http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

ISSN 1028-8880 DOI: 10.3923/pjbs.2024.587.593

Research Article Synergistic Effects of Turmeric, Strawberry and Broccoli in Improving Lipid Profile in Adult Patients with Hypercholesterolemia

¹Diana Krisanti Jasaputra, ²Theresia Monica Rahardjo, ³Julia Windi Gunadi, ⁴Shiela Stefani and ⁵Ivana Indriati Sutrisno

Abstract

Background and Objective: Turmeric, strawberries and broccoli are popular in the community for their beneficial effects in improving lipid profile, but poor bioavailability and absorption of their phytochemical compounds might reduce their effects while given separately. Therefore, their combination might provide a synergistic enhancement of their property as hypolipidemic agents. This study aims to examine the effects of turmeric, strawberry and broccoli in improving lipid profile in adult patients with hypercholesterolemia. Materials and Methods: Twenty hypercholesterolemic adult patients from Unggul Karsa Medika Hospital in Bandung, Indonesia were recruited for the study, they were given 600 mg/day of turmeric/curcuminoid, 100 g of fresh strawberry and 100 g of boiled broccoli for 30 days. The measurement of the patient's characteristics (body weight, height, BMI) and biochemical parameters in the blood (total cholesterol, triglyceride, LDL-C, HDL-C, SGOT, SGPT, urea and creatinine) were conducted before and after the treatment. Results: The mean age of the patients was 49.15±1.9 years old, with mean height 1.56±0.014 m, weight 61.43±1.96 kg and mean body mass index 25.25 ± 0.87 kg/m². Lipid profile before the treatment: Total cholesterol 239.75 ± 6.56 mg/dL, LDL-C 172.9 ± 6.53 mg/dL, HDL-C 66.55 ± 3.37 mg/dL and triglyceride 193.7 ± 18.45 mg/dL; after the treatment: Total cholesterol 220.7 ± 9.39 mg/dL, LDL-C 153.95 ± 9.98 mg/dL, HDL-C 59.2 ± 2.45 mg/dL and triglyceride 145 ± 16.55 mg/dL. The result showed a significant reduction of total cholesterol (p = 0.014), LDL-C (p = 0.036), HDL-C (p = 0.001) and triglyceride (p = 0.015) after the treatment. Other biochemical parameters (SGOT, SGPT, urea and creatinine) showed normal levels before and after the treatment. **Conclusion:** In summary, supplementation of turmeric, strawberry and broccoli improves lipid profile in adult patients with hypercholesterolemia.

Key words: Broccoli, strawberry, turmeric, lipid profile, hypercholesterolemia

Citation: Jasaputra, D.K., T.M. Rahardjo, J.W. Gunadi, S. Stefani and I.I. Sutrisno, 2024. Synergistic effects of turmeric, strawberry and broccoli in improving lipid profile in adult patients with hypercholesterolemia. Pak. J. Biol. Sci., 27: 587-593.

Corresponding Author: Diana Krisanti Jasaputra, Department of Pharmacology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

Funding: This study is supported by Hibah Internal Skema Substitusi from Maranatha to DKJ, TMR, and SS with number 024/SK/ADD/UKM/VII/2022.

Copyright: © 2024 Diana Krisanti Jasaputra *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Pharmacology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

²Department of Anesthesiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

³Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

⁴Department of Anatomy, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

⁵Faculty of Medicine, Universitas Kristen Maranatha, Bandung, West Java, Indonesia

INTRODUCTION

As the most prevalent non-communicable disease in the world, Cardiovascular Disease (CVD) is the leading cause of global mortality and economic burden, including in Indonesia¹. The main risk factor for CVD is dyslipidemia, characterized by increased levels of total cholesterol (TC), LDL Cholesterol (LDL-C), triglyceride (TG) and decreased levels of HDL Cholesterol (HDL-C)². Hypercholesterolemia is defined as an increase of total cholesterol in the blood (\geq 200 mg/dL), while hypertriglyceridemia is defined as an increase of triglycerides in the blood (\geq 150 mg/dL)³. To prevent CVD occurrence, dyslipidemia must be managed through a safe, cost-effective, low-side-effects strategy as its pharmacology and non-pharmacology intervention.

Indonesian people frequently use traditional drugs for pharmacology intervention of chronic diseases, such as dyslipidemia and CVD⁴. Turmeric is a traditionally popular drug with numerous benefits for health, facilitated by its properties as an antioxidant, anti-inflammatory, antimicrobial, cardioprotective, antiobesity and hypolipidemic^{5,6}. Curcumin, a polyphenol derived from turmeric, is dispersed in ethanol and possesses lipid-modifying activity, especially triglycerides and HDL-C while total cholesterol and LDL-C were unaltered⁷. However, the therapeutic effect of curcumin is affected by its low solubility in water and poor absorption in the gut⁸. Therefore, a non-pharmacology intervention must also be considered to potentiate the hypolipidemic effect of turmeric.

As a non-pharmacology intervention, a healthy diet is an important part of a healthy lifestyle that people worldwide become more aware of. The definition of a healthy diet requires knowledge about the effects of foods, nutrients and food components on health and disease⁹. The dietary approaches to stop hypertension (DASH) and Mediterranean diets are proven to be effective in dyslipidemia prevention¹⁰⁻¹². These diets contain more plant-based food, such as fresh fruits, vegetables, whole grains, legumes, seeds and nuts⁹. Fresh fruits and vegetables provide a satiety feeling, improve gastrointestinal function and contain bioactive compounds that deliver beneficial effects on lipid profile^{13,14}.

Strawberries and broccoli are fruits and vegetables frequently used in combination for a healthy diet. Strawberries contain high polyphenols and dietary fibers, contributing to their effects in reducing CVD risk factors, including dyslipidemia¹⁵. Polyphenols from strawberries interact with gut microbiota by affecting microbiota and by being metabolized by it⁹. High concentrations of polyphenols, glucosinolates, sulforaphane and selenium in broccoli made this vegetable known for possessing health-promoting properties¹⁶. Recent studies have proven the positive

effects of turmeric, strawberries and broccoli on improving dyslipidemia, nevertheless, their combination might generate a synergistic effect in modifying the lipid profile in the blood. This study aims to investigate whether the combination of turmeric, strawberry and broccoli might enhance their capability to improve lipid profile in adult patients with hypercholesterolemia.

MATERIALS AND METHODS

Participant recruitment: Twenty adult patients with hypercholesterolemia were recruited from Unggul Karsa Medika Hospital (Bandung, Indonesia). The study was carried out from July, 2022 until February, 2023. The participants were assessed for eligibility with inclusion criteria: Healthy adults between 18-60 years old and fasting plasma total cholesterol >200 mg/dL. The exclusion criteria were history of cardiovascular disease, diabetes mellitus, Infectious disease, gastrointestinal absorption disorder, neurological disease, kidney/liver dysfunction, hypertension, allergy/intolerance to broccoli/strawberry/turmeric used in the study, taking lipid-lowering or anti-inflammatory medication, consuming other supplements, smoking, pregnant or lactating.

Ethical consideration: The study protocol was approved by the Research Ethics Committee, Unggul Karsa Medika Hospital (ethics number: 005/KEP-LIT/VIII/2022) and was conducted following the 1975 Declaration of Helsinki as revised in 1983. Informed consent was signed by all participants before the beginning of the study.

Study design: This study used a pre-test and post-test design. All subjects participated in 30 days of treatment with 600 mg curcuminoid (Sari Kunyit/Turmeric, Sidomuncul, from Ungaran, Semarang, Indonesia), 100 g of fresh strawberry and 100 g of fresh broccoli from Lembang, Bandung, Indonesia. Compliance was monitored by evaluating the daily log for dietary records and consumption of broccoli, strawberry and turmeric.

Clinical assessment, anthropometry and lipid profile analysis: The participants visited Unggul Karsa Medika Hospital before and after treatment in an 8 hrs fast state. Anthropometric (height, weight, BMI), medical history, dietary intake and fasting blood samples (total cholesterol, triglyceride, LDL-C, HDL-C, SGOT, SGPT, urea and creatinine) were examined in this study. For anthropometry data, height and weight measurements were taken using Seca Mechanical Column Scale-Seca 755 and Measuring Rod-Seca 224 (SECA, China).

Statistical analysis: Statistical analysis was conducted using SPSS 26, all data were presented as Means±SEM (Standard Error of the Mean) and a 0.05 significance level was set. A paired sample t-test or Wilcoxon was used to compare the changes in lipid profile levels before and after the treatment.

RESULTS

Participant characteristics: In this study, 20 participants were recruited from December, 2022 to February, 2023. The characteristics of the participants were: Mean age 49.15 ± 1.9 years old, height 1.56 ± 0.014 m, weight 61.43 ± 1.96 kg and BMI 25.25 ± 0.87 kg/m². The data was presented in Table 1.

Effect of turmeric, strawberry and broccoli on plasma lipid profile: After 30 days of treatment with turmeric, fresh strawberries and boiled broccoli, the plasma lipid profiles were significantly reduced. Total cholesterol, LDL-C, HDL-C and triglyceride before the treatment were: 239.75 ± 6.56 , 172.9 ± 6.53 , 66.55 ± 3.37 and 193.7 ± 18.45 mg/dL, respectively, while after the treatments were: 220.7 ± 9.39 , 153.95 ± 9.98 , 59.2 ± 2.45 and 145 ± 16.55 mg/dL, respectively. The difference between after and before the treatment for total cholesterol, LDL-C, HDL-C and triglyceride were: -19.05 ± 6.61 mg/dL (p=0.014), -18.95 ± 8.41 mg/dL (p=0.036), -7.35 ± 1.98 mg/dL (p=0.001) and -48.7 ± 16.53 mg/dL (p=0.015), as shown in Table 2.

Effect of turmeric, strawberry and broccoli on other biochemical parameters in the blood: After 30 days of treatment with turmeric, fresh strawberries and boiled broccoli, the other biochemical parameters in the blood: SGOT, SGPT and creatinine were not significantly affected, while we found a significant decrease in urea levels in the blood, but the level is still categorized as normal level. The SGOT, SGPT, urea and creatinine before the treatment were: 24.4±2.66 and 31.6±5.29 IU/L. 24.5±2.28 and 0.721 ± 0.03 mg/dL, respectively, while after the treatments were: 24.35 ± 2.08 and 29.6 ± 5.43 IU/L, 18.9 ± 1.63 and 0.6985 ± 0.03 mg/dL, respectively. The differences between after and before the treatment for SGOT, SGPT, urea and creatinine were: $-0.05\pm1.54 \text{ IU/L}$ (p = 0.931), $-2\pm3.82 \text{ IU/L}$ $(p = 0.111), -5.6\pm2.22 \text{ mg/dL} (p = 0.016) \text{ and}$ -0.0225 ± 0.02 mg/dL (p = 0.374), as shown in Table 3.

DISCUSSION

This study found improvement in the lipid profile of hypercholesterolemic patients after 30 days of treatment with turmeric, combined with fresh strawberries and boiled broccoli consumed every morning at 10 am. Total cholesterol,

Table 1: Participant characteristics at baseline

Characteristics	Total (%) or Mean±SEM
Sex, n (%)	
Male	2 (10%)
Female	18 (90%)
Age (y)	$49.15 \pm 1.9 \text{mg/dL}$
Height (m)	$1.56\pm0.014{ m mg/dL}$
Weight (kg)	61.43±1.96 mg/dL
BMI (kg/m²)	$25.25 \pm 0.87 \text{mg/dL}$

BMI: Body mass index

Table 2: Change in plasma lipid profile before and after treatment

Plasma lipid profile	Mean±SEM (mg/dL)
Total cholesterol	
Before	239.75±6.56
After	220.7±9.39
Δ (mg/dL)	-19.05±6.61*
LDL-C	
Before	172.9±6.53
After	153.95±9.98
Δ (mg/dL)	-18.95±8.41*
HDL-C	
Before	66.55±3.37
After	59.2±2.45
Δ (mg/dL)	-7.35±1.98**
TG	
Before	193.7±18.45
After	145±16.55
Δ (mg/dL)	-48.7±16.53*

*Means statistically significant (p<0.05) and **Means statistically very significant (p<0.01)

Table 3: Change in other biochemical parameters in the blood before and after treatment

deadificite	
Other biochemical parameter	Mean±SEM (IU/L or mg/dL)
SGOT	
Before	24.4±2.66
After	24.35 ± 2.08
Δ (IU/L)	-0.05 ± 1.54
SGPT	
Before	31.6±5.29
After	29.6±5.43
Δ (IU/L)	-2±3.82
Urea	
Before	24.5±2.28
After	18.9±1.63
Δ (mg/dL)	-5.6±2.22*
Creatinine	
Before	0.721±0.03
After	0.6985 ± 0.03
Δ (mg/dL)	-0.0225 ± 0.02

*Means statistically significant (p<0.05)

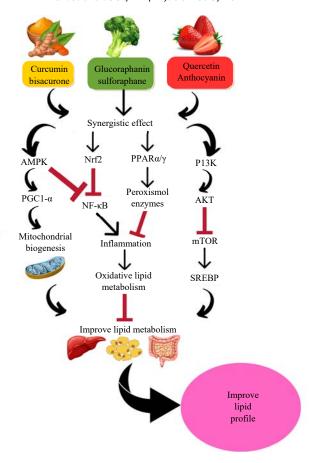


Fig. 1: Proposed mechanisms of synergistic effects of turmeric, strawberry and broccoli in improving lipid profile

LDL-C, HDL-C and triglyceride levels were decreased significantly, as shown in Table 2. This finding was similar to another study which also found a decrease in total cholesterol, LDL-C and triglyceride after 30 days of treatment with curcumin or turmeric in overweight hyperlipidemic patients ¹⁷. Other studies showed changes only in total cholesterol, LDL-C and triglyceride levels after treatment with curcumin, strawberry or broccoli ¹⁸⁻²¹.

Interestingly, this study found a significant decrease in HDL-C (Table 2). Decades ago, HDL-C levels were known to have a linear inverse correlation with CVD events, but recently, this paradigm has changed after other studies found a nonlinear correlation between HDL-C and CVD events²²⁻²⁵. Recent studies have concluded that low to moderate HDL-C levels are inversely correlated with CVD risks, but extremely high levels of HDL-C (>90 mg/dL) are correlated with high CVD risks and mortality, creating a U-shaped association²³⁻²⁵. Therefore, the decrease of HDL-C in this study might indicate a positive impact on CVD risks, considering the mean of the HDL-C levels before and after the treatments are still categorized as normal levels (Table 2). The results of other biochemical parameters in the blood showed normal levels of

SGOT, SGPT, urea and creatinine before and after the treatments, indicating that the treatment did not induce changes in the liver and kidney function (Table 3).

Studies have proven that turmeric, strawberries and broccoli have potential roles in reducing CVD risk factors by modulating lipid levels 5,15,20,26 . Several mechanisms were proposed for this curcuminoid action, such as induction of PPAR α/γ , scavenging free radical and signal transduction modification (Akt, AMPK, Nrf2, FOXO, SREBP1/2) correlated with lipid homeostasis genes 7,27 . As the major constituent in turmeric, curcuminoid decreased triglycerides and increased HDL-C, while total cholesterol and LDL-C were found unaltered 7 . Nevertheless, the poor bioavailability of curcumin might reduce its effectiveness when given orally in patients with hypercholesterolemia 28 . Therefore, other nutraceutical components might be combined with turmeric to enhance its effects on lipid profile.

Broccoli (*Brassica oleracea var Italica*) has edible (florets, sprouts) and non-edible parts (stalks, leaves, seeds)^{29,30}. Compared to other parts, broccoli florets have higher levels of amino acids, neoglucobrassicin, glucoraphanin, water-soluble phenolic compounds and vitamin $C^{29,30}$. Glucoraphanin is a

form of glucosinolate that has been proven to reduce LDL-C via Nrf2 inducer sulforaphane and correlated with mitochondrial fatty acid oxidation and lipid synthesis modulation via PI3K-AMPK signaling^{21,26,31}. The combination of sulforaphane and curcumin has been studied for their synergistic anti-inflammation effects in macrophage cells (RAW 264.7 cells); antioxidant and antiproliferative properties in human colon cancer cells (HT-29) and as future chemotherapy agents³²⁻³⁵.

Besides sulforaphane, polyphenols and anthocyanin might also enhance a synergistic effect with curcumin and broccoli. Strawberry contains polyphenols (anthocyanin, proanthocyanidins, ellagitannins), minerals, vitamins, flavonoids (quercetin, catechin, kaempferol) and dietary fibers, making it a functional food with a potential role in reducing cholesterol levels^{15,20}. Several studies have combined curcumin and quercetin or anthocyanin to prove their anti-inflammatory, anti-microbial, antioxidant, wound wound-healing properties and for the prevention of diabetes and obesity³⁶⁻³⁸.

The proposed synergistic effects of turmeric, broccoli and strawberries were summarized in Fig. 1. Curcumin and bisacurone in turmeric; glucoraphanin and sulforaphane from broccoli; quercetin and anthocyanin from strawberries are phytochemicals frequently studied in research because of their properties as anti-inflammatory, hypolipidemic and cardioprotective agents. Molecular mechanisms for those properties involved AMPK, PPARα/γ, PI3K-Akt-mTOR and Nrf2-NF-κB signaling pathways^{5,7,8,27,39}. The AMPK increased ACC which then increased mitochondrial biogenesis, improving mitochondrial dysfunction correlated with disruption of lipid metabolism found in dyslipidemia⁴⁰⁻⁴². The induction of PPAR α increased beta-oxidation of free fatty acids thus preventing lipid accumulation in the liver, while induction of PPARy increased FAT/CD36, removing lipid peroxides and oxidized LDL in systemic circulation⁴¹⁻⁴⁴. Pathway signaling of PI3K-Akt-mTOR might also be activated, reducing oxidative stress and lipid accumulation in the liver^{41,43,45}. The last proposed mechanism was the Nrf2-NF-κB pathway, indicating the role of Nrf2 as the regulator of antioxidant enzymes and inhibitor of NF-κB, reducing oxidative lipid metabolism, thus improving dyslipidemia³⁹⁻⁴¹. Further studies with a larger number of male and female hypercholesterolemic patients and in vitro and animal studies to prove the proposed mechanism for the synergistic enhancement of turmeric, broccoli and strawberry would be required to confirm the results obtained in this study.

CONCLUSION

A combination of traditional drugs and a healthy diet might result in beneficial effects for preventing cardiovascular disease by eliminating risk factors such as dyslipidemia. Turmeric, strawberry and broccoli are known as hypolipidemic agents by affecting lipid metabolism through several molecular mechanisms. This study found a significant decrease in total cholesterol, LDL-C, HDL-C and triglyceride after treatment, with normal levels of liver enzymes, urea and creatinine. In summary, combining those three ingredients provides a synergistic enhancement for achieving lipid profile improvement in adult hypercholesterolemic patients.

SIGNIFICANCE STATEMENT

The purpose of this study is to explore the synergistic effect of combining turmeric, strawberry and broccoli in improving lipid profile in patients with hypercholesterolemia. The combination of turmeric as a traditional drug and fresh strawberries and broccoli for a healthy diet was given to twenty hypercholesterolemic patients for 30 days. The result showed a significant decrease in total cholesterol, LDL-C, HDL-C and triglyceride without change of SGOT, SGPT, urea and creatinine in the blood. In conclusion, the combination of turmeric, strawberry and broccoli enhanced the hypolipidemic effects on hypercholesterolemic patients. This finding supported the concept of combining traditional herbs and a healthy diet for improving lipid profile.

ACKNOWLEDGMENT

We would like to thank the director and staff of Unggul Karsa Medika Hospital for allowing us to conduct research.

REFERENCES

- Roth, G.A., G.A. Mensah, C.O. Johnson, G. Addolorato and E. Ammirati *et al.*, 2020. Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol., 76: 2982-3021.
- Hedayatnia, M., Z. Asadi, R. Zare-Feyzabadi, M. Yaghooti-Khorasani and H. Ghazizadeh *et al.*, 2020. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., Vol. 19. 10.1186/s12944-020-01204-y.

- Tabatabaei-Malazy, O., M. Qorbani, T. Samavat, F. Sharifi,
 B. Larijani and H. Fakhrzadeh, 2014. Prevalence of dyslipidemia in Iran: A systematic review and meta-analysis study. Int. J. Preventive Med., 5: 373-393.
- Pradipta, I.S., K. Aprilio, R.M. Febriyanti, Y.F. Ningsih and M.A.A. Pratama *et al.*, 2023. Traditional medicine users in a treated chronic disease population: A cross-sectional study in Indonesia. BMC Complementary Med. Ther., Vol. 23. 10.1186/s12906-023-03947-4.
- Sharifi-Rad, J., Y.E. Rayess, A.A. Rizk, C. Sadaka and R. Zgheib *et al.*, 2020. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol., Vol. 11. 10.3389/fphar.2020.01021.
- Ahmad, R.S., M.B. Hussain, M.T. Sultan, M.S. Arshad and M. Waheed *et al.*, 2020. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric: A mechanistic review. Evidence-Based Complementary Altern. Med., Vol. 2020. 10.1155/2020/7656919.
- Simental-Mendía, L.E., M. Pirro, A.M. Gotto, M. Banach, S.L. Atkin, M. Majeed and A. Sahebkar, 2019. Lipid-modifying activity of curcuminoids: A systematic review and metaanalysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr., 59: 1178-1187.
- Kotha, R.R. and D.L. Luthria, 2019. Curcumin: Biological, pharmaceutical, nutraceutical and analytical aspects. Molecules, Vol. 24. 10.3390/molecules24162930.
- Cena, H. and P.C. Calder, 2020. Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, Vol. 12. 10.3390/nu12020334.
- Franquesa, M., G. Pujol-Busquets, E. García-Fernández, L. Rico and L. Shamirian-Pulido *et al.*, 2019. Mediterranean diet and cardiodiabesity: A systematic review through evidence-based answers to key clinical questions. Nutrients, Vol. 11. 10.3390/nu11030655.
- 11. Handelsman, Y., P.S. Jellinger, C.K. Guerin, Z.T. Bloomgarden and E.A. Brinton *et al.*, 2020. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the management of dyslipidemia and prevention of cardiovascular disease algorithm-2020 executive summary. Endocr. Pract., 26: 1196-1224.
- Ali, H.I., F. Elmi, L. Stojanovska, N. Ibrahim, L.C. Ismail and A.S. Al Dhaheri, 2022. Associations of dyslipidemia with dietary intakes, body weight status and sociodemographic factors among adults in the United Arab Emirates. Nutrients, Vol. 14. 10.3390/nu14163405.
- Probst, Y.C., V.X. Guan and K. Kent, 2017. Dietary phytochemical intake from foods and health outcomes: A systematic review protocol and preliminary scoping. BMJ Open, Vol. 7. 10.1136/bmjopen-2016-013337.

- 14. McRorie, J.W. and N.M. McKeown, 2017. Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet., 117: 251-264.
- Huang, L., D. Xiao, X. Zhang, A.K. Sandhu and P. Chandra et al., 2021. Strawberry consumption, cardiometabolic risk factors, and vascular function: A randomized controlled trial in adults with moderate hypercholesterolemia. J. Nutr., 151: 1517-1526.
- Mahn, A. and A. Reyes, 2012. An overview of healthpromoting compounds of broccoli (*Brassica oleracea* var. italica) and the effect of processing. Food Sci. Technol. Int., 18: 503-514.
- 17. Pashine, L., J.V. Singh, A.K. Vaish, S.K. Ojha and A.A. Mahdi, 2012. Effect of turmeric (*Curcuma longa*) on overweight hyperlipidemic subjects: Double blind study. Indian J. Community Health, 24: 113-117.
- Sukandar, E.Y., P. Sudjana, J.I. Sigit, N.P.E. Leliqia and F. Lestari, 2013. Safety of garlic (*Allium sativum*) and turmeric (*Curcuma domestica*) extract in comparison with simvastatin on improving lipid profile in dyslipidemia patients. J. Med. Sci., 13: 10-18.
- Mohammadi, A., A. Sahebkar, M. Iranshahi, M. Amini, R. Khojasteh, M. Ghayour-Mobarhan and G.A. Ferns, 2013. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial. Phytother. Res., 27: 374-379.
- 20. Gao, Q., L.Q. Qin, A. Arafa, E.S. Eshak and J.Y. Dong, 2020. Effects of strawberry intervention on cardiovascular risk factors: A meta-analysis of randomised controlled trials. Br. J. Nutr., 124: 241-246.
- 21. Armah, C.N., C. Derdemezis, M.H. Traka, J.R. Dainty and J.F. Doleman *et al.*, 2015. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Mol. Nutr. Food Res., 59: 918-926.
- 22. Riggs, K.A. and A. Rohatgi, 2019. HDL and reverse cholesterol transport biomarkers. Methodist Debakey Cardiovasc. J., 15: 39-46.
- 23. Wilkins, J.T., H. Ning, N.J. Stone, M.H. Criqui, L. Zhao, P. Greenland and D.M. Lloyd-Jones, 2014. Coronary heart disease risks associated with high levels of HDL cholesterol. J. Am. Heart Assoc., Vol. 3. 10.1161/JAHA.113.000519.
- Madsen, C.M., A. Varbo and B.G. Nordestgaard, 2017. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J., 38: 2478-2486.
- Hirata, A., D. Sugiyama, M. Watanabe, A. Tamakoshi and H. Iso et al., 2018. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH-JAPAN study. J. Clin. Lipidol., 12: 674-684.e5.

- 26. Xu, X., M. Dai, F. Lao, F. Chen, X. Hu, Y. Liu and J. Wu, 2020. Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. J. Funct. Foods, Vol. 68. 10.1016/j.jff.2020.103858.
- 27. Zingg, J.M., S.T. Hasan and M. Meydani, 2013. Molecular mechanisms of hypolipidemic effects of curcumin. BioFactors, 39: 101-121.
- 28. Tabanelli, R., S. Brogi and V. Calderone, 2021. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics, Vol. 13. 10.3390/pharmaceutics13101715.
- 29. Liu, M., L. Zhang, S.L. Ser, J.R. Cumming and K.M. Ku, 2018. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules, Vol. 23. 10.3390/molecules23040900.
- Saavedra-Leos, M.Z., C. Leyva-Porras, A. Toxqui-Terán and V. Espinosa-Solis, 2021. Physicochemical properties and antioxidant activity of spray-dry broccoli (*Brassica oleracea* var italica) stalk and floret juice powders. Molecules, Vol. 26. 10.3390/molecules26071973.
- 31. Choi, K.M., Y.S. Lee, W. Kim, S.J. Kim and K.O. Shin *et al.*, 2014. Sulforaphane attenuates obesity by inhibiting adipogenesis and activating the AMPK pathway in obese mice. J. Nutr. Biochem., 25: 201-207.
- Santana-Gálvez, J., J. Villela-Castrejón, S.O. Serna-Saldívar, L. Cisneros-Zevallos and D.A. Jacobo-Velázquez, 2020. Synergistic combinations of curcumin, sulforaphane, and dihydrocaffeic acid against human colon cancer cells. Int. J. Mol. Sci., Vol. 21. 10.3390/ijms21093108.
- 33. Langner, E., M.K. Lemieszek and W. Rzeski, 2019. Lycopene, sulforaphane, quercetin, and curcumin applied together show improved antiproliferative potential in colon cancer cells *in vitro*. J. Food Biochem., Vol. 43. 10.1111/jfbc.12802.
- 34. Negrette-Guzmán, M., 2019. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur. J. Pharmacol., Vol. 859. 10.1016/j.ejphar.2019.172513.
- 35. Cheung, K.L., T.O. Khor and A.N. Kong, 2009. Synergistic effect of combination of phenethyl isothiocyanate and sulforaphane or curcumin and sulforaphane in the inhibition of inflammation. Pharm. Res., 26: 224-231.
- Tsuda, T., 2022. Anthocyanins and curcumin: Possible abilities
 of prevention of diabetes and obesity via stimulation of
 glucagon-like peptide-1 secretion and induction of beige
 adipocyte formation. J. Nutr. Sci. Vitaminol., 68: S110-S112.

- 37. Güran, M., G. Şanlıtürk, N.R. Kerküklü, E.M. Altundağ and A.S. Yalçın, 2019. Combined effects of quercetin and curcumin on anti-inflammatory and antimicrobial parameters *in vitro*. Eur. J. Pharmacol., Vol. 589. 10.1016/j.ejphar.2019.172486.
- 38. Chittasupho, C., A. Manthaisong, S. Okonogi, S. Tadtong and W. Samee, 2022. Effects of quercetin and curcumin combination on antibacterial, antioxidant, *in vitro* wound healing and migration of human dermal fibroblast cells. Int. J. Mol. Sci., Vol. 23. 10.3390/ijms23010142.
- 39. He, C., T. Miyazawa, C. Abe, T. Ueno and M. Suzuki *et al.*, 2023. Hypolipidemic and anti-inflammatory effects of *Curcuma longa*-derived bisacurone in high-fat diet-fed mice. Int. J. Mol. Sci., Vol. 24. 10.3390/ijms24119366.
- Lei, P., S. Tian, C. Teng, L. Huang and X. Liu et al., 2019.
 Sulforaphane improves lipid metabolism by enhancing mitochondrial function and biogenesis in vivo and in vitro.
 Mol. Nutr. Food Res., Vol. 63. 10.1002/mnfr.201800795.
- 41. Gomes, J.V.P., T.C.B. Rigolon, M.S. da Silveira Souza, J.I. Alvarez-Leite, C.M.D. Lucia, H.S.D. Martino and C. de Oliveira Barbosa Rosa, 2019. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition, 66: 192-202.
- 42. Ceja-Galicia, Z.A., F.E. García-Arroyo, O.E. Aparicio-Trejo, M. El-Hafidi and G. Gonzaga-Sánchez *et al.*, 2022. Therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia: Association with the improvement of renal mitochondrial β-oxidation and lipid metabolism in kidney and liver. Antioxidants, Vol. 11. 10.3390/antiox11112195.
- 43. Mansour, S.Z., E.M. Moustafa and F.S.M. Moawed, 2022. Modulation of endoplasmic reticulum stress via sulforaphane-mediated AMPK upregulation against nonalcoholic fatty liver disease in rats. Cell Stress Chaperones, 27: 499-511.
- Panahi, Y., Y. Ahmadi, M. Teymouri, T.P. Johnston and A. Sahebkar, 2018. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol., 233: 141-152.
- Xia, Z.H., S.Y. Zhang, Y.S. Chen, K. Li, W.B. Chen and Y.Q. Liu, 2020. Curcumin anti-diabetic effect mainly correlates with its anti-apoptotic actions and PI3K/Akt signal pathway regulation in the liver. Food Chem. Toxicol., Vol. 146. 10.1016/j.fct.2020.111803.