productivity of effective
conjugation’2. Recent studies showed that talin-1 and talin-2
are important components involved in the regulation of
integrin activation, mechanotransduction and cell-matrix
adhesion stability”®. The talin rod binds to the cytoskeleton,
whereas absence of talin is lethal”'”>. The talin 1T was up-
regulated in the cervical cancer cells and identified as a direct
target of microRNA miR-1285-3p’*. There are presently a few
reports on the expression of ta/in 2 genein cancer cells7717375,
However, the genomes of a number of organisms encode a
very well-conserved talin 2 protein in integrin regulation.

Slurp1: Secreted mammalian Ly6/urokinase plasminogen
activator receptor-related protein-1 (Slurp1) is also known
as ANUP, ARS, ArsB, LY6-MT, LY6LS and MDM. Rat Slurp1is the
protein expression of RGD1308768. The Slurp1 is a recently
identified endogenous ligand of the alpha 7 subunit of
nicotinic acetylcholine receptors (a7 nAChR or Chrna7)36760,
The a7 nAChR is critical for the pathogenesis of Escherichia
coliK1 meningitis, a severe central nervous system infection
of the neonates®. Furthermore, a7 nAChR plays an essential
anti-inflammatory role in immune homeostasis’’, whereas
mammalian Slurp1is a positive allosteric ligand for a7 nAChR
that potentiates responses to ACh and elicits proapoptotic
activity in keratinocytes. In contrast to nicotine, Slurp1 serves
as a positive allosteric modulator to potentiate a7 nAChR
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activity effectively as an endogenous o7 nAChR ligand’s#°
The Slurp1 is also the causative gene for a rare autosomal
recessive skin disorder of transgressive palmoplantar
keratoderma, Mal de Meleda’®®, Mutations in S/urp7gene on
patients were detected with Mal de Meleda’®. At present,
little is known about the role of Slurp1 in the nervous
system.

KB1: The keratin 1 (KB1) is also known as K1, CK1, EHK, EHK1,
EPPK, KRT1, KRTTA and NEPPK. Keratin 1 is involved in many
inflammatory diseases®'®. Keratin 1 is a member of the
G protein-coupled receptor 1 family participating in the NF-xB
signaling pathway and AGE-RAGE signaling pathway of
diabetes complications. [t was reported that keratin 1 silencing
is able to make myocardial ischemia and reperfusion injury
better by activating the Notch signaling pathway in mice®.
Keratin 1 gene silencing ameliorates myocardial ischemia-
reperfusion injury via the activation of Notch signaling
pathway in mouse models®. It was revealed that hypoxic
pulmonary artery remodeling was associated with a decrease
in keratin 182, Keratins 1 (K1) and keratin 10 (K10) are the
primary keratins expressed in differentiated epidermis and
mutations in K1/K10 are associated with human skin
diseases®8587.88 A mutation in a keratin 1 leading to a severe
form of epidermal hyperkeratosis known as ichthyosis
hystrix Curth-Macklin®'#3, Another novel causative mutation
was identification in keratin 1 in diffuse palmoplantar
keratoderma®.

PGR:The progesterone receptor (PGR)is also known as NR3C3
and PR. In the signaling pathways, PGR is involved in the
regulation of insulin signaling pathway and inhibits the PI3K-
Akt signaling pathway®®”.Human PRGis located at 11q22-q23
as a member of the steroid receptor superfamily of nuclear
receptors®®?°1. The actions of progesterone are mediated by
two functionally distinct isoforms (PR-A and PR-B) that are
expressed from two alternative promoters from a single
gene®92%7 Recent research revealed that progesterone and
allopregnanolone are antinociceptive and attenuate orofacial
pain and progesterone can exert protective effects through
intracellular progesterone receptors (PGRs), membrane
PGRs, sigma-1 receptors and its neuroactive metabolite
allopregnanolone®® o,

FRMD4A: The FERM domain containing 4A (FRMD4) is also
known as CCAFCA, FRMD4 and bA295P9.4. Rat FRMDA4A is the
protein expression of RGD1309050. As a member of the FERM
superfamily, FRMDA4A is involved in cell structure, transport
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and signaling. The FRMD4A was recently identified to regulate
epithelial polarity by connecting Arf6 activation with the PAR
complex'921% [t regulates cell polarity by playing animportant
role in the activation of ARF6, mediating the interaction
between Par3 and the ARF6 guanine nucleotide exchange
factor'®, Specifically, ARF6 is known to modulate nerve cell
polarity and dendritic branching in hippocampal neurons and
neurite outgrowth, while the FRMD4 domain is essential for
determining cell polarity through interaction with Par3 during
epithelial polarization'%2'%, Particularly, FRMD4A was also
regarded as a potential therapeutic target for the
treatment of tongue squamous cell carcinoma in a molecular
overexpression experiment'®. Tumor clinical stage and lymph
node metastasis showed a statistically significant correlation
with FRMD4A expression 0219419 and FRMD4A upregulation in
human squamous cell carcinoma promoted tumor growth and
metastasis to be associated with poor prognosis'®, The
FRMDA4A also play a role in amyloidogenic and tau-related
pathways in Alzheimer's disease (AD)'®. The FRMD4A-
cytohesin signaling pathway was reported to modulate the
cellular release of tau, which is also known as MAPT secreted
from neurons in response to various stimuli and accumulates
in the cerebrospinal fluid of AD patients'®. Polymorphisms of
FRMD4A gene loci were usually suggested to be a key risk
factor for AD'713, Several Genome-Wide Association Studies
(GWASs) have led to the discovery of nine new loci of genetic
susceptibilityin AD'7-199111.112. A genome-wide study identifies
the FRMD4A gene on human Chr.10p13 as a risk locus for
AD™2,In the brain transcriptomic and mechanistic elucidation
of ADrisk genes /n vivoand /n vitro, the expression of FRMD4A
significantly decreased in the increasing AD-related
neurofibrillary pathology'™.

Additionally, DNA methylationin cord blood may mediate
the effect of maternal smoking during pregnancy on
birthweight of the offspring through FRMD4A and other
genes'®®19  The homozygous mutation and DNA
polymorphism of FRMDA4A are frequently found associated
with human DNA CpG methylation in prenatal tobacco
smoke exposure or maternal pregnant smoking'%10911,
Nicotine exposure was associated with a 2% increase in CpG
methylation in FRMD4A (p = 0.01) and Cllorf52 (p = 0.001)
compared to no nicotine exposure'®, Large-scale genome-
wide association study of Asian population reveals genetic
factors in FRMD4A and other gene loci influencing smoking
initiation and nicotine dependence'”. Therefore, FRMD4A has
been listed as a key candidate gene of AD and other diseases
with DNA methylation on smoking addition and nicotine
dependence!02106-116,
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PPP2R2C: The gamma subunit of protein phosphatase 2
regulatory subunit B (PPP2R2C) is also known as B55
gamma, IMYPNO, IMYPNOT, PR52 and PR55G. Rat FRMD4A
is known as Pr52. Research reports show that PPP2R2C
encodes a tissue specific gam PPP2R2C was downregulated in
glioma cells and human brain cancer patient samples'”18,
The PPP2R2C loss promoted castration-resistance and was
associated with increased prostate cancer-specific mortality.
The PPP2R2C was also a promising candidate gene of a
temperament and character trait-based endophenotype of
attention-deficit/hyperactivity disorder'120,

Rph3A: The rabphilin 3A (Rph3A) is a neuronal C2 domain
tandem containing protein involved in vesicle trafficking'?'.
Rabphilin-3Ais also a cytosolic neuronal protein containing a
C2-domain tandem that is involved in the neurotransmitter
release cycle''. Rabphilin 3A are involved in synaptic vesicle
transport and synaptic vesicle fusion and it has important
biological roles in neurotransmitter release, hormone
secretion and information transmission. Rabphilin-3A s
expressed mainly in brain and it is a downstream target
molecule of Rab3A small GTP-binding protein implicated
in Ca**-dependent neurotransmitter release''. Rabphilin-3A
is a putative target protein for Rab3A small GTP-binding
protein which is implicated in neurotransmitter release.
Recent research indicated that rabphilin 3A was a novel
target for the treatment of levodopa-induced dyskinesias'?
and it was a targeted autoantigen in lymphocytic
infundibulo-neurohypophysitis too'?%. Decreased rabphilin
3Aimmunoreactivity in Alzheimer's disease was associated
with AR  burden'. The anti-rabphilin-3A  antibody
(Rab3A-Ab) positivity was frequently reported'?>. However,
there is little information on the potential therapeutic
target of rabphilin 3A in tobacco smoke and relevant
diseases.

HtrA3: High-temperature requirement serine protease A3
(HtrA3), belongs to a family of unique cellular homo-
oligomeric and ATP-independent serine proteases'?'*, Rat
HtrA3 is the protein expression of RGD1308120. Recently,
HtrA3 was identified as a potential diagnostic marker for early
detection of preeclampsia disease, lung cancer, ovarian
cancer, endometrial cancer and other disorders?+27126141 |t js
regarded as a tumor suppressor and a potential therapeutic
targetin different cancers?26.127.132134138 |n addition, HtrA3 also
plays crucial roles in placental development and the pregnant
smoking-related diseases'!133139140 The HtrA3 is reduced in
ovarian cancers regardless of stages', while its protein
expression is closely associated with changing in oxygen
tension in the placenta'™” %,
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Functional enrichment analyses of GO terms and KEGG
pathways: To understand the potential effects of exposure to
nicotine on biological function, the 382 shared DEGs were
adopted to conducted enrichment analyses of GO terms and
KEGG pathways.

Enrichment analysis of GO terms: The clusterProfiler
software* was adopted for functional enrichment analysis of
the 382 shared DEGs. A total of 4717 entries of GO categories
were initially enriched from the 382 shared DEGs, whereas
there were 28 significant GO categories with the adjust p<0.05
(Fig. 3a, Table 2).

Among these significant GO categories, 23 (82.14%) were
enriched in many interesting biological processes (Fig. 3a,
Table 2). These enriched biological processesincluded cellular
response to metal ion (13 entries), neuronal death (18 entries),
response to zinc ion (7 entries), response to osmotic stress
(9 entries), myeloid cell differentiation (17 entries), response
to glucocorticoid (14 entries), regulation of neuronal death
(16 entries), neuron apoptotic process (14 entries), regulation
of neuronal synaptic plasticity (7 entries), regulation of neuron
apoptotic process (13 entries), cellular response to inorganic
substance (14 entries), osteoclast differentiation (8 entries),
response to corticosteroid (14 entries), regulation of
long-term neuronal synaptic plasticity (5 entries), negative
regulation of neuron death (12 entries), negative regulation
of neuron apoptotic process (10 entries), response to ischemia
(6 entries), response to alkaloid (10 entries), monocarboxylic
acid biosynthetic process (10 entries), regulation of protein
serine/threonine kinase activity (17 entries), response to
purine-containing compound (11 entries), myeloid leukocyte
differentiation (11 entries) and ribonucleotide metabolic
process (14 entries). It was found that 17.86% (5 entries) of the
significantly enriched entries were the cell composition
categories of GO terms, including peroxisomal membranes,
microbody membrane, clathrin-coated pit, dendritic spine and
neuron spine (Fig. 3a, Table 2). However, there were no
findings of significantly enriched molecular function entries of
GO terms.

Enrichment analysis of GO terms showed the following
interesting biological processes, i.e. cellular response to metal
ion, neuron death, response to zinc ion, response to osmotic
stress, myeloid cell differentiation, response to glucocorticoid,
regulation of neuron death, neuron apoptotic process,
regulation of neuronal synaptic plasticity, requlation of neuron
apoptotic process, cellular response to inorganic substance,
osteoclast differentiation, response to corticosteroid,
regulation of long-term neuronal synaptic plasticity, negative
regulation of neuron death, negative regulation of neuron
apoptotic process, response toischemia, response to alkaloid,
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Fig. 3(a-b): Functional enrichment analysis of (a) GO terms and (b) KEGG pathways

monocarboxylic acid biosynthetic process, regulation of
protein serine/threonine kinase activity, response to
purine-containing  compound, myeloid leukocyte
differentiation and ribonucleotide metabolic process. These
are potential physiological impacting biological processes
after smoking or tobacco intake in nicotine addiction. Among
these GO entries enriched, seven were related to neuronal
development, death and apoptosis, in which Hif1a, Apoe,
Prdx2, Hyou1, Map2k4, Bax, Kras, Bcl2I1, Faim2 and Pcp4 were
the most significant DEGs. In terms of GO categories of cell
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composition, there were significantly enriched entries of
peroxisomal membrane, microbody membrane, clathrin-
coated pit, dendritic spine and neuron spine. It indicated that
these categories of cell composition would be affected in
smoking or nicotine addiction or tobacco dependence.

Enrichment analysis of KEGG pathways: A total of 260 KEGG
pathways were enriched and retrieved from the KEGG
pathway database by entering the 382 shared DEGs®. After
statistical analysis of enrichment, there were three significantly
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Table 2: Enrichment analysis of GO terms

GOID Gene ontology Description Gene ratio Adjusted p-values
G0:0071248 BP Cellular response to metal ion 13/243 0.0303
G0:0070997 BP Neuron death 18/243 0.0303
G0:0010043 BP Response to zinc ion 7/243 0.0303
G0:0006970 BP Response to osmotic stress 9/243 0.0303
GO0:0030099 BP Myeloid cell differentiation 17/243 0.0320
G0:0051384 BP Response to glucocorticoid 14/243 0.0320
G0:1901214 BP Regulation of neuron death 16/243 0.0320
G0:0051402 BP Neuron apoptotic process 14/243 0.0320
G0:0048168 BP Regulation of neuronal synaptic plasticity 7/243 0.0320
G0:0043523 BP Regulation of neuron apoptotic process 13/243 0.0320
G0:0071241 BP Cellular response to inorganic substance 14/243 0.0320
GO0:0030316 BP Osteoclast differentiation 8/243 0.0365
G0:0031960 BP Response to corticosteroid 14/243 0.0366
G0:0048169 BP Regulation of long-term neuronal synaptic plasticity 5/243 0.0390
G0:1901215 BP Negative regulation of neuron death 12/243 0.0390
GO0:0043524 BP Negative regulation of neuron apoptotic process 10/243 0.0390
G0:0002931 BP Response to ischemia 6/243 0.0413
G0:0043279 BP Response to alkaloid 10/243 0.0433
G0:0072330 BP Monocarboxylic acid biosynthetic process 10/243 0.0466
G0:0071900 BP Regulation of protein serine/threonine kinase activity 17/243 0.0466
GO0:0014074 BP Response to purine-containing compound 11/243 0.0468
GO0:0002573 BP Myeloid leukocyte differentiation 11/243 0.0468
G0:0009259 BP Ribonucleotide metabolic process 14/243 0.0489
GO:0005778 CcC Peroxisomal membrane 6/242 0.0105
GO0:0031903 CcC Microbody membrane 6/242 0.0105
G0:0005905 CcC Clathrin-coated pit 6/242 0.0161
G0:0043197 CcC Dendritic spine 10/242 0.0362
GO0:0044309 CcC Neuron spine 10/242 0.0362

enriched KEGG pathways with adjust p<0.05 (Fig. 3b, Table 3).
Those significantly enriched KEGG pathways were
Huntington’s disease (rno05016, adjust p = 0.0212), growth
hormone synthesis, secretion and action (rno04935, adjust
p = 0.0223) and Alzheimer's disease (rno05010, adjust
p = 0.0233). In addition, in the enriched KEGG pathways,
there were also many disease-related entries and energy
metabolism relevant pathways with nearly significant adjusted
p-values (Table 3). In these resulted in disease-related
signaling pathways, eleven potential neuropathic disease-
related genes were explored in the PPl network, including
Psma3, Psmb2, Psmd13, Psmc5, Plcb2, Ppif, Tubb2b, Ndufs6,
Ndufs7, Ndufb8 and Ndufb11.In addition, there are a number
of nicotine- and disease-related pathways that enriched
with insignificant p adjusted values, including Prion disease
(rn005020), Parkinson disease (rno05012), pathways of
neurodegeneration-multiple diseases (rno05022), circadian
rhythm (rno04710), long-term depression (rno04730),
autophagy-animal (rno04140), p53 signaling pathway
(rno04115), TNF signaling pathway (ro04668), HIF-1 signaling
pathway (rno04066), neurotrophin signaling pathway
(rno04722) and nicotine addiction (rno05033).
Enrichmentanalysis of KEGG pathways showed that there
were three significant enriched pathways for the 382 shared
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DEGs, with the adjusted p<0.05. These interesting KEGG
pathways were Huntington’s disease (rno05016), growth
hormone synthesis and secretion and action (rno04935) and
Alzheimer’s disease (rno05010).

Huntington’s disease: The Huntington'’s disease (rno05016),
also known as Huntington’s chorea or the dementia in
Huntington’s disease. It is an autosomal dominant
neurodegenerative disorder'2 It is caused by a mutation in
the Huntington gene on chromosome 4, which produces the
mutant protein and accumulates in the brain™?', In the
study, 16 genes were enriched in the Huntington'’s disease
pathway, which were Psmb2 (Proteasome Subunit Beta
Type-2), Psma3 (Proteasome Subunit Alpha Type-3), Psmd13
(26S Proteasome Non-ATPase Regulatory Subunit 13), Psmc5
(26S Proteasome Regulatory Subunit 8), Ndufs6, Tubb2b,
Ndufb8, Ap2m1, Ppif, Grial (glutamate receptor 1), Creb1,
Ndufb11, Ndufs7, Bax, Plcb2 and Grm5.

Growth hormone synthesis, secretion and action: The
Growth Hormone (GH) production is governed by multiple
neuroendocrine factors from the hypothalamus and other
regulators from the pituitary and peripheral organs. Growth
hormone synthesis, secretion and action (rno04935) is
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Table 3: Enrichment analysis of KEGG pathways

KEGG ID Description Gene ratio p-value Adjusted p-value
mo05016 Huntington’s disease 16/156 0.0001 0.0212
rno04935 Growth hormone synthesis, secretion and action 9/156 0.0002 0.0223
mo05010 Alzheimer’s disease 17/156 0.0003 0.0233
mo05020 Prion disease 13/156 0.0010 0.0520
mno05022 Pathways of neurodegeneration-multiple diseases 18/156 0.0014 0.0520
rno04932 Non-alcoholic fatty liver disease 9/156 0.0014 0.0520
mo05012 Parkinson disease 12/156 0.0015 0.0520
mo04728 Dopaminergic synapse 8/156 0.0018 0.0532
mo05166 Human T-cell leukemia virus 1 infection 11/156 0.0041 0.0926
mo04723 Retrograde endocannabinoid signaling 8/156 0.0043 0.0926
mo04919 Thyroid hormone signaling pathway 7/156 0.0046 0.0926
mo04152 AMPK signaling pathway 7/156 0.0060 0.1035
mo04910 Insulin signaling pathway 7/156 0.0095 0.1320
mo04024 cAMP signaling pathway 9/156 0.0102 0.1320
mo05017 Spinocerebellar ataxia 7/156 0.0117 0.1326
rmo05224 Breast cancer 7/156 0.0126 0.1326
rmo05014 Amyotrophic lateral sclerosis 13/156 0.0128 0.1326
rmo05162 Measles 7/156 0.0134 0.1344
rno05161 Hepatitis B 7/156 0.0196 0.1456
rno04714 Thermogenesis 9/156 0.0213 0.1500
rno05165 Human papillomavirus infection 11/156 0.0402 0.2043
rno04080 Neuroactive ligand-receptor interaction 11/156 0.0409 0.2043
rno05202 Transcriptional misregulation in cancer 7/156 0.0559 0.2596
ro05167 Kaposi sarcoma-associated herpesvirus infection 7/156 0.0810 0.3190
rmo04151 PI3K-Akt signaling pathway 9/156 0.1372 0.3751
mo05163 Human cytomegalovirus infection 7/156 0.1377 0.3751
ro05132 Salmonella infection 7/156 0.1558 0.3932
ro04060 Cytokine-cytokine receptor interaction 7/156 0.1750 0.4138

essential forunderstanding the endocrine regulation network
of animal growth hormone synthesis and secretion. In
particular, Creb1, Kras, Gsk3b, Plcb2, Sst, Junb, Map2k4, Fos
and Sstr2 were enriched in this pathway too. Growth
hormone synthesis, secretion and action involves several other
interesting pathways in the same study, such as the cAMP
signaling pathway (rno04024, adjusted p = 0.1320), calcium
signaling pathway (rno04020), MAPK signaling pathway
(rno04010) and JAK-STAT signaling pathway (rno04630). These
pathways are important for cell growth and metabolism at the
cellular and intracellular levels.

Alzheimer’s disease: The Alzheimer's disease (AD, rno05010)
is a degenerative disease of the central nervous system with
complex pathogenesis and clinical manifestations in
progressive cognition, memory-related impairment and
executive dysfunction. There were 17 DEGs enriched in the
Alzheimer’s disease pathway (rno05010), in which 12 genes
also appeared in the Huntington's disease pathway
(ro05016). These 12 genes are Ndufs6, Psmb2, Tubb2b,
Psma3, Nsufb8, Psmc5, Ppif, Ndufb11, Ndufs7, Psmd13, Plcb2
and Grmb5. The rest of the genes are Gapdh, Apoe, Kras and
Gsk3b. The Alzheimer's disease pathway overlaps and is
associated with the pathways of oxidative phosphorylation,
calciumssignaling pathway, Wntsignaling pathway, AGE-RAGE
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signaling pathway in diabetic complications, impaired
neuronal insulin signaling protein processing in endoplasmic
reticulum. These pathways interact with each other and lead
tothe processes of cellgrowth and metabolism and apoptosis.

In addition, there are a number of nicotine- and disease-
related pathways that enriched with insignificant p adjusted
values, including prion disease (rno05020), Parkinson’s
disease (rno05012), pathways of neurodegeneration-multiple
diseases (rn005022), circadian rhythm (rno04710), long-term
depression (rno04730), autophagy-animal (rno04140), p53
signaling pathway (rno04115), TNF signaling pathway
(ro04668), HIF-1 signaling pathway (rno04066), neurotrophin
signaling pathway (rno04722) and nicotine addiction
(rno05033). For instance, there were 18 DEGs enriched in the
pathways of neurodegeneration-multiple diseases that are
associated with a variety of neurodegenerative diseases like
Alzheimer’s disease, Huntington’s disease, Parkinson’s disease,
myasthenia gravis and spinocerebellar ataxia. There were
13 DEGs enriched in the pathway of prion disease which is
caused by accumulation of the Pathological Prion Protein
(PrPSc) in the central nervous system'4, There were 12 DEGs
enriched in the pathway of Parkinson'’s disease (PD) which is
achronic neurodegenerative disease endangering the health
of the middle-aged and elderly. The pathological feature of
Parkinson’s disease is the progressive loss of dopaminergic
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Fig. 4(a-c): Three key modules identified with the MMC algorithm of CytoHubba in the PPI network of 382 DEGs, (a) Cluster 1
(score 8.75), (b) Cluster 2 (score 6.818) and (c) Cluster 3 (score 5.6)

neurons in the substantia nigra of the brain, resulting in the
lack of dopamine content in the striatum leading to
dyskinesia'®. The pathway of nicotine addiction was also
enriched due to exposure to nicotine in the study. Besides
Alzheimer’s disease and Huntington’s disease, many reports
revealed that nicotine addiction is also associated with
Parkinson’s disease'>'%, lung diseases'%, cardiovascular
disease'®10 and gastrointestinal disease'®1%%151 in exposure
to nicotine.

In brief, the effects of exposure to nicotine are mainly
involved in synaptic plasticity, the cellular and intracellular
processes of the nervous system’s cell growth and
developmentand apoptosis, tendency prone to low immunity
and inflammation and nerve signal transduction phenomena,
as well as disorders. Ultimately, it will affect the level of
attention and cognitive and give rise to the incidence of
neurological diseases like Alzheimer’s disease and Parkinson'’s
disease.

Analysis of PPl network and identification of key modules
and hub genes: The PPl network and 126 nodes of 382 DEGs
generated on the STRING website were retrieved and
constructed by the StringApp software in Cytoscape2. This PPl
network was visualized, analyzed and displayed by the
Cytoscape software MCODE> and CytoHubba* and the other
Cytoscape plugins>2.

Three densely connected subnetworks were identified as
the key modules. The PPl network totally covered 284 points
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and 585 lines with those three key modules or subnetworks
(Fig.4).Module 1 (Fig.4a) contained 9 genes and 35 lines, with
an assessment score of 8.750. Module 1 was involved in rRNA
processing, ribosome synthesis, ribonucleoprotein complex,
cellularcomponents, ncRNA processing, 5.85 rRNA maturation,
rRNA metabolism, rRNA and RNA processing and ncRNA
metabolic processes, etc. Module 2 (Fig. 4b) included 23 points
and 75 lines, with an assessment score of 6.818. Module 2 was
involved in proteasomal protein decomposition process
protease body catabolism process, etc. Module 3 covered 6
points and 14 lines (Fig. 4c), with an assessment score of 5.6.
Module 3 was involved in the ATP synthase and NADH
dehydrogenase (ubiquinone) related processes.

The subnetworks of modules were further explored by the
BINGO software> with the interested DEGs.

Next, ten hub genes were identified with the MMC
algorithm of CystoHubba'*? in Fig. 5. The 10 hub genes were
identified as GAPDH, Gsk3b, Gria1, Creb1, Fos, Polr3a, Bcl2I1,
Kat2b, Kras and Kdmé6a, respectively (Fig. 5). Analysis with the
BINGO software® showed that these 10 hub genes were
mainly related to the following biological processes (Fig. 5),
including ribosome biogenesis, ribonucleoprotein complex
biogenesis, rRNA processing and rRNA metabolic process,
ncRNA processing and ncRNA metabolic process, cellular
component biogenesis, RNA processing and RNA metabolic
process, nucleic acid metabolic process, cellular nitrogen
compound metabolic process and nitrogen compound
metabolic process, etc.
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Fig. 5: Network diagram of the 10 identified hub genes

The PPl network analysis identified three densely
connected subnetworks as the key modules (Fig. 5). Itinvolved
in the processing and metabolic processes of rRNA and
ncRNA, the process of proteasomal protein decomposition
and proteases body catabolism and the ATP synthase and
NADH dehydrogenase (ubiquinone) related processes,
respectively. It also identified and defined 10 hub genes from
the key modules that were shown in both the PPl network and
subnetworks.

The network diagram shows the 10 identified hub
genes (GAPDH, Gsk3b, Grial, Creb1, Fos, Polr3a, Bcl2lT,
Kat2b, Kras and Kdmé6a) generated in the STRING website
(Fig. 5). These hub genes played important roles in the
process of smoking and exposure to nicotine as well as
nicotine addiction or tobacco dependence in recent
studies?®37153165 However, there are presently only a few
reports on these subnetworks/modules and hub genes
identified in the study. Further research will be needed to
elucidate the molecular mechanism of these
subnetworks/modules and hub genes in the progression of
the process of smoking and exposure to nicotine as well as
nicotine addiction or tobacco dependence.

The study explored the possible effects of exposure to
nicotine on the gene expression profiles of rat brain tissues
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based on the microarray dataset GSE59895 in the GEO
database. Many DEGs were systematically analyzed in the rat
brain tissues after environmental exposure to nicotine.
However, there is a non-negligible limitation of animal
treatments, i.e., therats were dealt without toxicantinhalation
or ingestion in the experiment. In animal experiment’, the
toxicants were profiled in up to 8 different rat tissues by
obtaining tissue samples from test compound-treated and
vehicle control-treated rats in biological triplicates for gene
expression analysis. Whether the toxicant reagents were
effective, the experiments were not carried out in an ideal
experimental condition with the same cases of human
smoking and/or second-hand smoking. This should be solved
in subsequent experiments.

CONCLUSION

In the present study, the effects of exposure to nicotine
were evaluated based on the gene expression profiles of rat
brain tissues with the microarray dataset GSE59895. In total,
382 shared DEGs were identified and explored within the
three case groups of exposure to nicotine. It was found that
exposure to nicotine would result in some disease-related
DEGs. These DEGs could increase the environmental risks of
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Huntington's disease, Alzheimer's disease, Parkinson’s disease
and other multiple neurodegeneration diseases. In the
disease-related signaling pathways, eleven potential
neuropathic disease-related genes, i.e., Psma3, Psmb2,
Psmd13, Psmc5, Plcb2, Ppif, Tubb2b, Ndufs6, Ndufs7,
Ndufb8 and Ndufb11, may complement the treatment of
neurodegenerative diseases. These eleven potential
neuropathic disease-related genes may complement the
treatment of neurodegenerative diseases. The study provided
new insights into the effects of environmental exposure to
nicotine on the gene expression profiles in rat brain tissues. It
may serve as a research foundation for further attempt at
exploring the molecular mechanism of diseases related to
exposure to nicotine.

SIGNIFICANCE STATEMENT

Nicotine relevant smoking causes many serious issues
of environmental pollution and complicated harm to
human health. The present study aimed to evaluate the effects
of exposure to nicotine on the differentially expressed
genes (DEGs) of rat brain tissues based on the microarray
dataset. There were a totally of 382 shared DEGs between
different case groups in the experiment, whereas 9 common
shared DEGs were found among all three groups. The
significant enrichments of 28 GO terms and 3 KEGG
pathways were comprehensively analyzed with their
corresponding functionally enriched genes. The study
further identified and explored 3 key modules and 10 hub
genes in the resulting protein-protein interaction network,
while eleven potential neuropathic disease-related genes
were found.
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