ISSN 1680-5194

NUTRITION

ANSI邹er

Nutritional and Physicochemical Properties of Wheat (Triticum vulgare), Cassava (Manihot esculenta) and Sweet Potato (Ipomoea batatas) Flours

Etong, D.I. ${ }^{1}$, A.O. Mustapha', I.G. Lawrence ${ }^{2}$, A. G. Jacob ${ }^{3}$ and M.O. Oladimeji ${ }^{4}$
${ }^{1}$ Science Laboratory Technology Department, ${ }^{2}$ Department of Food Technology, Federal Polytechnic, P.M.B. 420, Offa, Kwara State, Nigeria
${ }^{3}$ Department of Applied Chemistry, Federal University Dutsinma, P.M.B. 5001, Dutsinma, Katsina State, Nigeria
${ }^{4}$ School of Applied Science, Jospeh Ayo Babalola University (JABU), Arakeji, Osun State, Nigeria

Abstract

The flours from cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and wheat (Triticum vulgare), were analyzed for proximate composition, functional properties and some anti-nutritional factors using standard methods. Results of proximate composition indicates that the ash contents ranges between $2.18-6.26 \%$, with potato flour having the highest and cassava the least. The protein content ranges between $7.21-20.96 \%$ with cassava flour having the least and wheat the highest value. The fat content ranges between 0.45% for cassava to 9.60% for wheat, crude fiber 2.80% for potato to 6.19% for cassava, moisture content 7.20% for wheat to 8.23% for cassava, carbohydrate 53.89% for wheat to 75.74% for cassava and energy content 327.81 kcal for cassava to 385.56 kcal for wheat. The result of functional properties indicates that water absorption capacity ranges between 125 to 210%, oil absorption capacity 168.30 to 191.68%, foaming capacity 4 to 27%, foaming stability 1 to 4%, emulsion stability 47 to 53%, least gelation 2 to 4%, bulk density 59.98 to 66.03%. Anti-nutritional factor indicates that the samples were richer in phytate than oxalates which ranges between 9.06 to 14.83 and 2.07 to $4.50 \mathrm{mg} / \mathrm{g}$, respectively. These result shows that cassava and potato are suitable for the baking industry and blending makes them more acceptable due to synergetic effect.

Key words: Cassava, potato, wheat, flours, proximate composition, functional properties

INTRODUCTION

Cassava (Manihot esculata, crantz) as an all season crop, as food in several parts of Africa (Nigeria inclusive), Asia and Latin America is well documented (Longe, 1980; Rosling, 1987; Bradbury et al., 1991). Nigeria alone, currently produces over 14 m tones annually, representing about 25% of sub-Saharan Africans output (Ayodeji, 2005). Although it is the third most important food source in the tropical world after rice and maize and provides calories for over 160 million people in Africa (Polsen and Spencer, 1991), its food value is greatly compromised by the endogenous presence of cyanogenic glucosides. These glucosides typified by linamer in [2-(S-D- glucopryanosylxy) methylbutyronitrile] are hydrolyzed to hydrocyanic acid (HCN) by endogenous linamarase, when cassava tissues are disrupted by cutting, grating, bruising or other mechanical means (Conn, 1969; Bradbury et al., 1991). Cassava, being very rich in starch (90% of the dry matter), it is mainly used in traditional human foods after more or less elaborate processing. It is estimated that about 70% of the total cassava harvested is processed into garri (a fried product prepared from pealed and grated cassava root), (Ngoddy, 1977). Lafun (fermented
cassava root flour), fufu (fermented cassava root paste) are very popular in the western and eastern states of Nigeria respectively (Bassey and Dosunmu, 2003b).
Sweet potato (lpomoea batatas) is believed to have originated from South America and spread throughout the tropical America in to the Caribbean and across the South Pacific to East Island. It is grown on various types of soil but best result and highest yields will be obtained on solid that are loose, free from rocks, fairly fertile with a pH of 5.0-6.0 and with good drainage (Peksa et al., 2002).

Wheat (Triticum vulgare) is the world's most widely cultivated plant. It is grown from the equator to $60^{\circ} \mathrm{N}$ and $40^{\circ} \mathrm{S}$, with the greatest concentration in the temperate regions where the winters are cool followed by relatively dry and warm summer for ripening and with moderate rainfall between 30 and 90 cm (Kochhar, 1986).
However, due to the huge importation bill on wheat, it is believed that by reducing the level of wheat flour incorporated in the bakery industry with cassava and potato flour, the foreign exchange expenditure will be reduced significantly.
In this study, potato, cassava and wheat flours were produced and their proximate composition determined.

Pak. J. Nutr., 13 (8): 439-445, 2014

Various blends of the flours were also produced and their physicochemical properties studied in order to determine their suitability for the bakery industry.

MATERIALS AND METHODS

Cassava and potato tubers were collected from local farmers in Offa, Kwara State, Nigeria. The tubers were washed, peeled, washed and sliced to sizes to expose large surface area. The slices were blanched in $90^{\circ} \mathrm{C}$ hot water for 90 sec , sun dried, milled, sieved to obtain the flour and packaged in polythene bags. The wheat grains were collected from the local market in offa, sorting of the grains was done to separate bad grains, stones and other non-wheat particles. The dried whole wheat grains (without shaft) were dry-milled into flour and sieved with a screen mesh of aperture 425 microns and packaged in clean polythene bags.

Proximate analysis: The moisture content (hot air oven method), fat (Soxhlet extraction methods) were determined according to Pearson (1976), while the ash and protein were determined using AOAC (1990) methods. The carbohydrate content was determined by simple differences and calorie value was estimated using Atwater factors by multiplying the proportion of protein, fat and carbohydrate by their respective physiological fuel values of 4,9 and $4 \mathrm{kcal} / \mathrm{g}$, respectively and taking the sum of the products (Eneche, 1999).

Functional properties: The apparent water Absorption capacity (WAC) and oil Absorption capacity (OAC) were evaluated according to the methods of Sathe and Salunkhe (1981). Foaming stability (FS), foaming capacity (FC) and Least Gelation Concentration (LGC) were studied according to the method of Coffman and Garcia (1977). Emulsion capacity (EC) and Emulsion Stability (ES) were evaluated essentially according to the methods of Yatsumatsu et al. (1972) while protein solubility (PS) was determined according to the method of Anderson et al. (1969) and Bulk Density (BD) of the flours was determined according to the method of AOAC (1990).

Anti-nutrients: Phytin was determined according to the method of Young and Graves (1940) and oxalate according to the methods of Day and Underwood (1986).

RESULTS AND DISCUSSION

The proximate composition shows the following values for Ash 4.91, 2.18 and 6.26; for crude protein 20.9, 7.21 and 9.21 ; for fat $9.60,0.45$ and 2.54 , for crude fibre 3.43 , 6.19 and 2.80 and for carbohydrate 53.89, 73.74 and 71.61, for wheat, cassava and potato flours, respectively. This result is depicted in Table 1.
The protein content of cassava flour $7.21 \pm 0.02 \%$ was lower compared to that of potato $9.12 \pm 0.02 \%$ and wheat

Fig. 1: Barchart depicting proximate compostion of wheat, potato and Cassava flour.
$X=$ wheat: $y=$ cassava flour: $z=$ potato flour: $C P=$ crude protein: $\mathrm{MC}=$ moisture content: $\mathrm{CHO}=$ carbohydrate: CF = crude fibre
$20.96 \pm 1.01 \%$. These results were higher compared to those reported for plantain flour $1.43 \pm 0.68 \%$, (Bassey and Dosunmu, 2003a), egg plant varieties 0.88 ± 0.8 $1.75 \pm 0.12 \%$ (Olajide et al., 2003), taro varieties $2.57 \pm 0.16-5.41 \pm 0.22 \%$ (Mbofung et al., 2006) and sweet potato powder $5.23 \pm 0.03 \%$ (Oladimeji, 2001), the value for wheat was higher but that of cassava and potato was lower than that of maize flour $10.60 \pm 0.17 \%$ (Oladimeji, 2001).

The fat content of cassava flour $0.45 \pm 0.02 \%$ was lower than potato $2.54 \pm 0.04 \%$ and wheat flour 9.60 ± 0.01. The value for cassava flour was comparable to that Taro varieties flour $0.34 \pm 0.08-0.73 \pm 0.17 \%$ (Mbofung et al., 2006) and higher than plantain flour 0.13 ± 0.01 (Bassey and Dosunmu, 2003a). The percentage CV was high in most of the parameters but low in moisture content, these shows that, significant difference existed among the samples.
Figure 1 Shows a multiple bar chart depicting the flours. The higher bars depicted carbohydrate, with cassava being the highest and the lowest bars depicting crude fat, with cassava being the lowest. Wheat was better in protein than the others, in terms of fibre and moisture they were comparable.

Functional properties: The functional properties of the different flour bends were presented in Table 2. The water absorption capacity (\% WAC) ranges from 125$210 \%$, oil absorption capacity (\% OAC) 68-191.68\%. The value for WAC was lower while OAC was comparable to that reported for six taro varieties (WAC, 242.45 ± 9.36 $374.86 \pm 8.97 \%$, OAC $174.37 \pm 0.73 \%-186.53 \pm 0.42 \%$) (Mbofung et al., 2006). The foaming capacity ranges from 4% for (G) 100% potato to 27% for (A) 100% wheat. The values were lower than that reported for legume flours and protein concentrates, except for Africa yam beans flours 25 and 27% for wheat (Akintayo et al., 2000).

Pak. J. Nutr., 13 (8): 439-445, 2014
Table 1: Proximate composition of wheat, potato and cassava flour

Sample	ASH (\%)	MC (\%)	CP (\%)	FAT (\%)	CF (\%)	CHO (\%)	Energy content (Kcal)
X	4.91 ± 0.02	7.20 ± 0.02	20.9 ± 0.01	9.60 ± 0.01	3.43 ± 0.01	53.89 ± 0.04	385.56
Y	2.18 ± 0.01	8.23 ± 0.03	7.21 ± 0.02	0.45 ± 0.02	6.19 ± 0.03	73.74 ± 0.04	372.81
Z	6.26 ± 0.02	6.67 ± 0.02	9.12 ± 0.02	2.54 ± 0.04	2.80 ± 0.03	71.61 ± 0.08	345.78
Mean	4.45	7.70	12.43	4.20	4.14	67.08	353.05
Median	4.91	7.67	9.12	2.54	3.43	71.61	345.78
CV (\%)	46.74	6.75	59.94	87.50	43.55	17.30	8.37
SK	-0.66	0.17	1.33	1.08	1.18	-1.17	0.74
Range	4.08	1.03	73.75	9.15	3.39	21.85	57.75
SD	2.08	0.52	4.85	1.80	11.61	29.55	

X: Wheat flour; SD: Standard deviation; Y: Cassava flour; CP: Crude protein; CF: Crude fibre; Z: Potato flour; CV: Coefficient of variation; SK: Skewness; Mean: \pm SD; $\mathrm{n}=3$; MC: Moisture content; CHO: Carbohydrate

Table 2: Functional properties of blended cassava, potato and wheat flours

Samples	WAC $(\%)$	OAC $(\%)$	FC $(\%)$	FS $(\%)$	EC $(\%)$	ES $(\%)$	LG $(\%)$	BD $(\%)$
A	140 ± 0.00	177.50 ± 13.4	27 ± 9.90	4 ± 2.80	50.51 ± 2.22	47 ± 1.41	2 ± 0.00	64.98 ± 0.02
B	205 ± 7.10	187.00 ± 0.00	6 ± 0.00	1.50 ± 0.10	48.04 ± 0.06	53 ± 1.41	4 ± 2.83	60.21 ± 0.03
C	170 ± 14.1	168.30 ± 26.4	11 ± 1.41	1 ± 0.00	44.85 ± 0.58	51 ± 1.41	3 ± 1.41	
D	125 ± 7.10	191.68 ± 6.61	14 ± 0.00	1 ± 0.00	48.95 ± 0.05	48.50 ± 2.12	3 ± 1.41	
E	180 ± 0.00	191.68 ± 6.61	15 ± 7.10	2.50 ± 0.71	46.95 ± 1.36	52 ± 2.83	2 ± 0.00	66.81 ± 0.01
F	205 ± 7.10	177.65 ± 13.4	8 ± 0.00	2 ± 0.00	48.74 ± 1.79	50 ± 2.83	3 ± 1.41	59.43 ± 0.03
G	210 ± 0.00	191.68 ± 6.61	4 ± 0.00	2 ± 0.00	46.39 ± 0.79	52 ± 0.00	2 ± 0.00	62.59 ± 0.00
RANGE	85.00	23.38	23.00	3.00	5.66	6.00	2.00	6.05
MEAN	176.43	183.66	12.14	2.00	47.78	50.50	2.71	62.86
SD	33.63	9.24	7.69	1.04	1.96	2.14	0.76	2.38
CV (\%)	19.10	5.03	63.34	52	4.10	4.24	28.04	3.79
SK	-0.32	-1.08	0.44	0	-0.40	-0.70	-1.14	0.34

A: 100% wheat; B: 50% potato and 50% cassava; C: 50% wheat and 50% potato; D: 50% cassava and 50% wheat; E: $331 / 3$ cassava; $331 / 3$ potato and $331 / 3$ wheat; F: 100% cassava; G: 100% potato; Mean \pm SD, $n=2$; SK: Skewness; WAC: Water absorption capacity; OAC: Oil absorption capacity; FC: Foaming capacity; FS: Foaming stability; EC: Emulsion capacity; ES: Emulsion stability; LG: Least gelation; BD: Bulk density; SD: Standard deviation

The emulsion capacity ranges from 44.85% for (C) 50% wheat and 50% potato to 50.51% for (A) 100 wheat. The values were much higher than that reported for soya flour 15\% and wheat 11.70\% (Lin et al., 1994). Under the conditions of the present study, the different blends of flours show significant, difference in foaming capacity and foaming stability. The foaming stability ranges from 1% for (D) 50% cassava and 50% wheat to 4% for (A) 100% wheat. These range for foaming capacity was comparable to that different varieties of Taro flours 9 to 14% except for (A) 100% wheat which was 27% (Mbofung et al., 2006). The range for (FC) foaming capacity was also significantly lower than (27$32 \%$) for raw and precooked taro (Colocasia esculenta) flours reported by Tagodoe et al. (1994). Comparatively, the foaming capacity of the blended flours was significantly lower than that of common beans reported by Njintang et al. (2001). Stable foams are known to occur when low surface tension and high viscosity occur at the interface forming a continuous cohesive film around the air vacuoles in the foam. Soluble protein in general plays an important role on the formation of foam and this probable justify why legumes exhibit higher foaming capacity (Mbofung et al., 2006).
The range of the flour bulk density value 59.98 to 66.03% of the different flours was significantly higher than that of taro varieties flour 0.57 to 0.71% (Mbofung et al., 2006) and also significantly higher than that of raw and
precooked taro (Colocasia esculenta) flours reported by Tagodoe et al. (1994).

Protein solubility: The solubility of protein in the samples as a function of pH is depicted in Table 3 and Fig. 2. The lowest solubility were recorded at $\mathrm{pH} 3-4$ for samples A-E (i.e (A) 100% wheat, (B) 50% potato and 50% cassava, (C) 50% wheat and 50% potato, (D) 50% cassava and 50% wheat, (E) $331 / 3 \%$ wheat. $331 / 3 \%$ potato and $331 / 3 \%$ cassava) for sample (F) 100\% cassava flour, it was at pH 1 and (G) 100% potato pH 2 i.e. the minimum solubility of all the flours were in the acidic region between $\mathrm{pH} 1-4$ and it ranges from 5.19$31.02 \%$. The maximum protein solubility was observed at pH 6 for $\mathrm{A}, \mathrm{pH} 8$ for B and $\mathrm{D}, \mathrm{pH} 12$ for $\mathrm{C}, \mathrm{E}, \mathrm{F}$ and G . Though samples E and G have double peak at pH 6 and 12 for E and pH 9 and 12 for G.
The maximum protein solubility ranges between 25.53$83.08 \%$ for 100% cassava (F) and 100% potato (G), the maximum solubility was in the alkaline region between $\mathrm{pH} 9-12$, but for 100% wheat (A), the maximum solubility was in the neutral region between $\mathrm{pH} 6-8$. These may account for the high foaming capacity of wheat in this study, since distilled water was used which is neutral. The results depicts that potato protein were more soluble than that of cassava and wheat because of it low protein content but high percentage of protein solubilities. The high solubility of cassava and potato in the alkaline region, suggest that the flours may not be useful in the formulation of acid foods but basic food

Pak. J. Nutr., 13 (8): 439-445, 2014

Table 3: Protein solubility of blended wheat, potato and cassava flour

pH	A	B	C	D	E	F	G
1	29.26	15.15	14.51	31.03	26.13	5.31	37.33
2	25.94	10.38	10.81	26.87	19.46	10.40	31.02
3	16.28	5.19	7.41	22.33	13.34	13.05	37.33
4	12.97	7.79	18.22	17.79	19.46	13.05	43.12
5	22.63	10.38	10.81	22.33	26.13	15.71	43.12
6	38.92	15.14	14.51	26.87	32.80	16.81	55.73
7	32.57	20.34	18.22	31.03	29.46	15.71	43.12
8	35.60	25.53	10.81	35.58	26.13	23.45	49.43
9	25.94	20.34	14.51	31.03	19.46	15.71	83.08
10	19.60	15.14	21.92	26.87	22.79	28.53	80.45
11	25.94	17.74	25.32	22.33	26.13	15.71	74.14
12	22.63	20.34	29.03	24.60	32.80	36.50	83.08
A: 100% wheat		B: 50\% cassava and 50\% potato			C: 50% wheat and 50% potato		
D: 50% wheat and 50% cassava F: 100\% cassava					$33{ }_{\beta 3}$ cassava and $33{ }_{\beta}^{13}$ potato		
			G: 100% potato				

Fig. 2: Variation of protein solubility of sample f, g and a with $\mathrm{ph} u$ sing distilled water
(Akintayo et al., 2000; Clerge et al., 2006) and that it will be possible to produce their concentrate/isolates by alkaline extraction followed by precipitation at pH of minimum solubility. Melon seed protein also presented minimum solubility at about pH 3.0 and 5.5 (Ige et al., 1984). Fluted pumpkin seed flour pH 4 and maximum\% protein solubility at pH 9 and isoelectronic point at pH 4 and (Fagbemi et al., 2006); T. Conophoru and R. heudeotti at pH 4.0 and 8.0 (Clerge et al., 2006). These result suggest that there may be more than one protein in the flours.
Generally, vegetable proteins have been reported to have isoelectronic points (IEP) at about pH $4-5$ and show high protein solubility at alkaline P^{H} (Del Rasario and Flores, 1981; Chan and Cheung, 1998; Abbey and Ibeh, 1988). The dependency of protein solubility on pH has been attributed to the change in the net charges carried by the protein as the pH changes.

Anti-nutrients: Table 4 shows the anti-nutritional constituent of the flours and blends. These study, shows the level of toxic substance in the samples. The result
shows that the values of 2.251, 3.422, 3.151, 2.071, $3.423,2.251$ and $4.502(\mathrm{mg} / \mathrm{g})$ of oxalate for (A) 100% wheat, (B) 50% potato and 50% cassava, (C) 50% wheat and 50% potato, (D) 50% cassava and 50% wheat, (E) $331 / 3 \%$ wheat, $331 / 3 \%$ cassava and $331 / 3 \%$ potato, (F) 100% cassava and (G) 100 potato respectively. The presence of toxic substance otherwise known as antinutritional factors is one of the main draw-backs limiting the nutritional and food qualities of the legumes (Liener, 1976). The values ranges from $2.251 \pm 0.2 \mathrm{mg} / \mathrm{g}$ for 100% wheat to $4.502 \pm 0.3 \mathrm{mg} / \mathrm{g}$ for 100% potato. The results shows that wheat and cassava have the same concentration of oxalate $2.251 \pm 0.2 \mathrm{mg} / \mathrm{g}$. These result falls within the ranges (1.7-6.5) reported for some oil seeds (Victor and Olubunmi, 2003), higher than the range reported for two edible tropical land snails in Nigeria, A Marginata 1.50 ± 0.03 and A achatin 1.7 ± 0.03 (Ebenso et al., 2006), comparable to that reported for L. Aurora $3.81 \mathrm{mg} / \mathrm{g}$ (Udo et al., 1995).
The phytate values present in the sample are 12.3567, 12.3567, 14.8280, 9.0616, 13.1804, 18.9469 and $10.7091(\mathrm{mg} / \mathrm{g})$ for samples A, B, C, D, E, F and G

Fig. 3: Variation of protein solubility of sample b and e with pH using distilled water

Fig. 4: Variation of protein of solubility of sample c and d with pH using distilled water

Table 4: Anti-nutrient of wheat, potato and cassava flour and their blends

Samples	Oxalate $(\mathrm{mg} / \mathrm{g})$	Phytate $(\mathrm{mg} / \mathrm{g})$
A	2.251 ± 0.2	12.3567 ± 0.2
B	3.422 ± 0.3	12.3567 ± 0.4
C	3.151 ± 0.3	14.8280 ± 0.3
D	2.071 ± 0.2	9.0616 ± 0.4
E	3.423 ± 0.3	13.1804 ± 0.5
F	2.251 ± 0.2	18.9469 ± 0.2
G	4.502 ± 0.3	10.7091 ± 0.1
Mean	3.010	13.0628
SD	0.8776	3.170
CV $(\%)$	24.27	
SK	-0.16	
A: 100% wheat		
B: 50% potato and 50% cassava	D: 50% wheat and 50% potato	
E: $331 / 3$ cassava		331/3 potato
33 $1 / 3$ wheat	F: 100% cassava	
G: 100% potato		SD: Standard deviation
CV: Coefficient of variation	SK: Skewness	

respectively. The phytate value ranges from $9.0616 \pm 0.4 \mathrm{mg} / \mathrm{g}$ for (D) 50% cassava and 50% wheat to 18.9469 ± 0.2 for 100% cassava (F). Cassava was richer in phytate than wheat and potato but potato was richer in oxalate than both. The values were higher than that reported for cassava leaves varieties which ranges from $1.073-2.391 \mathrm{mg} / \mathrm{g}$ (Ayodeji, 2005); A. Marginata 0.0126 mg / g and A. achatina $0.116 \mathrm{mg} / \mathrm{g}$ (Ebenso et al., 2006).

The level of phytate in these samples seemed to be much higher than that reported for moth bean cultivars (8.52-8.99) mg/kg (Santish and Chauhan, 1986) and other beans such as kidney bean (Lolas and Markakus, 1975), black grain (Reddy et al., 1978), Soyabean (De Boland et al., 1975) and diolea reflexa seed (Aiyesanmi and Oguntokun, 1996). This suggests that nutritive value of these samples would be impaired. Phytate which represents about 89% of the total phosphorus concentration, is widely distributed in food grains (De Boland et al., 1975). It lowers the bio-availability of minerals and inhibits several proteolytic enzymes and amylases (Erdman, 1979; Deshplande and Chevyan, 1984).

Several studies including (Rackis, 1974; Reddy et al., 1982; Forbes and Erdman, 1983; Aletor, 1990) have implicated dietary phytic and oxalic acids in the impairment of the efficient utilization especially of divalent minerals such as calcium and magnesium and the subsequent development of rickets when certain legumes and cereals are fed. These result suggest fairly high level of phytic acid (phytates) and lower levels of oxalates in the samples. The feeding of high phytin and or oxalate species may require dietary supplementation of the divalent minerals.

Conclusion: The result of these study have demonstrated that, from the observed proximate analysis, functional properties and anti-nutritional factors, cassava and potato compares favourably with wheat. From other researches in Cassava flour or starch as a component of the composite flour, have shown that cassava can substitute $10-30 \%$ of wheat flour in bread. Cassava flour are particularly suitable since they have very low or zero fat content, which is important for long storage life, since there is less opportunity for hydrolysis of the fat or its oxidation. Other consideration in favour of cassava flour, include its bland taste, offering no foreign odour or flavour, high dilution levels and the potential abundance of cassava. The decreases in the protein content of the composite flour due to introduction of cassava and potato can be overcome be the addition of 5% Soya beans flour.

REFERENCES

A.O.A.C., 1990. Official Method of Analysis, 15th Ed. Washington, D.C. Association of Analytical Chemistry, P., 1546.
Abbey, B.W. and G.O. Ibeh, 1988. Functional Properties of Raw and Heat processed Yam flour. J. Food Sci., 54: 1885-1890.
Aiyesanmi, A.F. and M.O. Oguntokun, 1996. Nutrient Composition of Dioclea Reflexa Seed-An underutilized edible legumes La rivital Delle Sostanze Gnasse Vol. LXXIII, 521-523.
Akintayo, C.O., V.O. Akpambang and O. Olaofe, 2000. A comparative study on the functional properties of some Nigeria Under-utilised legume flours and protein concentrates. J. Tech. Sci., 4.
Aletor, V.A., 1990. Analytical report on anti-nutritional factors in some Nigeria feedstuff, herbage bye products, crops residues and browse plants. A monograph prepared for the presidential task force on alternative formulation of livestock feeds. Products Development, Quality Evaluation and Health Implication. Cabinet Office, Lagos, Nigeria
Anderson, R.A., H.F. Conway, V.F. Pfeifer and E.L. Griffin, 1969. Roll and extrusion-cooking of grain sorghum grits. Cereals Sci. Today, 14:372-380.
Ayodeji, O.F., 2005. Nutrient Composition and processing effects on cassava leaf (Manihot esculenta, crantz) Anti-nutrients. Pak. J. Nutr., 4: 3742.

Bassey, F.I. and M.I. Dosunmu, 2003b. A comparative study of the starch pasting properties of unprocessed and processed cassava (Manihot esculenta), plantain (Musa paradisiaca) and Banana (Musa sapientum) flours. Global J. Pure and Applied Sci., 9: 517-522.
Bassey, F.I. and M.I. Dosunmu, 2003a. Proximate Composition and functional properties of raw and processed (steeped, boiled and roasted) Plantain (Musa paradisiacal) flour. Global J. Pure and Appl. Sci., 4: 503-509.

Bradbury, J.H., S.M. Egan and M.J. Lynch, 1991. Analysis of Cyanide in cassava using acid hydrolysis of Cyanogenic glucosides. J. Sci. Food Agric., 55: 277285.

Chan, J.S. and V.I. Cheung, 1998. Functional Properties of Rape Seed flours, concentrates and isolates. J. Food Sci., 41: 1349-1355.
Clerge, A.O., B.W. Abbey and G.O. Ibeh, 2006. Functional Properties of raw and heat processed cowpea flour. J. Food Sci., 53: 1775-1785.

Coffman, C.W. and V.V. Garcia, 1977. Functional Properties and amino acid content of a protein isolate from mung-beans flours. J. Food Tech., 12: 473-484
Conn, E.E., 1969. Cyanogenic glycosides. J. Agric. Food Chem., 17: 519-526.
Day, R.A. and A.L. Underwood, 1986. Quantitative Analysis, 5th Ed Pp. 701. Prentice-hall publication.
De Boland, A.R., G.B. Garmer and B.L. O'Del, 1975. "Phytate in grains and oil seeds". J. Agric Food Chem., 23: 1186.
Del, Rasario, N.D. and A.B. Flores, 1981. Physiochemical and Functional properties of cowpea powders processed to reduced beans flavour. J. Food. Sci., 44: 1235-1240.
Deshplande, S.S. and M. Chevyan, 1984. Effects of phytic acid on divalent cations and their interactions on amylase activity. J. Food Sci., 49: 516.
Ebenso, I.E., I.P. Solomon, D.N. Inyang and E.E.A. Offiong, 2006. Anti-nutritional constituents of two edible tropical land snails in Nigeria. Global J. Pure and Appl. Sci., 12: 279-281.
Eneche, E.H., 1999. Biscuit-Making potential of Millet/Pigeon pea flour blends. Plant Foods Human and Nutr., 54: 21-27.
Erdman, J.W., 1979. Oil seed phytates: Nutritional Implication. J. Am. Oil Chem., Soc., 56: 736.
Fagbemi, B.A., F.O. Hensaw and S.A. Lawal, 2006. Effect of processing methods on the functional properties of cowpea flour. J. Trop. Sci., 33: 377-385.
Forbes, R.M. and J.W. Erdman, 1983. Bioavailability of three mineral elements. Am. Rev. Nutr., 3: 213-231.
Ige, C.T., A.M. Hermanson and C.I. Iwoha, 1984. Determination of Functional properties of protein foods in problems-human nutrition. Ed. Porter, B and Rolls, B. Academic Press.
Kochhar, S.L., 1986. Tropical Crops-a text book of economic botany Macmillan India Ltd, London, pp: 56-109.
Liener, I.E., 1976. Legume Toxins in relation to digestibility-A review. J. Food Sci., 41: 1076-1082.
Lin, A.O., J.E. Dench, Nillo Rivas and J.C. Caygill, 1994. Selected functional properties of Sesame flour and two protein isolates. J. Sci. Food Agric., 32: 557-567.
Lolas, G.M. and P. Markakus, 1975. Phytic acid and other phosphorus compounds of beans (P. vulgaris L.). J. Agric. Food Chem., 23: 13.

Longe, O.G., 1980. Effect of processing on the Chemical Composition and energy value of cassava. Nutr. Rept. Int., 21: 819-829.
Mbofung, C.M.F., Aboubakar, Y.N. Njintang, A. Abdou Bouba and F. Balaam, 2006. Physicochemical and Functional properties of six varieties of Taro (Colocasia esculenta L. Schott) flour. J. Food Tech., 4: 135-142.
Ngoddy, P.O., 1977. Determinants of the Development of Technology for the processing of Root and Tubers in Nigeria. A Proceeding, first National Seminar on Root and Tuber crops. National Root crops research Institute Umudike, Nigeria: 27-35.
Njintang, Y.N., C.M.F. Mbofung and K.W. Waldron, 2001. In vitro protein digestibility and physicochemical properties of dry red beans flour (phaseolus vulgars): Effect of processing and incorporation of Soyabeans and Cowpea flour. J. Agric and Food Chem., 49: 2465-2471.
Oladimeji, M.O., 2001. Development and quality evaluation of sweet potato fortified maize flour pudding: J. Sustainable Agric. and Environ., 3: 161164. Pub. By Micheal Okpara University of Agric. Umudike.
Olajide, J.O., E.O. Sunny-Roberts, E.T. Otunola and O.A. Ogundele, 2003. Some physical and Chemical Properties of three varieties of Eggplant: Sci. Focus, 5: 64-67.
Pearson, D., 1976. The Chemical Analysis of Foods. 7th Ed. London: Churchill living Stone P: 324.
Peksa, A., J. Apeland, S. Gronnerod and E.M. Magnus, 2002. Comparison of the consistencies of cooked mashed potato prepared from seven varieties of potatoes. J. Food Chem., 76: 311-317.
Polsen, R.A. and D.S.C. Spencer, 1991. The Technology adoption process in subsistence agriculture. The case for cassava in South Western Nig. Agric. Sys., 36: 65-78.

Rackis, S.S., 1974. Biological and Physiological factors in Soya beans. J. Am. Oil Chem. Soc., 41: 161-174.
Reddy, N.R., S.K. Shathe and D.K. Salunkhe, 1982. Phytates in legumes and cereals. Adv. Food Res., 28: 1-9.
Reddy, N.R., C.N. Balakrishna and D.K. Salunkhe, 1978. Phytate, phosphorus and mineral changes during germination and cooking of blackgrain (phaseolus mungo) seeds. J. Food Sci., 43: 540.
Rosling, H., 1987. Cassava Toxicity and food security. Truct Kontakt, Uppsala: 30-40.
Santish, K. and B.M. Chauhan, 1986. Anti-nutritional factors in Moth beans (Vigna aconitifolia) Varietal differences and effects of mehod of domestic processing and cooking. J. Food Sci., 51: 591-594.
Sathe, S.K. and D.K. Sahunkhe, 1981. Functional properties of the Great Northern Bean (Phaseolus vulgaris L.) Protein, Emulsion, Foaming, Viscosity and Gelation properties. J. Food Sc., 46: 71-76.
Tagodoe, A. and W.K. Nip, 1994. Functional Properties of raw and precooked taro (Colocasia esculenta) flours. Int. J. Food Sci. and Tec., 29: 457-462.
Udo, A.P., E.O. Apkanyung and I.E. Igiran, 1995. Nutrients and anti-nutrients in small snails (Limicolaria aurora). Food Chem., 53: 239-241.
Victor, N., P.A. Enujiagha and A.O. Olubunmi, 2003. Evaluation of Nutrients and some anti-nutrients in Lesser known underutilized oil seed. Int. J. Food Sci. and Tech., 38: 1-4.
Yatsumatsu, K., K. Sawada and S. Morita, 1972. Whipping and emulsifying properties of Soya beans products. Agric. Bio. Chem., 36: 715-727.
Young, S.M. and J.S. Greaves, 1940. Influence of variety and treatment on phytin content of wheat food. Res., 5: 103-105.

