ISSN 1680-5194

NUTRITION

ANSI邹er

Digestibility and Methane Emission of Ration Based on Oil Palm By Products Supplemented with Probiotics and Banana Stem: An In vitro Study

Antonius ${ }^{1,3}$, Komang G. Wiryawan ${ }^{2}$, Amlius Thalib ${ }^{3}$ and Anuraga Jayanegara ${ }^{2}$
${ }^{1}$ Graduate School of Nutrition and Feed Science,
${ }^{2}$ Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
${ }^{3}$ Indonesian Animal Research and Development Center, Bogor 16151, Indonesia

Abstract

The objective of the present study was to investigate feed digestibility and methane emissions of ration based on oil palm by-products on addition of probiotics, namely Acetoanaerobium noterae and Saccharomyces cerevisiae and banana stem in vitro. The substrate, i.e., oil palm by-products consisted of oil palm midrib, oil palm leaf, oil palm kernel cake and oil palm sludge in the ratio of $30,30,30$ and 10%, respectively. The following treatments were tested: control (RO), $\mathrm{RO}+\mathrm{S}$. cerevisiae (R 1), $\mathrm{RO}+\mathrm{A}$. noterae (R 2), $\mathrm{RO}+\mathrm{S}$. cerevisiae + A. noterae (R 3), $\mathrm{RO}+$ banana stem (R4), RO+banana stem+S. cerevisiae (R 5), RO+banana stem + A. noterae (R 6) and $\mathrm{RO}+$ banana stem + S. cerevisiae + A. noterae (R 7). The treatments were incubated in vitro with buffered-rumen fluid in four replicates (represented by three incubation units per replicate), conducted for 48 h at $39^{\circ} \mathrm{C}$. Gas production and methane emission were measured at regular time point intervals. After the incubation, digestibility, Volatile Fatty Acids (VFA), ammonia and microbial counts were determined. Results showed that the highest dry matter digestibility was shown by R5 and the best reduction of methane emission was shown by R2 at 12 h of incubation. In conclusion, supplementation of probiotics did not affect the digestibility of ration based on oil palm by-products but A. noterae addition was potential to mitigate ruminal methane emission.

Key words: Acetogen, yeast, banana, methane, digestibility, rumen

INTRODUCTION

One of the causes of low ruminant productivity is due to insufficient nutrient intake. Provision of high-quality forages such as grasses and legumes is limited by land competition for various developmental reasons. Therefore, an opportunity to provide forage for livestock development is through utilization of agricultural byproducts as animal feeds. Agricultural by-products, however, in general have a low quality which is characterized by high fiber and low protein contents. Such characteristics are found in oil palm by-products which highly available in Indonesia as the biggest producer country worldwide. Typical by-products from oil palm plantation are oil palm midrib, oil palm leaf, oil palm trunk, oil palm frond, empty fruit bunch, oil palm sludge and palm kernel cake. High fiber diet does not only lower feed utilization efficiency and livestock productivity, but also increases the emission of methane as a green-house gases. It has been reported that formation of methane in the rumen causes a loss of digestible energy for about 8-14\% (Cottle et al., 2011). Challenges of low productivity and negative impact of methane emissions of ruminant livestock should be answered with innovation technology that improves feed
management system. A promising approach is through optimization and manipulation of rumen microbial ecosystem, for instance, by using probiotics. A species of microbe that has been repeatedly used as probiotics and had been reported to increase feed digestibility, feed conversion and livestock productivity is yeast or Saccharomyces cerevisiae (Wina, 2000; Ando et al., 2004). Apart from that, a class of microbes namely acetogen has been attempted to reduce ruminal methane emissions. Acetogen has the ability as methanogenesis inhibitor by using hydrogen to form acetate in the rumen (Lopez et al., 1999; Fonty et al., 2007). Thalib et al. (2008) isolated an acetogen species namely Acetoanaerobium noterae from the rumen of deer and such acetogen was shown to effectively inhibit methanogenesis under experimental environment. It would be interesting to observe the effect of a simultaneous addition of S. cerevisiae and A. noterae on methanogenesis and rumen fermentation. Further, supplementation of phytogenic compounds such as saponins and tannins were reported to decrease methane emissions in the rumen (Thalib et al., 2004; Jayanegara et al., 2013, 2014). Tropical plants generally contain high levels of plant secondary compounds

[^0](Jayanegara et al., 2011). A plant species that contain a considerable amount of tannins and saponins is the banana plant (Musa paradisiaca) (Wina, 2001).
Despite administration of probiotics or plant secondary compounds has been performed, however, the application is conducted separately; limited studies have attempted to observe their effects on methane emissions and rumen fermentation when being added simultaneously for assessing their possible interaction. Therefore, this study was aimed to investigate the effects of simultaneous addition of probiotics (S. cerevisiae and A. noterae) and phytogenic compounds (from banana stem) on methane emissions and rumen fermentation of ration based on oil palm by-products as performed in vitro.

MATERIALS AND METHODS

Sample preparation and chemical analysis: The substrate, i.e., oil palm by-products consisted of oil palm midrib, oil palm leaf, oil palm kernel cake and oil palm sludge in the ratio of $30,30,30$ and 10%, respectively. Oil palm midrib and leaves were taken from at least three different trees, chopped, oven-dried at $50^{\circ} \mathrm{C}$ for 24 h and ground finely to pass 1 mm sieve. Ground samples from different trees were mixed homogeneously. Subsequently, they were mixed homogeneously with oil palm kernel cake and oil palm sludge. Samples were analyzed by the standard procedures of AOAC (1997) and Van Soest et al. (1991) for proximate composition and fiber fraction, respectively. Supplements given in this study were banana stem, S. cerevisiae and A. noterae. Banana stem used was from the Ambon variety banana (M. paradisiaca) that freshly harvested. The banana stem samples were taken from three different trees. Each tree was chopped, oven-dried at $50^{\circ} \mathrm{C}$ for 24 h , ground to pass 0.5 mm sieve and mixed homogeneously. Samples were analyzed for their phytogenic compounds and mineral contents. Tannins were determined according to Makkar (2003) and saponins were analyzed according to Hiai et al. (1976) by using a spectrophotometer (UV-Spectrophotometer U-1800-5930482, High-Technologies Corporation, Tokyo, Japan). Saccharomyces cerevisiae was grown in Potato Dextrose Broth (PDB) liquid medium, while A. noterae was grown in a liquid medium consisting of basal medium, vitamins and trace element solutions according to the procedures of Ogimoto and Imai (1980). In vitro incubation: In vitro incubation was performed by following the method of Theodorou and Brooks (1990). One gram of substrate and 100 mg of banana stem ($1 \mathrm{mg} / \mathrm{mL}$ incubation medium), according to the experimental treatments, were added into each incubation tube. Incubation medium for each tube contained 90 mL of buffer solution (86 mL of basal solution and 4 mL of reducing agent) and 10 mL of rumen fluid. One liter of incubation medium was made of 860 mL basal solution (0.5 mL micro minerals, 200 ml bicarbonate buffer, 200 mL macro minerals, 2 mL
rezazurine 0.1% and 457.5 mL distilled water), 40 mL reducing agent and 100 mL rumen fluid. Rumen fluid was taken from three Etawa crossbred goats for each incubation run by stomach tube method before morning feeding. Goats were fed with grass (ad libitum), sugarcane leaf silage ($300 \mathrm{~g} / \mathrm{goat} / \mathrm{day}$) and a commercial concentrate ($300 \mathrm{~g} / \mathrm{goat} /$ day). After the collection, rumen fluid was taken to the laboratory, filtered through a nylon sieve and mixed with the buffer solution (100 mL rumen fluid +900 ml buffer solution). Incubation medium was saturated with CO_{2} for 10 min to ensure the anaerobic condition, then put as much as 100 mL in each incubation tube (containing 1 g substrate and 100 mg banana stem, according to the treatments). Liquid preparation of A. noterae and S. cerevisiae was added $1 \mathrm{~mL} /$ tube (containing 10^{9} and 10^{6} cfu/mL, respectively) according to the treatments. The incubation tubes were closed immediately and put in a water bath incubator $\left(39^{\circ} \mathrm{C}\right)$ and incubated for 48 h .
The treatments given in this study were probiotic supplementation (Factor A) and supplementation of banana stem (Factor B). The treatments were: control (R0), R0+S. cerevisiae (R1), R0+A. noterae (R2), R0+S. cerevisiae + A. noterae (R3), R0+banana stem (R4), $\mathrm{R} 4+\mathrm{S}$. cerevisiae (R5), R4+A. noterae (R6) and R4+S. cerevisiae+A. noterae (R7).
Gas production and methane emission were measured at regular time point intervals using the method of Fievez et al. (2005). Gas was taken using a gas syringe (Sigma-Aldrich Z314382-1EA, Poulten and Graf GmbH, Wertheim, Germany) and it was flowed into an Erlenmeyer flask (1 I capacity) containing 6 N NaOH solution, connected to another syringe for estimating the volume of methane gas. The gas volume in the first syringe indicated the total gas volume. Carbon dioxide was trapped in NaOH solution, leaving out the methane gas into the second syringe.

Post fermentation analyses: Determination of dry matter digestibility was conducted after 48 h of incubation. The content of each in vitro tube was filtered using sinterglass and vacuum. The incubation residue was heated at $105^{\circ} \mathrm{C}$ for 24 h to calculate the dry matter digestibility (DMD) and organic matter digestibility (OMD). Supernatant was sampled for the analysis of VFA (volatile fatty acids), ammonia (NH_{3}) and the population of bacteria and protozoa.
Concentration of individual VFA was analyzed by Gas Liquid Chromatography (GLC Scion Bruker 436-GC, Bruker Daltonik GmbH, Bremen, Germany) using a column (BR-Wax fame, mmID 0.32, 0.25 mL df) and FID detector. An amount of 2 mL supernatant obtained from the in vitro incubation was added with 3 mg of sulfosalicylic acid dihydrate, centrifuged for 10 min at $12,000 \mathrm{rpm}$ with a temperature of $7^{\circ} \mathrm{C}$ and then injected into the GLC column. Quantification of individual VFA was done by comparing it with the external standard
(known concentration of each VFA). Individual VFA unit was expressed in $\mathrm{mmol} / \mathrm{l}$ and converted as a proportion to total VFA. Total VFA and total iso-VFA were obtained through the sum of each individual VFA.
Ammonia concentration was analyzed according the method of Conway (1950). Briefly, boric acid (3\%) was put into the center area of Conway apparatus as much as 3 mL and then added 1 drop of bromcresol green (BCG) and red methyl indicator solution. A total of 1 mL of NaOH and rumen fluid were put into each different area (either left or right) of the Conway apparatus. The apparatus was closed and then shaken gently to mix the NaOH and the rumen fluid. The sample was left for 24 hours and titrated with HCl until the boric acid color was changed to reddish yellow. The concentration of NH_{3} was calculated by multiplying the HCl volume that was required for titration with HCl concentration and a dilution factor.
Protozoa population was counted by using counting chamber method and bacteria population was determined by the roll tube procedure (Ogimoto and Imai, 1980). A total of 4.5 ml of methyl green formal saline solution (MFS) was added into a test tube and added 0.5 mL of rumen fluid. Samples were vortexed, added into the counting chamber and the population was calculated directly by using a microscope. Protozoa population was the result of multiplying with the dilution factor. For total bacteria count determination, a total of 0.5 ml of rumen fluid was diluted 7 times and then grown on Rumen Fluid Glucose Cellobiose Agar (RGCA) medium and incubated for 21 days. Bacterial population was calculated manually by marking the colonies that formed on day 5,14 and 21 of incubation. The calculation result was multiplied with the dilution factor.

Statistical analysis: The experiment employed a factorial randomized complete block design (4×2) with 4 groups (served as replicates) and each group was represented by two incubation tubes. Data were analyzed by SPSS statistical software version 16.0 by following the general linear model (GLM) procedure and the mean values among treatments were further tested with Duncan's Multiple Range Test.

RESULTS AND DISCUSSION

Nutrient composition and digestibility: The basal ration based on oil palm by-products, as expected, contained low level of protein and high level of fibre (as shown by crude fibre, NDF and ADF values; Table 1). The byproducts used in the present study were unprocessed, either biologically or chemically, in order to observe the effects of adding S. cerivisiae, A. noterae and banana stem on in vitro rumen fermentation, digestibility and methane emission of a high fibre ration.

Table 1: Nutrient composition of basal ration based on oil palm byproducts

Nutrient	Content (\% dry matter)
Organic matter	93.2
Crude protein	9.2
Crude fibre	29.1
Ether extract	3.3
Nitrogen free extract	41.4
Neutral detergent fibre	81.3
Acid detergent fibre	67.6
Total digestible nutrient	50.5

Dry matter and organic matter digestibility were considered to be quite low, i.e., below 40% (Table 2). Such low digestibility was due to the considerably high fibre content in the diet based on oil palm by-products (Table 1). In addition, the digestibility values in this study represented only digestion process in the rumen only without considering the post-ruminal digestion. In general, supplementation of banana stem improved the digestibility of the diet, but less effect by the addition of probiotics (S. cerevisiae and A. noterae) on the digestibility. The highest DMD and OMD were demonstrated by the simultaneous supplementation of banana stem and S. cerevisiae. Such a response might be caused by the contribution of banana stem nutrient and S. cerevisiae that improve the growth and activity of rumen microbes. The chemical composition of S. cerevisiae is consisted of $50-52 \%$ crude protein, $30-$ 37% carbohydrates, $4-5 \%$ fat and $7-8 \%$ minerals (Reed et al., 1991) and therefore is considered as a source of vitamins, enzymes, cofactors and other nutrients for microbes and digestion in the rumen (Dawson, 1990). Mechanism of S. cerevisiae in improving fermentation activity in the rumen has been described by Yoon and Stern (1996), i.e., its respiratory activity can eliminate oxygen in the rumen so that the anaerobic condition can be maintained. This condition stimulates the utilization of ammonia and lactic acid, stabilizes rumen pH and increases population, growth and activity of rumen microbes and, as a result, fermentation process is optimized and digestibility is enhanced.
Regarding banana stem, it contains essential minerals that are needed by the rumen microbes, of which the most important ones are $\mathrm{K}, \mathrm{Fe}, \mathrm{Zn}$ and Ca (Wina, 2001). Mineral contents of banana stem used this study were consisted of K (1.62\% DM), Mg ($0.13 \% \mathrm{DM}$), Fe (150 ppm), Mn (99.5 ppm), $\mathrm{Zn}(5 \mathrm{ppm})$ and $\mathrm{Cu}(1.98 \mathrm{ppm})$. Thalib et al. (2002) reported that supplementation of Fe and Zn was shown to improve the feed digestibility up to 49% compared to the control. Further, digestibility increased because the phagocyte activity of protozoa was inhibited by phytogenic compounds present in the banana stem namely saponins. Saponins defaunate a certain population of protozoa by their interaction mechanisms with cell membranes of protozoa to rupture

Table 2: Total gas production at various incubation time intervals and digestibility of oil palm by-products supplemented with probiotics and banana stem ($\mathrm{n}=4$)

---------------------- Gas production (mL) -----------------------						
Probiotics	Banana stem	12 h	24 h	48 h	DMD (\%)	OMD (\%)
Control	No	55.4	$86.8{ }^{\text {a }}$	$103.9^{\text {a }}$	$32.3{ }^{\text {a }}$	$34.9{ }^{\text {ab }}$
SA	No	59.5	$93.4{ }^{\text {ab }}$	$113.7^{\text {abc }}$	$30.4{ }^{\text {a }}$	$34.1{ }^{\text {a }}$
AN	No	59.6	$92.4{ }^{\text {ab }}$	$110.9{ }^{\text {ab }}$	$33.3{ }^{\text {ab }}$	$36.0{ }^{\text {abod }}$
SA+AN	No	61.7	$96.4{ }^{\text {ab }}$	$114.2^{\text {abo }}$	$32.6{ }^{\text {a }}$	$35.5{ }^{\text {abo }}$
Control	Yes	61.9	$94.5{ }^{\text {ab }}$	$114.8{ }^{\text {abo }}$	36.7°	$37.4{ }^{\text {bode }}$
SA	Yes	68.7	$101.9^{\text {b }}$	$122.6{ }^{\text {b }}$	$38.9{ }^{\circ}$	$39.6{ }^{\text {e }}$
AN	Yes	70.5	$104.6{ }^{\text {b }}$	$125 .{ }^{\text {c }}$	$35.7{ }^{\text {bo }}$	$37.8{ }^{\text {dede }}$
SA+AN	Yes	64.1	$102.3^{\text {b }}$	$124.0^{\text {bo }}$	$37.0{ }^{\circ}$	$38.5{ }^{\text {de }}$
SEM		1.707	1.673	1.727	0.611	1.096
p-value						
Probiotics		0.464	0.144	0.099	0.990	0.720
Banana stem		0.014	0.004	0.001	<0.001	<0.001
Interaction		0.645	0.861	0.930	0.040	0.181

Different superscripts in the same column are significantly different at p<0.05

AN: Acetoanaerobium noterae	DMD: Dry matter digestibility	OMD: Organic matter digestibility
SA: Saccharomyces cerevisiae	SEM: Standard error of the mean	

SA: Saccharomyces cerevisiae
SEM: Standard error of the mean
Table 3: Methane production (ml) and methane concentration (\% total gas) in vitro of oil palm by-products supplemented with probiotics and banana stem at various incubation time intervals ($n=4$)

		------------------- CH4 production (mL) --------------------1-1			--------- CH4 concentration (\% total gas) ------------		
Probiotics	Banana stem	12 h	24 h	48 h	12 h	24 h	48 h
Control	No	$15.1{ }^{\text {ab }}$	$22.2{ }^{\text {bec }}$	$28.2{ }^{\text {ab }}$	$27.9^{\text {b }}$	26.0	27.5
SA	No	$14.8{ }^{\text {ab }}$	$22.5{ }^{\text {abc }}$	$29.7{ }^{\text {bo }}$	$25.2^{\text {ab }}$	24.4	26.5
AN	No	$13.2{ }^{\text {a }}$	$20.5{ }^{\text {a }}$	$26.9{ }^{\text {a }}$	$23.2^{\text {a }}$	22.7	24.6
SA+AN	No	$14.0{ }^{\text {ab }}$	$21.3{ }^{\text {ab }}$	$27.6{ }^{\text {ab }}$	$23.6{ }^{\text {ab }}$	22.6	24.6
Control	Yes	$15.7{ }^{\text {bo }}$	$23.2^{\text {bo }}$	$29.8{ }^{\text {bo }}$	$26.4{ }^{\text {ab }}$	25.0	26.2
SA	Yes	$17.8{ }^{\circ}$	$25.8{ }^{\text {d }}$	$33.0{ }^{\text {d }}$	$26.7{ }^{\text {ab }}$	25.7	27.1
AN	Yes	$15.7{ }^{\text {bo }}$	$23.9{ }^{\text {cd }}$	$31.1{ }^{\text {od }}$	$24.1^{\text {ab }}$	23.7	25.5
SA+AN	Yes	$15.1{ }^{\text {ab }}$	23.9 d ${ }^{\text {d }}$	$31.1{ }^{\text {od }}$	$24.0{ }^{\text {ab }}$	23.8	25.4
SEM		0.378	0.359	0.388	0.609	0.470	0.412
p-value							
Probiotics		0.065	0.085	0.029	0.046	0.088	0.102
Banana stem		0.001	<0.001	<0.001	0.890	0.501	0.839
Interaction		0.227	0.346	0.551	0.740	0.696	0.670

Different superscripts in the same column are significantly different at p<0.05 AN: Acetoanaerobium noterae SA: Saccharomyces cerevisiae

SEM: Standard error of the mean
the cells (Wina, 2012). The reduction of population and activity of protozoa provides greater opportunities for S. cerevisiae to optimize anaerobic condition in the rumen as well as the microbial activity in digesting feed.
Total gas production and methane emissions: Supplementation of banana stem significantly increased total gas production at 12, 24 and 48 h of incubation ($p<0.05$; Table 2). No significant effects of probiotics addition as well as the interaction between probiotics and banana stem were observed. Total gas production showed similar trend with the dry matter digestibility in which the better result was the combination between supplementation of banana stem with S. cerevisiae and A. noterae. Gas production was a direct result of substrate fermentation $\left(\mathrm{CO}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$ and the result of VFA buffering mechanism $\left(\mathrm{CO}_{2}\right)$ indirectly (Getachew et al., 1998). In general, the longer of incubation process occurred, the more gas is produced. The rate of gas production decreased as the length of incubation increase since the amount of available substrate for digestion is depleted.

The increase of total gas production is usually followed by the increase of CH_{4} production (in mL) because CH_{4} is a component within the gas. Therefore, the best parameter representing CH_{4} emission was the concentration of CH_{4} in the total gas production (in percent of total gas production; Table 3). Supplementation of A. noterae at 12 h of incubation decreased CH_{4} concentration by 17% compared to the control ($p<0.05$). The acetogens inhibited the formation of CH_{4} by utilizing hydrogen in the rumen to form acetate. Asetogenic microbes (including A. noterae) utilize CO_{2} and H_{2} for their growth and produce acetic acid as a metabolic product (Lopez et al., 1999). Asetogenic microbes are belong to hydrogenotrophic microbes that can reduce carbon dioxide to form acetate, reduce sulfate to form hydrogen sulfide and reduce fumarate to form succinate (Morvan et al., 1996).
Apart from A. noterae, all other supplemented treatments numerically decreased CH_{4} concentration at 12,24 and 48 h of incubation in comparison to the control treatment, including S. cerevisiae and banana stem. The decrease of CH_{4} is due to three principal

Pak. J. Nutr., 14 (1): 37-43, 2015

Table 4: Volatile fatty acid (VFA) profile of oil palm by-products supplemented with probiotics and banana stem ($n=4$)

Probiotics	Banana stem	Total VFA (mM)	C2	C3	C4	IsoC4	C5	IsoC5
Control	No	100.0	52.2	$17.9^{\text {a }}$	$15.1^{\text {ab }}$	$2.66{ }^{\text {d }}$	7.16°	$4.97{ }^{\text {b }}$
SA	No	109.5	52.1	$17.9{ }^{\text {a }}$	$17.6{ }^{\text {bo }}$	$2.07^{\text {bod }}$	$4.98{ }^{\text {b }}$	$5.27{ }^{\text {b }}$
AN	No	96.8	53.8	$21.6{ }^{\text {b }}$	$13.2{ }^{\text {a }}$	$2.21{ }^{\text {cd }}$	$5.26{ }^{\text {b }}$	$3.94{ }^{\text {ab }}$
SA+AN	No	121.4	52.0	$20.9{ }^{\text {b }}$	$18.2^{\text {bo }}$	$1.57{ }^{\text {ab }}$	$3.23{ }^{\text {ab }}$	$4.15{ }^{\text {ab }}$
Control	Yes	100.0	49.5	$20.0^{\text {b }}$	19.1°	$1.97{ }^{\text {bo }}$	$5.02{ }^{\text {bo }}$	$4.36{ }^{\text {ab }}$
SA	Yes	88.1	53.4	$16.8{ }^{\text {a }}$	$19.9{ }^{\circ}$	$1.48{ }^{\text {ab }}$	$3.58{ }^{\text {ab }}$	$4.90^{\text {b }}$
AN	Yes	107.9	50.4	$17.2^{\text {a }}$	$23.4{ }^{\text {d }}$	$1.80^{\text {abo }}$	$2.85{ }^{\text {ab }}$	$4.34{ }^{\text {ab }}$
SA+AN	Yes	104.8	55.6	$20.9{ }^{\text {b }}$	$17.1^{\text {bo }}$	$1.32^{\text {a }}$	$2.02{ }^{\text {a }}$	$3.16^{\text {a }}$
SEM		4.833	0.982	0.349	0.747	0.105	0.400	0.185
p-value								
Probiotics		0.251	0.271	<0.001	0.520	0.001	0.001	0.011
Banana stem		0.290	0.771	0.055	<0.001	0.001	0.003	0.204
Interaction		0.194	0.071	<0.001	<0.001	0.721	0.850	0.431

Different superscripts in the same column are significantly different at $\mathrm{p}<0.05$. AN: Acetoanaerobium noterae			
C 2 , acetate	C 3, propionate	$\mathrm{C4}$, butyrate	C5, valerate
IsoC4, iso butyrate	IsoC5, iso valerate	SA , Sacharomyces cerevisiae	SEM, standard error of the mean

Table 5: $\mathrm{pH}, \mathrm{N}-\mathrm{NH}_{3}$ concentration and bacteria ($\log \mathrm{cfu} / \mathrm{ml}$) and protozoa population (\log cell/ml) of oil palm by-products supplemented with probiotics and banana stem ($n=4$)

Probiotics	Banana stem	pH	$\mathrm{N}-\mathrm{NH}_{3}(\mathrm{mM})$	Bacteria ($\log \mathrm{cfu} / \mathrm{mL}$)	Protozoa (\log cell/ $/ \mathrm{mL}$)
Control	No	6.87	22.7	$10.40^{\text {b }}$	7.20°
SA	No	6.78	22.4	$10.35^{\text {b }}$	$7.21{ }^{\circ}$
AN	No	6.88	20.4	$10.36{ }^{\text {b }}$	$6.77{ }^{\text {b }}$
SA+AN	No	6.82	19.7	$10.36^{\text {b }}$	$6.87{ }^{\text {b }}$
Control	Yes	6.89	20.9	$10.15{ }^{\text {a }}$	$7.10{ }^{\circ}$
SA	Yes	6.82	19.4	$10.28^{\text {b }}$	$6.82{ }^{\text {b }}$
AN	Yes	6.96	19.4	$10.34{ }^{\text {b }}$	$6.52{ }^{\text {a }}$
SA+AN	Yes	6.77	16.5	$10.37^{\text {b }}$	$6.83{ }^{\text {b }}$
SEM		0.024	0.675	0.017	0.039
p-value					
Probiotics		0.071	0.204	0.150	<0.001
Banana stem		0.578	0.080	0.006	<0.001
Interaction		0.621	0.905	0.012	0.041

Different superscripts in the same column are significantly different at p<0.05
AN: Acetoanaerobium noterae
SA: Saccharomyces cerevisiae
SEM: Standard error of the mean
mechanisms, i.e., (1) direct inhibition of methanogens population, (2) decrease of H_{2} concentration in the rumen and (3) the provision of alternative electron acceptors of H_{2} to divert the methane formation reaction (McAllister and Newbold, 2008). Phytochemical compounds of banana stem apparently inhibit the growth of methanogenic microbes directly and protozoa as the host of some methanogen population. Banana stem also contains a number of minerals that have ability to bind H_{2} such as Fe and sulfate; these substances have a higher affinity for hydrogen than the CO_{2} (Thalib, 2004). With regard to S . cerevisiae, the yeast can stimulate the growth and activity of asetogenic microbes in the rumen to form acetic acid (Chaucheryras et al., 1995). Limited effects of A. noterae, S. cervisiae and banana stem in mitigating ruminal methane emissions in vitro were apparently related to the small amounts of addition. One milliliter of probiotics per 100 mL of incubation medium and 1 mg of banana stem per mL of incubation medium in such low nutritious oil palm by-products have not been able to reduce methane emissions significantly. Increasing amounts of supplementation and the balance among the three components are an interesting topic for further investigation.

Rumen fermentation and microbial population: The end products of fermentative digestion in the rumen were volatile fatty acids (VFA), ammonia (NH_{3}) and gas, consisted of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$, as well as other gases in small amounts (Campbell et al., 2003). McDonald et al. (2002) explained that VFA is the end product of carbohydrate digestion that consisted of acetate, propionate and butyrate with average molar ratio of 65,21 and 14%, respectively. In addition, VFA also contains valerate and branched-chain fatty acids such as isobutyrate and isovalerate (Damron, 2006). The VFA content of each treatment was relatively normal, i.e., about 88.1-121.4 mM (Table 4). Van Soest (1982) suggested that the ideal concentration of total VFA in the rumen is about 80-160 mM . In this study, all treatments did not result in a significant effect on total VFA and acetate proportion, but the treatments had significant effects ($p<0.05$) on the proportions of propionate, butyrate, iso-butyrate, valerate and iso-valerate. Addition of A. noterae, A. Noterae+S. cerevisiae, banana stem and banana stem+A. noterae + S. cerevisiae increased the propionate proportion compared to the unsupplemented control ($p<0.05$). Individual VFA profiles have an effect on methane emissions and feed energy efficiency.

Formation of propionate in the rumen required hydrogen $\left(\mathrm{H}_{2}\right)$, while the formation of acetate and butyrate produced H_{2} (Martin et al., 2008). Hydrogen in the rumen is utilized by methanogens to reduce CO_{2} during formation of CH_{4}. On the other hand, ammonia, free amino acids and oligopeptides are used by rumen microbes to form microbial protein. The optimum concentration of NH_{3} in the rumen is around 85 to 300 mg / L, equivalent to 6-21 mM (McDonald et al., 2002), in order to sufficiently support microbial protein synthesis. Ammonia concentration in the present study was similar among treatments (Table 5). Rumen pH was also no difference and it was within the comfortable range for rumen microbes to proliferate.
Populations of bacteria and protozoa are presented in Table 5. Supplementation of banana stem only decreased the bacterial population from 10.40 log $\mathrm{cfu} / \mathrm{mL}$ (control) to $10.15 \log \mathrm{cfu} / \mathrm{mL}(\mathrm{p}<0.05)$. The decrease of bacterial population was occurred because of the activity of phytochemical compounds present in the banana stem, particularly tannins. Bacterial cells have a large affinity to tannins and may cause cell rupture (Min et al., 2003). Moreover, tannins bind cell membrane of rumen bacteria, inhibit their growth and the activity of their enzymes (Smith et al., 2005). Protozoa population was affected by both supplementation of probiotics and banana stem by reducing their population ($\mathrm{p}<0.05$). S. cerivisiae and banana stem supplementation singly did not decrease protozoa population, but their combination decreased the protozoa significantly compared to control ($p<0.05$). It seems that saponins present in banana stem causes defaunation effect on protozoa by the interaction mechanism with sterol of protozoa cell membrane and the subsequent cell lysis (Hart et al., 2008; Wina, 2012).

Conclusion: Supplementation of probiotics did not significantly affect the digestibility of ration based on oil palm by-products. When the probiotics were combined with banana stem, the digestibility was improved. Acetoanaerobium noterae addition was potential to mitigate ruminal methane emission, but it did not show any interaction effects with additions of Saccharomyces cerevisiae and banana stem.

REFERENCES

AOAC, 1997. Official Methods of Analysis. Association of Official Analytical Chemists. Arlington, VA, USA.
Ando, S., R.I. Khan, J. Takahashi, Y. Gamo, R. Morikawa, Y. Nishiguchi and K. Hayasaka, 2004. Manipulation of rumen fermentation by yeast: the effect of dried beer yeast on the in vitro degradability of forages and methane production. Asian-Aust. J. Anim. Sci., 17: 68-72.
Campbell, J.R., M. Douglas, Kenealy and K.L. Campbell, 2003. Animal Sciences. 4th Edition. McGraw-Hill, New York, USA.

Chaucheryras, F., G. Fonty, G. Bertin and P. Gouet, 1995. In vitro utilization by a ruminal acetogenic bacterium cultivated alone or in association with an Archea metanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol., 61: 3466-3467.
Conway, E.J., 1950. Microdiffusion Analysis and Volumetric Error. 3rd Ed. Crosby Lokswood and Sons, Ltd., London.
Cottle, D.J., J.V. Nolan and S.G. Wiedeman, 2011. Ruminant enteric methane mitigation: A Review. Anim. Prod. Sci., 51: 491-514.
Damron, W.S., 2006. Introduction to Animal Science. Prentice Hall, Ohio.
Dawson, K.A., K.E. Newman and J.A. Boling, 1990. Effect of microbial supplements containing yeast and Lactobacili on roughage-fed ruminal microbial activities. J. Anim. Sci., 68: 3392-3398.
Fievez, V., O.J. Babayemi and D. Demeyer, 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim. Feed Sci. Technol., 123-124: 197210.

Fonty, G., K. Joblin, M. Chavarot, R. Roux, G. Naylor and F. Michallon, 2007. Establishment and development of ruminal hydrogenotrophs in metanogen-free lambs. Appl. Environ. Microbiol., 73: 6391-6403.
Getachew, G., M. Blummel, H.P.S. Makkar and K. Becker, 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol., 72: 261-281.
Hart, K.J., D.R. Yanez-Ruiz, S.M. Duval, N.R. McEwan and C.J. Newbold, 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Technol., 147: 8-35.
Hiai, S., H. Oura and T. Nakajima, 1976. Color Reaction of somesapogenins and saponins with vanillin and sulfuric acid. Planta Med., 29: 116-122.
Jayanegara, A., M. Kreuzer, E. Wina and F. Leiber, 2011. Significance of phenolic compounds in tropical forages for the ruminal bypass of polyunsaturated fatty acids and the appearance of biohydrogenation intermediates as examined in vitro. Anim. Prod. Sci., 51: 1127-1136.
Jayanegara, A., S. Marquardt, E. Wina, M. Kreuzer and F. Leiber, 2013. In vitro indications for favourable nonadditive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br . J. Nutr., 109: 615-622.

Jayanegara, A., E. Wina and J. Takahashi, 2014. Metaanalysis on methane mitigating properties of saponin-rich sources in the rumen: influence of addition levels and plant sources. Asian-Aust. J. Anim. Sci. (in press).

Lopez, S., F.M. Mcintosh, R.J. Wallace and C.J. Newbold, 1999. Effect of adding acetogenic bacteria on methane production by mixed rumen microbes. Anim. Feed Sci. Technol., 78: 1-9.
Makkar, H.P.S., 2003. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Kluwer AcademicPublishers, Dordrecht, The Netherlands.
Martin, C., J. Rouel, J.P. Jouany, M. Doreau and Y. Chilliard, 2008. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci., 86: 2642-2650.
McDonald, P., R.A. Edward, J.F.D. Greenhalgh and C.A Morgan, 2002. Animal Nutrition. 6th Ed. John Willey and Sons, Inc., New York.
McAllister, T.A. and C.J. Newbold, 2008. Redirecting rumen fermentation to reduce metanogenesis. Aust. J. Exp. Agric., 48: 7-13.

Min, B.R., T.N. Barry, G.T. Attwood and W.C. McNabb, 2003. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim. Feed Sci. Technol., 106: 3-19.
Morvan, B., F. Bonnemoy, G. Fonty and P. Gouet, 1996. Quantitative determination of H_{2}-utilizing acetogenic and sulfate-reducing bacteria and metanogenic archaea from digestive tract of different mammals. Curr. Microbiol., 32: 129-133.
Ogimoto, K. and S. Imai, 1980. Atlas of Rumen Microbiology. Jap. Sci. Soc. Press, Tokyo.
Reed, G. and T.W. Nagodawithana, 1991. Yeast Technology. Van Nostrad Rein Hold, New York, USA.
Smith, A.H., E. Zoetendal and R.I. Mackie, 2005. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol., 50: 197-205.

Thalib, A., 2002. Effect of additional of microbial growth factors combined with and without microbe preparate on growth performance of Etawah-cross goat. JITV, 7: 220-226.
Thalib, A., 2004. In vitro study of effectiveness of saponin from Sapindus rarak fruit as methanogenesis inhibitor on ruminal digestion system. JITV, 9: 164171.

Thalib, A., 2008. Isolation and identification of acetogenic bacteria obtained from deer rumen and their potential for methanogenesis inhibitor. JITV, 13: 197-206.
Theodorou, M.K. and A.E. Brooks, 1990. Evaluation of A New Laboratory Procedure for Estimating the Fermentation Kinetics of Tropical Feeds. Annual Report. AFRC Inst. Hurley, Meidenhead, UK.
Van Soest, P.J., 1982. Nutritional Ecology of Ruminant. Ruminant Metabolism, Nutritional Strategies, The Cellulolytic Fermentation and The Chemistry of Forages and Plant Fibers. Cornell University.
Van Soest, P.J., J.B. Robertson and B.A. Lewis, 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74: 3583-3597.
Wina, E., 2000. Utilization of yeast as an additive feed to improve the productivity of ruminant livestock. Wartazoa, 9: 50-56.
Wina, E., 2001. Banana plants as ruminant feed. Wartazoa, 11: 20-27.
Wina, E., 2012. The use of plant bioactive compounds to mitigate enteric methane in ruminants and its application in Indonesia. Wartazoa, 22: 24-34.
Yoon, I.K. and M.D. Stern, 1996. Effect of Saccharomyces cerevisiae and Aspergilus oryzae culture on ruminal fermentation in dairy cows. J. Dairy. Sci., 79: 411417.

[^0]: Corresponding Author: Anuraga Jayanegara, Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia

