http://www.pjbs.org

ISSN 1028-8880

Pakistan Journal of Biological Sciences

Asian Network for Scientific Information 308 Lasani Town, Sargodha Road, Faisalabad - Pakistan

ISSN 1028-8880 DOI: 10.3923/pjbs.2025.178.188

Research Article

Antibacterial and Anticancer Properties of Sapogenols from Streptomyces globisporus LL096, an Endophyte in Leucaena leucocephala (Lam.) de Wit.

¹Thongchai Taechowisan, ¹Thanaporn Chuen-Im and ²Waya S. Phutdhawong

Abstract

Background and Objective: Endophytic Streptomyces globisporus LL096, a bacterial strain isolated from the roots of Leucaena leucocephala (Lam.) de Wit, has been the subject of limited research, highlighting a significant knowledge gap regarding its potential applications in secondary metabolite production. The primary objectives of this study were to isolate and characterize the major bioactive compounds produced by S. globisporus LL096 and to evaluate their antibacterial and anticancer activities. Materials and Methods: The bioactive compounds produced by S. globisporus LL096 were isolated and purified using a combination of chromatographic techniques, including column chromatography and thin-layer chromatography (TLC). The chemical structures of the isolated compounds were elucidated by Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry (MS). The purified compounds were identified as soyasapogenol A (compound 1) and soyasapogenol B (compound 2). Subsequently, the antibacterial and anticancer activities of soyasapogenol A and soyasapogenol B were evaluated. Treatment effects were analyzed using one-way ANOVA with Tukey's post hoc test, considering p<0.05 as statistically significant. **Results:** Soyasapogenol A and B exhibited antibacterial activity against Gram-positive bacteria, including Staphylococcus aureus TISTR885, Staphylococcus epidermidis TISTR518, Bacillus cereus TISTR687 and Bacillus subtilis TISTR008. The minimum inhibitory concentrations (MICs) of the compounds against these bacterial strains ranged from 128 to $256 \mu g/mL$. The compounds demonstrated significant cytotoxicity against these cancer cell lines, with IC_{50} values ranging from 321.90 to 369.90 μ g/mL for HeLa, 434.03 to 475.42 µg/mL for HepG2 and 282.96 to 362.17 µg/mL for MDA-MB-231 cells. However, moderate cytotoxicity against the non-cancerous Vero cell line was also observed, with IC₅₀ values ranging from 729.81 to 811.14 μ g/mL. **Conclusion:** This study demonstrates that Streptomyces globisporus strain LL096 produces bioactive compounds, including soyasapogenol A and B, which exhibit antibacterial activity against Gram-positive bacteria and demonstrate cytotoxic effects against various human cancer cell lines.

Key words: Antibacterial activity, anticancer activity, endophyte, Leucaena leucocephala, Sapogenols, Streptomyces sp. LL096

Citation: Taechowisan, T., T. Chuen-Im and W.S. Phutdhawong, 2025. Antibacterial and anticancer properties of sapogenols from *Streptomyces globisporus* LL096, an endophyte in *Leucaena leucocephala* (Lam.) de Wit. Pak. J. Biol. Sci., 28: 178-188.

Corresponding Author: Thongchai Taechowisan, Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

Copyright: © 2025 Thongchai Taechowisan *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Microbiology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

²Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

INTRODUCTION

Plants host diverse microbial communities in their rhizosphere, phyllosphere and endophytes¹. Endophytes, specifically, are microorganisms that reside within their host plant for a portion of their life cycle without causing apparent harm. While ubiquitous, the majority of endophytes and their interactions with plants remain poorly characterized^{2,3}. The plant endosphere, a complex microbial ecosystem, offers various niches for different microorganisms and serves as a rich source of novel bioactive compounds^{4,5}. Endophytes inhabiting various plants are increasing, but a significant gap remains in understanding their functional roles, especially within medicinal plants. Parrent et al.6 suggest that focusing on functional diversity rather than just taxonomic classification might be more insightful for unraveling the mechanisms behind how diverse endophytes influence plant interactions. Additionally, Hardoim et al.7 emphasize the importance of specific traits that enhance the fitness of both the endophyte and its host plant, potentially leading to the development of efficient physiological systems that enable endophytes to colonize the plant's internal tissues. Endophytes can colonize the cortical tissues of roots, protecting against invading pathogens while also benefiting from the cortex's shielding against the harsh rhizosphere environment⁸. Actinobacteria associated with plants offer various advantages to their hosts, including the production of phytohormones, nitrogen fixation and secondary metabolites9. Actinomycetes, particularly Streptomyces species, are well-known for their antifungal properties, making them promising biocontrol agents. Their metabolites can also influence plant growth in beneficial ways^{5,10}. This antagonistic activity against plant pathogens stems from their production of antimicrobial compounds^{11,12} and extracellular enzymes that break down fungal cell walls¹³. Plant growth promotion can be attributed to their ability to synthesize root-stimulating indole-3-acetic acid (IAA)¹⁴, siderophores that enhance nutrient acquisition¹⁵ and a range of antibiotics, which are secondary metabolites 16.

Leucaena leucocephala (Lam.) de Wit is a member of the Fabaceae family. Leucaena leucocephala has garnered global recognition as a "miracle tree" due to its versatility in providing nutritious food, forage, green manure and erosion control. This mimosoid tree is indigenous to tropical and subtropical regions worldwide. Leucaena leucocephala possesses a wide range of medicinal properties, including antimicrobial, anthelmintic, antibacterial, anti-proliferative, antidiabetic, anticancer, diuretic, anti-inflammatory, antioxidant, antitumor, antihistaminic, nematicide, pesticide, anti-androgenic, hypo-cholesterolemia and hepatoprotective effects¹⁷.

Reported medicinal applications of *L. leucocephala* include the management of stomach diseases, induction of abortion and contractions and as an alternative or complementary therapy for diabetes¹⁸.

Cronobacter sakazakii, an endophytic bacterium belonging to the Enterobacteriaceae family, was recently isolated from the leaves of L. leucocephala. Crude extracts of C. sakazakii demonstrated antioxidant and antidiabetic properties in both in vitro and in vivo models¹⁹. Additionally, the actinomycete strain RAL1, closely related to Streptomyces aegyptiaca, was isolated from the rhizosphere of L. leucocephala in the karst ecosystem of Gorontalo, Indonesia. This strain exhibited phosphate solubilization and indole-3-acetic acid (IAA) production, which are beneficial for plant growth²⁰. The main objectives of this study were to isolate and identify the key bioactive compounds produced by S. globisporus LL096 and to assess their antibacterial and anticancer properties.

MATERIALS AND METHODS

Study area: The study was conducted at Department of Microbiology and Chemistry, Silpakorn University, Nakhon Pathom, Thailand, between March, 2023 and February, 2024.

Isolation and antibacterial screening of actinomycetes:

Fifteen Leucaena (Leucaena leucocephala (Lam.) de Wit.) root samples were collected in Silpakorn University, Nakhon Pathom, Thailand (coordinates: 13.81691 N, 100.04212 E). To isolate actinomycetes, the roots were thoroughly washed, severed into small segments and then treated with a surface sterilization process as described by Taechowisan et al.21. The surface-sterilized root segments were plated onto a special medium called humic acid-vitamins (HV) agar containing 100 µg/mL of cycloheximide and nystatin. These plates were incubated at 32°C for 3 weeks. The colonies with characteristic actinomycete morphologies were picked and transferred to fresh plates containing ISP-2 medium for further identification. A total of 42 actinomycete isolates were evaluated for their ability to inhibit the growth of bacteria. This screening included Staphylococcus aureus TISTR885, Staphylococcus epidermidis TISTR518, Bacillus cereus TISTR687, Bacillus subtilis TISTR008, Escherichia coli TISTR887, Salmonella typhimurium TISTR292 and Pseudomonas aeruginosa TISTR1287. A modified soft-agar overlay method was used by Hockett and Baltrus²² and the size of the inhibition zones was measured. This experiment was performed in triplicate to ensure accuracy. Among the 42 isolates, LL096 displayed the strongest antibacterial activity. This isolate was then identified

using a combination of morphological, physiological and chemotaxonomic techniques following the methods established by Cassarini *et al.*²³. Strain LL096 was grown on a large scale (800 Petri dishes) using ISP-2 agar for 21 days at 32°C. The culture was then extracted with Ethyl Acetate (EtOAc) to recover potential bioactive compounds. The combined organic extracts were concentrated using a rotary evaporator, resulting in a dark brown solid (21.50 g). This crude extract was then divided into two parts. One part was dissolved in DMSO for antibacterial and anticancer testing, while the other part was prepared for further purification and characterization of individual compounds using Dichloromethane (CH₂Cl₂).

Scanning electron microscopy: To investigate the morphology of the LL096 strain, we employed Scanning Electron Microscopy (SEM) following the methods outlined by Castillo *et al.*²⁴. Briefly, the samples were prepared, dried using a critical point dryer with liquid CO₂ (Quorum K850, UK), sputter-coated with gold (Safematic CCU-010HV, Switzerland) and examined under a scanning electron microscope (TESCAN Mira3, Czech Republic). This process allowed us to observe the morphology of the LL096 isolate's spore chains and any ornamentation on their surfaces.

Identification of LL096 strain using 16S rDNA sequencing and phylogenetic analysis: To identify the LL096 strain, 16S ribosomal RNA gene (rDNA) sequencing and phylogenetic analysis were performed. First, the LL096 strain, exhibiting the strongest antibacterial activity, was cultured in ISP-2 broth for seven days at 32°C with shaking (150 rpm). The bacterial cells were then harvested by centrifugation and washed with phosphate-buffered saline (PBS). Genomic DNA was extracted from the purified cells using a commercially available DNA extraction kit (Geneaid, Taiwan). The 16S rDNA gene was amplified using polymerase chain reaction (PCR) with specific primers (A7-26f and B1523-1504r) and sequenced following the methods established by Taechowisan et al.25. The obtained DNA sequences were assembled into a complete 16S rDNA sequence for the LL096 strain. This assembled sequence was compared to known 16S rDNA sequences deposited in the National Center for Biotechnology Information (NCBI) GenBank database using the Basic Local Alignment Search Tool (BLAST) program. This comparison identified reference strains (organisms with known 16S rDNA sequences) that were most similar to the LL096 strain. The 16S rDNA sequences from the LL096 strain, along with the retrieved reference sequences, were then aligned using software called CLUSTAL W (version 1.74). This alignment process arranges the sequences to identify regions of similarity and difference. The alignment was manually checked and adjusted for accuracy before constructing a phylogenetic tree. Finally, a phylogenetic tree was constructed using the neighbor-joining method implemented in MEGA 11 software²⁶. This tree visually depicts the evolutionary relationships between the LL096 strain and its closest relatives based on the 16S rDNA sequence similarities.

Determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC): This study evaluated the antibacterial efficacy of both the crude extract and the purified compounds by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against relevant bacterial strains. Established protocols by Pfaller *et al.*²⁷ were followed to ensure consistent and reliable testing procedures. Chloramphenicol (Thermo Fisher Scientific, USA) served as a positive control in this experiment.

Determination of the cytotoxicity of the crude extract and purified compound: The study investigated the potential anticancer properties of the crude extract and purified compounds using a laboratory technique called the MTT assay²⁸. The substances were tested against a panel of three cancer cell lines: Cervical cancer (HeLa), liver cancer (HepG2) and breast cancer (MDA-MB-231) cells. A range of concentrations (1-512 µg/mL) was used to assess their effect. To determine if the extract or compounds specifically target cancer cells, a non-cancerous cell line (Vero) was also introduced in the experiment. The selectivity index (SI) was calculated to measure this preference. The SI is the ratio of the concentration needed to inhibit 50% growth in the non-cancerous cells (Vero) compared to the concentration needed for the same effect in cancer cells. A higher SI indicates the compound is more selective for targeting cancer cells with minimal harm to healthy cells. Doxorubicin hydrochloride (Thermo Fisher Scientific, USA) served as a positive control for cytotoxicity testing.

Compound purification and characterization: The crude extract (11.50 g) was separated into its components using column chromatography. This involved packing a column with silica gel and passing the extract through it with a gradually increasing solvent mixture (CH₂Cl₂:MeOH). Fractions containing potentially active compounds were eluted (extracted) using 8-10% methanol in Dichloromethane (CH₂Cl₂). These fractions were further purified using thin-layer chromatography (TLC) with a different solvent mixture (CH₂Cl₂:EtOAc, 3:5). This yielded 12.25 and 15.08 mg of the purified compounds 1 and 2. The structures of the purified

compounds (compounds 1 and 2) were determined using various spectroscopic techniques. Melting points were measured using a Stuart SMP20 apparatus (Cole-Parmer, Staffordshire, UK). Ultraviolet (UV) spectra were recorded using a Perkin Elmer Lambda 35 spectrophotometer (Perkin Elmer Life and Analytical Sciences, USA) to gain insights into the compounds' electronic structures. Additionally, Nuclear Magnetic Resonance (NMR) spectroscopy provided detailed information about the compounds' atomic arrangements. Both ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) spectra were obtained using a Bruker Avance III NMR Spectrometer (Bruker, Germany). Finally, mass spectrometry was also performed on a POLARIS Q mass spectrometer (Thermo Fisher Scientific, USA) to determine the molecular weights of the purified compounds.

Statistical analysis: Each experiment was performed in triplicate. Data were expressed as Mean±Standard Deviations (SD). Statistical analysis was performed using SPSS for Windows version 11.01 (SPSS Inc., Chicago, Illinois, USA). Treatment effects were analyzed using one-way ANOVA, followed by Tukey multiple comparisons. Values of p<0.05 were considered to indicate statistical significance.

RESULTS

From the roots of *L. leucocephala*, 42 actinomycete strains were isolated and evaluated for their antibacterial activity against a reference strain of *Staphylococcus aureus* and clinical isolates of Methicillin-resistant *S. aureus* (MRSA). The evaluation involved measuring inhibition zones around each bacterial colony on a plate. Notably, strain LL096 exhibited the most promising antibacterial effect, with inhibition zones

ranging from 35 to 40 mm against a specific panel including *Bacillus cereus* TISTR687 (Fig. 1a) and *Bacillus subtilis* TISTR008 (Fig. 1b).

The tested bacteria in soft-agar were overlaid onto the 7 days old preculture of *Streptomyces globisporus* LL096 on ISP-2 medium. The inhibition zones were measured after 24 hrs of incubation at 37 °C.

Examining LL096 under a microscope revealed structures called sporophores that branch out at single points (monopodially). These sporophores bore flexible, globose to oval-shaped spores with a smooth surface. Both the aerial and substrate mycelia (thread-like fungal structures) were well-developed (Fig. 2). The initially white aerial mycelia of strain LL096 transformed into a yellow-brown color after a week of incubation. Interestingly, it produced a light yellow, soluble pigment. Microscopic examination and the presence of a specific molecule (LL-diaminopimelic acid) in its cell extract identified LL096 as belonging to the Streptomyces genus. Further analysis using a technique called BLAST revealed that the 16S ribosomal RNA gene (rDNA) sequence of LL096 exhibited high similarity (99.19%) to Streptomyces *alobisporus* strain NBRC 12810. A phylogenetic analysis (not shown here) confirmed this close relationship, clustering LL096 with Streptomyces globisporus subsp., globisporus strain NBRC 12867 and Streptomyces globisporus strain NRRL B-2872. Finally, the 16S rDNA sequence of LL096 was deposited in GenBank, a public genetic sequence database, under accession number PQ517321 Fig. 3.

The current study investigation successfully purified two distinct compounds from the crude extract of *Streptomyces globisporus* strain LL096. The subsequent sections detail the chemical structures of these compounds, elucidated using various spectroscopic techniques.

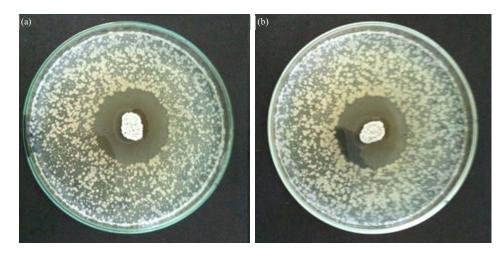


Fig. 1(a-b): Screening of antibacterial activity using the soft agar overlay technique, (a) *Bacillus cereus* TISTR687 and (b) *Bacillus subtilis* TISTR008

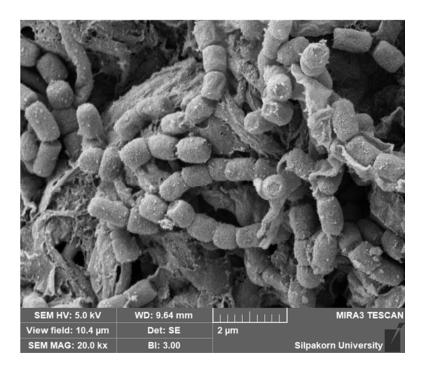


Fig. 2: Scanning electron micrograph of *Streptomyces globisporus* LL096 grown on the ISP-2 agar after 15 days at 32°C incubation

Strain LL096 exhibited flexous sporophores and globose to oval-shaped spores with smooth surfaces

Compound 1: It was a needle crystal; MP 308-310°C; IRv_{max} (KBr) cm⁻¹: 3364 (OH), 2956, 1652 (C=C), 1470, 1383, 1032 and 998; ESI-MS m/z (rel. int.): 474.37 [M+H]⁺, 497.46 [M+Na]⁺; molecular formula: $C_{30}H_{50}O_{4}$; ¹H-NMR (400 MHz, CD₃OD) δ: 5.25 (1H, dd, J = 3.5, 3.4, H-12), 3.29 (1H, dd, J = 10.5, 3.2, H-22α), 6.11 (1H, d, J = 10.7, H-21α), 6.68 (1H, overlap, H-3α), 5.28 (1H, overlap, H-24α), 3.21, 3.78 (2H, d, J = 11.6, H-24), 1.84 (1H, dd, J = 13.8, 4.1, H-18), 0.96-1.04 (3H, s, T × CH₃); ¹³C-NMR (100 MHz, CD₃OD) δ: 38.2 (C-1), 27.5 (C-2), 80.8 (C-3), 42.8 (C-4), 55.8 (C-5), 18.7 (C-6), 33.2 (C-7), 39.8 (C-8), 47.7 (C-9), 36.5 (C-10), 23.8 (C-11), 122.5 (C-12), 144.5 (C-13), 42.0 (C-14), 25.8 (C-15), 28.2 (C-16), 37.2 (C-17), 44.5 (C-18), 46.0 (C-19), 30.5 (C-20), 71.1 (C-21), 76.6 (C-22), 22.2 (C-23), 64.5 (C-24), 16.1 (C-25), 16.8 (C-26), 25.2 (C-27), 28.6 (C-28), 32.4 (C-29), 20.0 (C-30) (Table 1).

Compound 2: It was a needle crystal; MP 258-260°C; IRv_{max} (KBr) cm⁻¹: 3417 (OH), 2954, 1640 (C=C), 1468, 1390, 1368 and 1044; ESI-MS m/z (rel. int.): 458.72 [M+H]⁺, 481.47 [M+Na]⁺; molecular formula: $C_{30}H_{50}O_{3}$; ¹H-NMR (400 MHz, CD₃OD) δ: 5.40 (1H, dd, J= 3.8, 3.5, H-12), 3.31 (1H, dd, J= 12.5, 3.4, H-22α), 3.34 (1H, dd, J= 12.4, 3.6, H-21α), 6.70 (1H, overlap, H-3α), 5.30 (1H, overlap, H-24α), 3.38, 3.80 (2H, d, J= 12.8, H-24), 1.82 (1H, dd, J= 14.2, 5.2, H-18), 0.97-1.02 (23H, s, 7×CH₃); ¹³C-NMR (100 MHz, CD₃OD) δ: 38.3 (C-1), 27.6 (C-2), 80.7 (C-3), 42.7 (C-4), 56.2 (C-5), 18.9 (C-6), 33.5 (C-7), 40.2 (C-8), 47.9 (C-9),

36.2 (C-10), 24.0 (C-11), 123.2 (C-12), 144.2 (C-13), 41.5 (C-14), 25.6 (C-15), 28.4 (C-16), 37.4 (C-17), 44.7 (C-18), 46.1 (C-19), 30.7 (C-20), 41.2 (C-21), 78.4 (C-22), 22.0 (C-23), 65.1 (C-24), 16.3 (C-25), 17.1 (C-26), 25.0 (C-27), 28.8 (C-28), 32.1 (C-29), 20.3 (C-30) (Table 1).

Structural elucidation of compounds 1 and 2 revealed their identity as soyasapogenol A and soyasapogenol B, respectively (Fig. 4a-b). In the experiment conducted for isolation of soyasapogenol A and B, it was found that *Streptomyces globisporus* LL096 could produce soyasapogenol A and B on 1.07 and 1.31 mg/g of crude extract or 1.43 and 1.76 mg/L of culture medium.

The purified compounds 1 and 2 exhibited moderate activity against Gram-positive bacteria, with MICs ranging from 128 to 256 µg/mL. However, the MBCs of the crude extract and purified compounds against the tested bacterial strains could not be determined, exceeding the upper limit of 512 µg/mL (Table 2). The cytotoxicity of the crude extract and purified compounds was evaluated against Vero cells and three human cancer cell lines (MDA-MB-231, HeLa and HepG2). They exhibited low cytotoxicity, with IC_{50} values ranging 282.96-984.10 µg/mL to the cancer cell lines. The crude extract and purified compounds showed very low cytotoxicity against the non-cancerous cell line (Vero), with IC₅₀ values ranging from 729.81-1075.23 µg/mL.

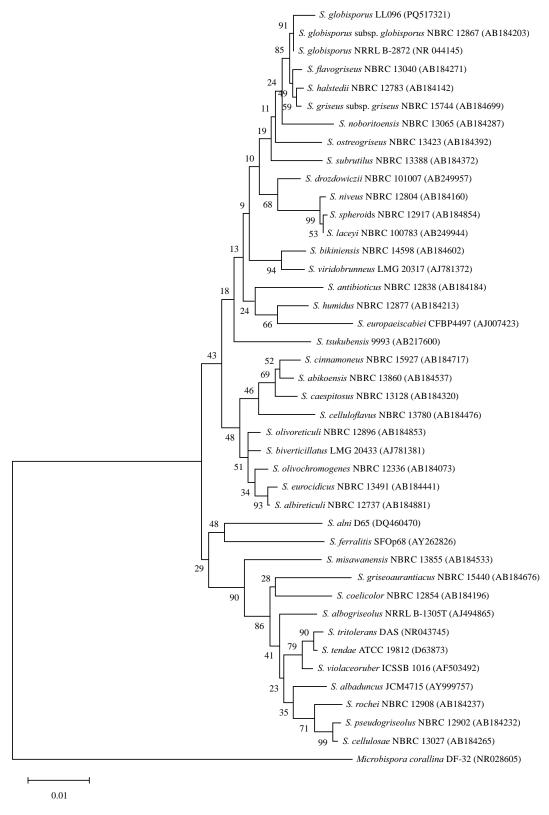


Fig. 3: Phylogenetic analysis of 16SrDNA gene sequences of *Streptomyces globisporus* LL096 and related strains were retrieved from GenBank (accession numbers in parentheses)

A phylogenetic tree was constructed using the neighbor-joining method implemented in MEGA11 software. Bootstrap analysis (1000 replicates) was performed to assess the robustness of the tree topology, with bootstrap percentages displayed for each node (branch length representing 0.01 substitutions per site)

Table 1: ¹³C NMR (100 MHz, CD₃OD) and ¹H NMR (400 MHz, CD₃OD) data of compounds **1** and **2**

Position		Compounds 1	Compounds 2			
	δ_{C} (ppm)	 δ _H (ppm)	 δ _C (ppm)	δ _H (ppm) 1.50 (m), 1.19 (m)		
1	38.2 (t)	1.52 (m), 1.21 (m)	38.3 (t)			
2	27.5 (t)	1.23 (m), 1.46 (m)	27.6 (t)	1.20 (m), 1.43 (m)		
3	80.8 (d)	3.64 (br, dd, 11.3, 4.0)	80.7 (d)	3.66 (br, dd, 11.6, 4.2)		
3-OH		6.68 (br, s)		6.70 (br, s)		
4	42.8 (s)		42.7 (s)			
5	55.8 (d)	1.31 (dd)	56.2 (d)	1.30 (dd)		
6	18.7 (t)	1.27 (m), 1.49 (m)	18.9 (t)	1.24 (m), 1.47 (m)		
7	33.2 (t)	1.29 (m), 1.50 (m)	33.5 (t)	1.29 (m), 1.51 (m)		
8	39.8 (s)		40.2 (s)			
9	47.7 (d)	1.47 (dd, 10.9, 7.1)	47.9 (d)	1.48 (dd, 10.9, 7.1)		
10	36.5 (s)		36.2 (s)			
11	23.8 (t)	1.58 (m), 1.76 (m)	24.0 (t)	1.60 (m), 1.78 (m)		
12	122.5 (d)	5.25 (dd, 3.5, 3.4)	123.2 (d)	5.40 (dd, 3.8, 3.5)		
13	144.5 (s)		144.2 (s)			
14	42.0 (s)		41.5 (s)			
15	25.8 (t)	1.10 (m), 1.36 (m)	25.6 (t)	1.15 (m), 1.38 (m)		
16	28.2 (t)	1.12 (m), 1.33 (m)	28.4 (t)	1.14 (m), 1.35 (m)		
17	37.2 (s)		37.4 (s)			
18	44.5 (d)	1.84 (dd, 13.8, 4.1)	44.7 (d)	1.82 (dd, 14.2, 5.2)		
19	46.0 (t)	1.18 (dd, 13.8, 4.1)	46.1 (t)	1.18 (dd, 14.2, 5.2)		
		1.48 (dd, 13.8, 13.8)		1.49 (dd, 14.6, 14.6)		
20	30.5 (s)	, , ,	30.7 (s)	. , , ,		
21	71.1 (d)	3.72 (dd, 10.7, 3.4)	41.2 (t)	1.25 (dd, 14.0, 4.8)		
	. ,	, , , ,	,,	1.58 (dd, 14.4, 14.4)		
21-OH		6.11 (d, 10.7)		3.34 (dd, 12.4, 3.6)		
22	76.6 (d)	3.54 (d, 3.4)	78.4 (d)	3.56 (d, 3.4)		
22-OH	(,,	3.29 (dd, 10.5, 3.2)	(*)	3.31 (dd, 12.5, 3.4)		
23	22.2 (q)	1.04 (s)	22.0 (q)	1.02 (s)		
24	64.5 (t)	3.21 (d, 11.6)	65.1 (t)	3.38 (d, 12.8)		
	.,	3.78 (d, 11.6)	,,	3.80 (d, 12.8)		
24-OH		5.28 (br, s)		5.30 (br, s)		
25	16.1 (q)	0.99 (s)	16.3 (q)	0.98 (s)		
26	16.8 (q)	0.98 (s)	17.1 (q)	0.99 (s)		
27	25.2 (q)	0.96 (s)	25.0 (q)	0.97 (s)		
28	28.6 (q)	1.00 (s)	28.8 (q)	0.98 (s)		
29	32.4 (q)	0.98 (s)	32.1 (q)	0.96 (s)		
30	20.0 (q)	0.99 (s)	20.3 (q)	0.99 (s)		

Chemical shifts in ppm from TMS as internal standard. Multiplicity is nor clear for some signals due to overlapping. t: Triplet (indicates the presence of a group of 3 neighboring protons), d: Doublet (indicates the presence of 2 neighboring protons), s: Singlet (indicates no neighboring protons, a single peak), q: Quartet (indicates the presence of 4 neighboring protons), m: Multiplet (indicates overlapping or complex splitting patterns from multiple neighboring protons), br: Broad (refers to a broader signal due to exchangeable protons, typically from hydroxyl or amine groups), dd: Doublet of doublets (a more complex splitting pattern resulting from two different sets of neighboring protons with different coupling constants). Numbers following these letters represent the chemical shifts (in ppm) and in some cases, coupling constants

Table 2: MIC and MBC of the purified compounds and crude extract against tested bacteria

	MIC (μg/mL)							BC (µg/mL						
Test substances	S.a.	S.e.	B.c.	B.s.	E.c.	S.t.	P.a.	S.a.	S.e.	B.c.	B.s.	E.c.	S.t.	P.a.
Crude extract	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512
Compound 1	256	256	128	256	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512
Compound 2	256	256	128	256	>512	>512	>512	>512	>512	>512	>512	>512	>512	>512
Chloramphenicol	2	2	4	4	8	8	8	16	16	16	16	32	32	32

S.a.: Staphylococcus aureus TISTR885, S.e.: Staphylococcus epidermidis TISTR518, B.c.: Bacillus cereus TISTR687, B.s.: Bacillus subtilis TISTR008, E.c.: Escherichia coli TISTR887, S.t.: Salmonella typhimurium TISTR292 and P.a.: Pseudomonas aeruginosa TISTR1287

The evaluation of the crude extract and purified compounds against MDA-MB-231 and HeLa cell lines revealed lower selectivity indices (SI) compared to Doxorubicin hydrochloride. This suggests a less specific cytotoxic effect on these cancer types. In contrast, the SI against HepG2 cells for

both the extract and purified compounds approached that of doxorubicin hydrochloride, indicating a more targeted cytotoxicity towards this specific cell line. However, it's important to note that the overall cytotoxicity against HepG2 remained lower than that observed with doxorubicin (Table 3).

Fig. 4(a-b): Structures of the compounds, (a) Soyasapogenol A and (b) Soyasapogenol B

Table 3: IC₅₀ values and selectivity indices (SI) of crude extract and purified compounds against cancer cell lines

	Vero cells	MDA-MB-231	cells	HeLa cell	5	HepG2 cells		
Test substances	 IC ₅₀ (μg/mL)	 IC ₅₀ (μg/mL)	 SI	 IC ₅₀ (μg/mL)	SI	IC ₅₀ (μg/mL)	SI	
Crude extract	1075.23±160.67ª	736.60±34.65ª	1.46	838.84±30.95ª	1.28	984.10±85.89 ^a	1.09	
Compound 1	729.81 ±84.05 ^b	282.96±29.97 ^b	2.58	321.90±22.23 ^b	2.27	434.03±29.98 ^b	1.68	
Compound 2	811.14±41.48 ^b	362.17±31.16 ^c	2.24	369.90±27.63b	2.19	475.42±26.23b	1.71	
Doxorubicin hydrochloride	99.73±9.42°	6.32±1.19 ^d	15.78	1.66±0.73°	60.08	96.38±12.00°	1.03	

Vero cells: African green monkey kidney cell line, MDA-MB-231 cells: Human breast cancer cell line, HeLa cells: Human cervical carcinoma cell line and HepG2: Human hepatocellular carcinoma cell line. IC_{50} values represent the concentration causing 50% growth inhibition. Values are expressed as the Mean \pm Standard Deviation of the three replicates. SI: Selectivity indices (SI) were calculated as the ratio of the IC_{50} in the Vero cell line to the IC_{50} in the cancer cell lines. a.b.c.d Different letters indicated statistically significant differences within the same category (p<0.05)

Current findings demonstrate that soyasapogenol A and B, purified from *Streptomyces globisporus* LL096 isolated from *Leucaena leucocephala* root tissues, exhibit antibacterial activity and significant anticancer properties. These compounds also display low cytotoxicity in normal cells. These results suggested that *Leucaena leucocephala* root tissues represent a promising source for isolating actinomycetes capable of producing valuable bioactive compounds.

DISCUSSION

This study successfully isolated and identified two known bioactive compounds, soyasapogenol A (compound 1) and soyasapogenol B (compound 2), from *Streptomyces globisporus* LL096. We achieved this identification by comparing the spectral data of our purified compounds with data from previous research²⁹⁻³³.

Sapogenol are triterpenoids of saponins, the most abundant type of saponins was found in the legume family (*Fabaceae*) for example *Abrus cantoniensis*²⁹, peanut (*Arachis*

hypogaea)³³, soybean (Glycine max L.)³⁴ and Astragalus annularis Forssk and A. trimestris L.35. Plant-derived saponins are considered to play a significant role in plant defense systems against pathogens and herbivores. Numerous reports emphasize the fungicidal^{36,37}, antimicrobial³⁸, insecticidal³⁹⁻⁴¹. activity of various saponins. However, these compounds have been isolated from Streptomyces strain H 1082-MY 1530. Streptomyces diastatochromogenes MK800-62F131 and Penicillium sp., NX-S-6⁴². It was confirmed further by the isolation of the triterpenoid molecules (soyasapogenol A and B) from an endophytic actinomycetes in Leucaena leucocephala (Fabaceae) that plant endophytes might interact with their hosts' metabolic process and generate analogs⁴³. Friedelin, a triterpenoid compound structurally related to Sapogenol, was isolated from the stem-bark extract of Cola lateritia K.Schum. (Malvaceae) by Kamdem et al.44 alongside seven other compounds. Antibacterial activity screening revealed friedelin to exhibit the lowest potency among the isolated compounds, with minimum inhibitory concentrations (MICs) ranging from 18.5 to 588 µg/mL against

various bacterial strains. This observed low activity may be attributed to friedelin's nonpolar nature. The polarity of a molecule significantly influences its interaction with the cellular membrane. According to the structure-activity relationship (SAR) principle, polar substituents or compounds generally exhibit higher biological activity compared to nonpolar ones⁴⁴. In contrast, soyasapogenol A and B demonstrated antibacterial activity against Gram-positive bacteria, with MIC values ranging from 128 to 256 µg/mL. This higher activity compared to friedelin can be attributed to the increased polarity of soyasapogenol A and B. Previous studies have reported no antibacterial activity of friedelin and soyasapogenol A and B against Gram-negative bacteria, including Escherichia coli, Pseudomonas aeruginosa and Proteus mirabilis, as well as the yeasts Candida albicans and Candida tropicalis⁴⁵. Soyasapogenol A and B exhibited cytotoxic activity against human cancer cell lines (MDA-MB-231, HeLa and HepG2), with IC₅₀ values ranging from 282.96 to 475.42 µg/mL. In contrast, these compounds demonstrated low cytotoxicity against the non-cancerous Vero cell line, with IC₅₀ values ranging from 729.81 to 811.14 µg/mL. These findings support the promising cytotoxic potential of soyasapogenol A and B against various cancer cell lines. Previous studies have demonstrated that soyasapogenol A and B exert anticarcinogenic effects through mechanisms such as estrogen receptor activation in MDA-MB-231 cells⁴⁶, inhibition of proliferation and induction of apoptotic cell death in HepG2 cells⁴⁷. These findings suggest the potential for the further development of soyasapogenol as an anticancer agent. Previous studies have demonstrated that soyasapogenol significantly suppresses STAT3 activation in human macrophages and tumor cells, inhibiting macrophage polarization towards the M2 phenotype. Furthermore, soyasapogenol have been shown to decrease tumor cell proliferation and suppress both subcutaneous tumor development and lung metastasis in tumor-bearing mice. The observed cytotoxicity against the non-cancerous Vero cell line underscores the need for improving the selectivity of soyasapogenol A and B. Although moderate cytotoxicity against cancer cells was observed, minimizing damage to healthy cells is crucial for any potential therapeutic application. Furthermore, the results indicate lower efficacy against cancer cells compared to doxorubicin hydrochloride, as evidenced by lower selectivity indices (SI), particularly in MDA-MB-231 and HeLa cells. These findings suggested that while soyasapogenol A and B may exhibit potential as anticancer agents against certain cancer cell lines, further investigation and optimization are necessary to enhance their selectivity and therapeutic efficacy.

CONCLUSION

The soyasapogenol A and B were isolated from *Streptomyces globisporus* LL096. These compounds demonstrated antibacterial activity against Gram-positive bacteria and exhibited cytotoxic effects against various cancer cell lines. While demonstrating potent anticancer activity *in vitro*, their selectivity indices (SI) were lower than those of doxorubicin hydrochloride. These findings suggested that, despite their promising anticancer potential, further research is warranted to enhance the selectivity and therapeutic efficacy of soyasapogenol A and B for potential clinical translation.

SIGNIFICANCE STATEMENT

This study identified *Streptomyces globisporus* LL096, isolated from the root tissues of *Leucaena leucocephala* (Lam.) de Wit., as a novel source of bioactive compounds. *Streptomyces globisporus* LL096 produces soyasapogenol A and B, which exhibited antibacterial activity against Gram-positive bacteria and demonstrated cytotoxic effects against various cancer cell lines while exhibiting minimal toxicity towards healthy cells. These findings suggest the potential of soyasapogenol A and B from *S. globisporus* LL096 as promising candidates for the development of novel therapeutic agents for the treatment of bacterial infections and cancers.

ACKNOWLEDGMENT

This work was supported by a research grant (No. SRIF-JRG-2568-08) from the Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand.

REFERENCES

- Qin, S., K. Xing, J.H. Jiang, L.H. Xu and W.J. Li, 2011. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol., 89: 457-473.
- Thomas, P. and T.A. Soly, 2009. Endophytic bacteria associated with growing shoot tips of banana (*Musa* sp.) cv. grand naine and the affinity of endophytes to the host. Microb. Ecol., 58: 952-964.
- 3. Strobel, G., B. Daisy, U. Castillo and J. Harper, 2004. Natural products from endophytic microorganisms. J. Nat. Prod., 67: 257-268.

- Miller, K.I., C. Qing, D.M.Y. Sze and B.A. Neilan, 2012. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS ONE, Vol. 7. 10.1371/journal.pone.0035953.
- Verma, V.C., S.K. Gond, A. Kumar, A. Mishra, R.N. Kharwar and A.C. Gange, 2009. Endophytic actinomycetes from *Azadirachta indica* A. Juss.: Isolation, diversity and anti-microbial activity. Microb. Ecol., 57: 749-756.
- Parrent, J.L., K. Peay, A.E. Arnold, L.H. Comas, P. Avis and A. Tuininga, 2010. Moving from pattern to process in fungal symbioses: Linking functional traits, community ecology and phylogenetics. New Phytologist, 185: 882-886.
- 7. Hardoim, P.R., L.S. van Overbeek and J.D. van Elsas, 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol., 16: 463-471.
- 8. El-Tarabily, K.A. and K. Sivasithamparam, 2006. Non-streptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol. Biochem., 38: 1505-1520.
- 9. Goodfellow, M. and S.T. Williams, 1983. Ecology of actinomycetes. Annu. Rev. Microbiol., 37: 189-216.
- 10. Cao, L., Z. Qiu, J. You, H. Tan and S. Zhou, 2005. Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett., 247: 147-152.
- 11. Khan, S., S. Srivastava, A. Karnwal and T. Malik, 2023. *Streptomyces* as a promising biological control agents for plant pathogens. Front. Microbiol., Vol. 14. 10.3389/fmicb.2023.1285543.
- Singh, L.S., H. Sharma and N.C. Talukdar, 2014. Production of potent antimicrobial agent by actinomycete, *Streptomyces* sannanensis strain SU118 isolated from Phoomdi in Loktak Lake of Manipur, India. BMC Microbiol., Vol. 14. 10.1186/s12866-014-0278-3
- 13. Mukherjee, G. and S.K. Sen, 2006. Purification, characterization and antifungal activity of chitinase from *Streptomyces venezuelae* P₁₀. Curr. Microbiol., 53: 265-269.
- 14. Merckx, R., A. Dijkra, A. den Hartog and J.A. van Veen, 1987. Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol. Fertil. Soils, 5: 126-132.
- Khamna, S., A. Yokota and S. Lumyong, 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: Diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol., 25: 649-655.
- Doumbou, C.L., M.K. Hamby-Salove, D.L. Crawford and C. Beaulieu, 2001. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection, 82: 85-102.
- 17. Zayed, M.Z. and B. Samling, 2016. Phytochemical constituents of the leaves of *Leucaena leucocephala* from Malaysia. Int. J. Pharm. Pharm. Sci., 8: 174-179.

- Kuppusamy, U.R., B. Arumugam, N. Azaman and C.J. Wai, 2014. Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes. Sci. World J., Vol. 2014. 10.1155/2014/737263.
- 19. Chigurupati, S., S. Vijayabalan, K.K. Selvarajan, A. Alhowail and F. Kauser, 2021. Bacterial endosymbiont inhabiting *Leucaena leucocephala* leaves and their antioxidant and antidiabetic potential. J. Complementary Integr. Med., 18: 319-325.
- Retnowati, Y., N.Y. Kandowangko, A.S. Katili and W. Pembengo, 2024. Diversity of actinomycetes on plant rhizosphere of karst ecosystem of Gorontalo, Indonesia. Biodiversitas J. Biol. Diversity, 25: 907-915.
- 21. Taechowisan, T., W. Puckdee and W.S. Phutdhawong, 2019. *Streptomyces zerumbet*, a novel species from *Zingiber zerumbet* (L.) Smith and isolation of its bioactive compounds. Adv. Microbiol., 9: 194-219.
- Hockett, K.L. and D.A. Baltrus, 2017. Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J. Visualized Exp., Vol. 119. 10.3791/55064.
- 23. Cassarini, M., C. Rémond, E. Mühle, D. Clermont and L. Besaury, 2022. *Streptomyces durocortorensis* sp. nov., isolated from oak rhizosphere. Int. J. Syst. Evol. Microbiol., Vol. 72. 10.1099/ijsem.0.005480.
- Castillo, U.F., G.A. Strobel, E.J. Ford, W.M. Hess and H. Porter *et al.*, 2002. Munumbicins, wide-spectrum antibiotics produced by *Streptomyces* NRRL 30562, endophytic on *Kennedia nigriscans*. Microbiology, 148: 2675-2685.
- 25. Taechowisan, T., T. Chuen-Im and W.S. Phutdhawon, 2024. Antibacterial and anticancer properties of endophenazines from *Streptomyces prasinus* ZO16, an endophyte in *Zingiber officinale* Rosc. Pak. J. Biol. Sci., 27: 469-478.
- Tamura, K., G. Stecher and S. Kumar, 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol., 38: 3022-3027.
- Pfaller, M.A., R.N. Jones, D.H. Walter and QCS Group, 2001. Proposed quality control guidelines for National Committee for Clinical Laboratory Standards Susceptibility Tests using the veterinary antimicrobial agent tiamulin. Diagn. Microbiol. Infect. Dis., 40: 67-70.
- van Meerloo, J., G.J.L. Kaspers and J. Cloos, 2011. Cell Sensitivity Assays: The MTT Assay. In: Cancer Cell Culture: Methods and Protocols, Cree, I.A. (Ed.), Humana Press, Totowa, New Jersey, United States, ISBN: 978-1-61779-079-9, pp: 237-245.
- 29. Chiang, T.C. and H.M. Chang, 1982. Isolation and structural elucidation of some sapogenols from *Abrus cantoniensis*. Planta Med., 46: 52-55.
- 30. Kaneda, M., K. Ishimaru and S. Nakamura, 1984. Production of oleanene triterpenes by *Streptomyces*. Chem. Pharm. Bull., 32: 1287-1293.

- 31. Yoshimoto, Y., T. Sawa, H. Naganawa, T. Sugai, T. Takeuchi and M. Imoto, 2000. MK800-62F1, a new inhibitor of apoptotic cell death, from *Streptomyces diastatochromogenes* MK800-62F1. II. Structure elucidation. J. Antibiot., 53: 575-578.
- 32. Tantry, M.A. and I.A. Khan, 2013. Saponins from *Glycine max* Merrill (soybean). Fitoterapia, 87: 49-56.
- 33. Yun, H.M., J.Y. Lee, S.H. Kim, I.K. Kwon and K.R. Park, 2022. Effects of triterpene soyasapogenol B from *Arachis hypogaea* (peanut) on differentiation, mineralization, autophagy, and necroptosis in pre-osteoblasts. Int. J. Mol. Sci., Vol. 23. 10.3390/ijms23158297.
- 34. Zhang, W. and D.G. Popovich, 2008. Effect of soyasapogenol A and soyasapogenol B concentrated extracts on Hep-G2 cell proliferation and apoptosis. J. Agric. Food Chem., 56: 2603-2608.
- 35. El-Hawiet, A.M., S.M. Toaima, A.M. Asaad, M.M. Radwan and N.A. El-Sebakhy, 2010. Chemical constituents from *Astragalus annularis* Forssk. and *A. trimestris* L., Fabaceae. Braz. J. Pharmacogn., 20: 860-865.
- 36. Lee, M.W., S.U. Kim and D.R. Hahn, 2001. Antifungal activity of modified hederagenin glycosides from the leaves of *Kalopanax pictum* var. *chinense*. Biol. Pharm. Bull., 24: 718-719.
- 37. Morrissey, J.P. and A.E. Osbourn, 1999. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev., 63: 708-724.
- 38. Avato, P., R. Bucci, A. Tava, C. Vitali, A. Rosato, Z. Bialy and M. Jurzysta, 2006. Antimicrobial activity of saponins from *Medicago* sp.: Structure-activity relationship. Phytother. Res., 20: 454-457.
- 39. Shinoda, T., T. Nagao, M. Nakayama, H. Serizawa, M. Koshioka, H. Okabe and A. Kawai, 2002. Identification of a triterpenoid saponin from a crucifer, *Barbarea vulgaris*, as a feeding deterrent to the diamondback moth, *Plutella xylostella*. J. Chem. Ecol., 28: 587-599.

- Kuzina, V., C.T. Ekstrøm, S.B. Andersen, J.K. Nielsen, C.E. Olsen and S. Bak, 2009. Identification of defense compounds in *Barbarea vulgaris* against the herbivore *Phyllotreta nemorum* by an ecometabolomic approach. Plant Physiol., 151: 1977-1990.
- 41. Nielsen, J.K., T. Nagao, H. Okabe and T. Shinoda, 2010. Resistance in the plant, *Barbarea vulgaris*, and counter-adaptations in flea beetles mediated by saponins. J. Chem. Ecol., 36: 277-285.
- 42. Yang, A., Y. Hong, F. Zhou, L. Zhang and Y. Zhu *et al.*, 2023. Endophytic microbes from medicinal plants in Fenghuang mountain as a source of antibiotics. Molecules, Vol. 28. 10.3390/molecules28176301.
- 43. Liu, Y., L. Tang, C. Wang and J. Li, 2020. NAA and 6-BA promote accumulation of oleanolic acid by JA regulation in *Achyranthes bidentata* Bl. PLoS ONE, Vol. 15. 10.1371/journal.pone.0229490.
- 44. Kamdem, M.H.K., O. Ojo, B.M. Kemkuignou, R.M. Talla and T.Y. Fonkui *et al.*, 2022. Pentacyclic triterpenoids, phytosteroids and fatty acid isolated from the stem-bark of *Cola lateritia* K. Schum. (Sterculiaceae) of Cameroon origin; evaluation of their antibacterial activity. Arabian J. Chem., Vol. 15. 10.1016/j.arabjc.2021.103506.
- 45. Pretto, J.B., V. Cechinel-Filho, V.F. Noldin, M.R.K. Sartori, D.E.B. Isaias and A.B. Cruz, 2004. Antimicrobial activity of fractions and compounds from *Calophyllum brasiliense* (Clusiaceae/Guttiferae). Z. Naturforsch. C, 59: 657-662.
- Rowlands, J.C., M.A. Berhow and T.M. Badger, 2002. Estrogenic and antiproliferative properties of soy sapogenols in human breast cancer cells *in vitro*. Food Chem. Toxicol., 40: 1767-1774.
- 47. Fujiwara, Y., D. Shiraishi, M. Yoshitomi, T. Ikeda, H. Mizuta, M.Takeya and Y. Komohara, 2015. Soyasapogenols contained in soybeans suppress tumour progression by regulating macrophage differentiation into the protumoural phenotype. J. Funct. Foods, 19: 594-605.