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A B S T R A C T
Mathematical models play crucial role in effective plant disease management. They
permit accurate forecasting of plant disease epidemics for timely interventions.
However, the use of mathematical models in plant disease management has not
received much attention in Ghana. This study assesses the disease intensities and
the  spatio-temporal  spread  patterns of viral diseases on a zucchini squash
(Cucurbita pepo L.) field in the coastal savannah zone of Ghana. Disease intensity
data were transformed by Exponential, Monomolecular, Gompertz and Logistic
models. Semivariance analysis and Inverse Distance Weighting interpolations were
performed using the GS+geostatistical software. The Gompertz model explained
best the observed variability in disease incidence data with 90.86% agreement
between field-observed and model-predicted disease incidence data. For disease
severity,  the Exponential model best described the progress of the disease with a
co-efficient of determination of 94.38%. The semivariogram estimated a range of
spatial dependence of 0.63 m and a sill of 1.91400.
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INTRODUCTION

The profit oriented nature of commercial agriculture and
access to limited economic resources require that plant disease
control measures are undertaken only after a specific disease
incidence has reached a critical threshold. This reduces
production costs to enhance profit margins.

Quantitative knowledge of the various factors that
contribute to disease progress is essential in developing cost
effective approaches to disease management (Nutter, 2007).
Various functions and techniques have been developed for
describing disease spread patterns, the foremost being the use
of mathematical models (Teng, 1985).

Mathematical models provide the basis and theories
essential in quantifying disease progress curves that bring out
relations which may otherwise not be obvious from raw
disease intensity data (Madden and Campbell, 1990). The
progress of an epidemic can be quantified in both time
(temporal) and space (spatial) dimensions. There are numerous
mathematical models available for quantifying the temporal
patterns of disease spread. However, non-linear forms of
asymptotic mechanistic models such as exponential, logistic,
Weibull, Richards and Gompertz models are generally used in

analyzing polycyclic epidemics such as virus pathosystems in
cucurbits (Fekedulegn et al., 1999). Spatial Autocorrelations
and Inverse Distance Weighting methods also permit the
investigation of spatial dependence of disease intensities
among neighbouring plant units. This study reports the spatial
and temporal spread patterns of viral diseases on a zucchini
squash field in the coastal savannah agro-ecological zone of
Ghana.

MATERIALS AND METHODS

Experimental design and field layout: The study was
conducted at the Biotechnology and Nuclear Agriculture
Research Institute (BNARI) of the Ghana Atomic Energy
Commission in Ghana. The experimental plot measuring 24 m
in length and 20 m in width was divided into two sub-plots of
24×9 m each, with a path of 2 m separating the sub-plots. Each
of the two subplots contained approximately 250 zuchini
squash (Cucurbita pepo L.) plants. In all, there were
approximately 500 zucchini squash plants for monitoring the
spread of the cucurbit viruses. All zucchini squash rows within
a sub-plot were spaced at a distance of 1.0 m. Disease
incidence and severity were assessed on a 10 quadrats basis of
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which the entire field was partitioned. On the western border
of the zucchini squash field was an old cucumber field, the
Eastern and Northern borders of the zucchini squash field were
cultivated with eggplants but there were weeds as well. The
Southern border was largely occupied by weeds. There was no
fertilizer or pesticide application throughout the period of the
experiment.

Assessment of disease incidence and severity: Each zucchini
squash plant was examined for symptom development on
weekly basis for a period of seven weeks. Virus-like symptoms
were recorded, together with the time of symptom occurrence
and the geographical location of the symptomatic plant.
Disease Incidence (DI) and Disease Severity Factor (DSF)
were calculated, first, for each quadrat and then for all the
quadrats by the following relations:

(1)
No. of symptomatic plants in a quadrat/field

D.I = 
Total No. of plants in the quadrat/field

(2)a1 a2 anDSF ...b b b  

where, a is the severity score for plant 1, 2…n (range: 0-5) and
b is the upper limit for disease severity score.

Assessment of the temporal patterns of disease spread:
Disease incidence data for all quadrats were analyzed by
Microsoft Excel 2007 and Minitab version 15. A scatter plot
was generated for each quadrat and then for the average of all
quadrats. Disease intensity data were fitted to the linearized
forms of the non-linear exponential, logistic, gompertz and
monomolecular mechanistic models as shown in Table 1. The
model that gave the highest coefficient of determination (r2),
was selected as the most appropriate model for describing the
temporal pattern of the epidemic in a particular quadrat or the
entire field (Madden, 2012). Primary infection and apparent
infection (secondary transmission) rates of the disease spread
were estimated from the selected models for each quadrat and
for the entire field. Tables of estimated parameters from the
selected empirical and mechanistic models were generated for
all the quadrats and for the entire field.

Assessment of the spatial patterns of disease spread:
Semivariogram and inverse distance weighting interpolation
(IDW) methods were used in analyzing the spatial patterns of
the disease spread across the zucchini squash field. Data for all

Table 1: Linearized forms of the non-linear mechanistic growth models used
in transforming the disease intensity (y)

Model Linearized form
Exponential Exponit (y*) = ln y

Monomolecular Monopit
1

(y*) ln
1 y

 
   

Logistic Logit (y*) = ln y/ (1-y)
Gompertz Gompit (y*) = -ln (-ln(y))
Source: Madden (1980, 2012)

symptomatic squash plants were weighted by assigning a
temporal value to each squash plant which corresponded with
the time of symptom appearance on the particular plant in
relation to the last day of disease assessment. Plants that
became symptomatic earlier in the epidemic received higher
weightings compared with plants that became infected around
the period of final field disease assessment. Each of the plants
in the field was also assigned X and Y coordinate values in a
Cartesian X-Y plane based on the specific location of the plant
in the field. The 2-dimensional spatial and temporal weighting
data were then analyzed with GS+ version 9 Gama Design
Software. Parameters such as nugget, sill and range of spatial
dependence were estimated based on the selected
semivariogram models. Interpolations were performed using
the inverse distance weighting method (Roumagnac et al.,
2004). A map of the disease field was then generated that
showed the estimated disease status of all zucchini squash
plants on the field, including all asymptomatic plants.

RESULTS

Disease incidence and severity: Figure 1 shows the average
disease intensities observed in all ten quadrats of the zucchini
squash field. Disease intensities increased significantly from
the third week of disease assessment onwards.

Temporal patterns of disease spread: In terms of disease
incidence, all the fitted mechanistic models gave a better fit
compared to the untransformed data except data fitted to the
monomolecular model. The gompertz model explained best,
the observed variability in the incidence data with 90.86%
agreement between field-observed and model-predicted
disease incidence data. This model estimated the apparent
infection rate to be 0.026 dayG1 and predicted the doubling
time (tD) with reference to the last day of disease assessment
to be 15 days. For disease severity, the exponential model best
described the temporal pattern of the disease spread with a
high  coefficient  of  determination  (r2)  of  94.38%.  Only  the
logistic and exponential model transformations described the
pattern of disease severity better than the untransformed data.
Table 2 shows the parameters estimated from the selected
mechanistic models used in fitting disease intensity data.

Fig. 1: Average disease intensities observed on the entire
zucchini squash field
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Figure 2 shows the spread of the model transformed
disease incidence data points around the fitted regression
functions whilst Fig. 3 shows the scatterplots generated after
data from disease severity factors from the zucchini squash
field were transformed by exponential, logistic monomolecular
and gompertz models.

Spatial patterns of disease spread
Semivariance analyses:  An  autocorrelation was performed
with  an  angle  of  0°  North  relative to the principal axis at a

Table 2: Estimated disease parameters from the zucchini squash virus
epidemics from fitted models

Incidence Severity 
--------------------------------- ---------------------------------

Model r2 a b r2 a b
Exponential 87.75 -7.0027 0.1008 94.38 -4.9079 0.1139
Logistics 88.14 -7.0407 0.1035 93.75 -5.5111 0.1573
Monomolecular 81.96 -38.0130 2.7274 73.22 -0.6032 0.0435
Gompertz 90.86 -2.0877 0.0260 87.13 -2.3803 0.0828
Untransformed 82.98 -0.0356 0.0026 89.26 -0.3557 0.0267

tolerance limit of 180°, a Gaussian model was fitted to the data
with a Residual Sum of Square (RSS) value of 1.12. The
nugget which is a representation of the localized discontinuity,
was estimated to be 0.07300. The Range of Spatial
Dependence (RSD) and the sill were also estimated  to  be
0.63 m and 1.91400, respectively. When the angle relative to
the principal axis was tilted from the initial 0-90°, the nugget
variance increased to 1.58300 but the sill and the RSD
remained unchanged.

Inverse distance weighting interpolation and IDW map:
The Inverse Distance Weighting (IDW) interpolation model
estimated large clusters of possible infections around the
primary infection foci which largely occurred in quadrats five
and nine. The majority of the interpolated clusters of higher
incidences were toward the eastward and South-Eastern-ward
direction of the disease field, particularly around the borders
of these directions. The interpolated clusters of least
incidences were also estimated to be in the mid-portion of  the

Fig. 2(a-d): Scatterplots of mechanistic model transformed disease incidence data from zucchini squash epidemics, (a) Exponit,
(b) Logit, (c) Monopit and (d) Gompit of disease severity index
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Fig. 3(a-d): Scatterplots of mechanistic model transformed disease severity data from the zucchini squash field,  (a)  Exponit, (b)
Logit, (c) Monopit and (d) Gompit of disease severity index

Fig. 4: 3-D Inverse Distance Weighting (IDW) Map with peaks and colour-coded regions corresponding to the level of disease
intensity across the zucchini squash field
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Fig. 5: 2-D Inverse Distance Weighting (IDW) map showing the locations of symptomatic zucchini squash plants across the
zucchini squash field

field, with few patches on the middle section of the Western
border. There were also isolated clusters of smaller sized
incidence peaks toward the western section of the squash field.
Figure 4 and 5 show 2-dimensional and 3-dimensional maps
of the virus epidemic, respectively, on the zucchini squash
field generated through IDW interpolation.

DISCUSSION

Temporal spread patterns of viral diseases on zucchini
squash field: Among four models employed in the study, the
gompertz model provided the best fit to the disease incidence
data, with a coefficient of determination of 90.86%. Earlier
workers (Vuori et al., 2006; FAO., 2013; Berger, 1981) have
indicated the satisfactory use of the gompertz model in
describing disease progress curves. The model is noted for its
consistent and stable  parameter  estimates  in  pathosystems
of oats, potato, celery, bean, rice and several others
(Mohapatra et al., 2008). The gompertz curve exhibits a
decline in apparent infection rate as disease intensity increases
and this is actually observed in practice (Fleming, 1983). As
more and more plants become infected, the probability of new
infections decline due to decline in the proportion of healthy
uninfected plants in the field. This accounts for the decline in
the apparent infection rate as the disease intensity increases.
The gompertz model is also known to be ideal for modeling
time series events such as disease progress where the initial
growth and growth toward the end of the time series are
slowest with an exponential growth in the mid-season of the
growth. This nature of disease progress was observed in the
zucchini squash field. Disease incidence started at a very low
value of 0.24% and by 21 DAP, due to loss of few
symptomatic plants, incidence had reduced to 0.22%, however,
incidence increased exponentially from 28 DAP at a value of
2.5-11.82% by 49 DAP. As at the last week of disease

assessment (49 DAP), incidence was still increasing at an
increasing rate (Fig. 1). This shows that though, at this stage,
the zucchini squash plants had reached their maturity, the
disease progress was still in its mid-season.

The Gomp-Exp law was postulated to explain the
exponential growth observed in growth curves that are best
described by gompertz functions and hence supposed to follow
a gompertz law and not an exponential law. As at the last week
of assessment, the critical size threshold had not been reached
since incidence was only 11.82%. This explains why the rate
of apparent infection was still increasing at an increasing rate
from the 42 DAP to the 49 DAP (Fig. 1).

Though the gompertz model was more superior in fitting
the incidence data, in terms of estimating time saved due to the
sanitation measure, all three mechanistic models were
consistent in their estimation. According to the gompertz
function, the incidence observed at 49 DAP would have
doubled by 64 DAP. The estimated apparent infection rate (r)
of 0.026 from the gompertz model is the sum of expression of
the magnitude of the susceptibility of the zucchini squash
plants to virus infection, the effects of environmental factors
such as temperature, precipitation, the efficiency of the insect
vectors and other factors on the progress of the epidemic in a
physical quantifiable term. The effects of seed infection rate,
quarantine measures, crop rotation schemes and vertical
resistance genes in the host plants are not quantified by the
secondary infection rate but rather by the initial disease
parameter (yo) (Madden, 2012).

Spatial spread pattern of virus disease in zucchini squash
field: Estimated parameters from the Gaussian model and a
subsequent inverse distance weighting form of mapping
showed that there was significant variability in disease
incidence and the level of aggregation of diseased plants
across the quadrats.
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There was almost 22 fold increase in the nugget variance
due to the tilting of the principal axis through an angle of 90°
confirming the variability of aggregation of diseased plants
across the field. The nugget variance, also termed as localized
discontinuity, measures the extent of aggregation of diseased
plants across the field in a given perspective. The initial
0.0730 nugget variance showed that from the 0° perspective of
the field, more of the diseased plants were closer to each other
compared to the level of aggregation from the 90° perspective
of the field. This phenomenon is termed as anisotropy; thus, on
the  same  field,  the  level  of  closeness  of diseased zucchini
squash plants was not uniform but rather there existed a
directional difference in the level of spatial associations among
the diseased plants. If the level of aggregation of diseased
plants were uniform across the field, then the nugget variance
would have remained constant irrespective of the angle of
rotation of the principal axis.

The low Range of Spatial Dependence (RSD) of 0.63 m
indicates the magnitude of closeness of diseased zucchini
squash plants in the field. The variability of incidence and
level of aggregation of diseased squash plants were also
confirmed from the Inverse Distance Weighting (IDW) map.
The IDW analysis and its  subsequent map estimated two
major primary disease foci which were all toward the Eastern
section of the field and in accordance with the theories
underlying IDW mapping, the model predicted clusters of
possible high levels of incidence around the two major disease
foci (Fig. 4 and 5).

However, a significant number of the symptomatic
zucchini squash plants did not fall within the model predicted
areas of high incidences. The early loss of one of the initially
diseased plants in the Eastern border region of the field, the
close proximity of an already established cucumber field to the
Western border of the zucchini squash field and the behavioral
pattern of insect vectors in the field are proposed to account
for the observed variability in incidence and the level of
disease aggregation as well as the significant departure of
symptomatic plants from the model predicted zones of high
incidence. Viruses depend on vectors for their transmission
from plant to plant due to their inability to break the physical
barriers, such as cuticle and the cellulose cell walls of their
hosts (Esker et al., 2007). Therefore, the behaviour of insect
vectors, particularly in relation to virus transmission,
significantly influences the pattern of observed disease in a
field (Jeger et al., 2004). The estimated closeness of
symptomatic plants with an RSD of just 0.63 m may suggest
that insect vectors fed from clusters of plants that were within
a smaller circumference, moving from one plant to another
nearby plant, rather than long distances of flight within an
infinitesimally small amount of time in search of hosts. If such
proposed pattern of insect feeding is true, then the loss of one
of the initially diseased plants in the Eastern border region of
the field and the not more than 2 m proximity of a cucumber
field to the Western border of the zucchini squash field may
explain why a significant number of plants did not fall within
the model predicted zones of high incidence in the Eastern part
of the field and the high level of aggregation of symptomatic
plants in the Western part of the field. Particularly in the upper

section of the Eastern part of the field, since the initially
infected plant no longer existed from the early part of the
epidemic, it could not have served as a source of inoculum to
infect zucchini squash plants in its vicinity of which the model
had predicted higher incidence. In the Western section of the
field, the close proximity of the cucumber plants may have
served as ready source of inoculum to infect nearby squash
plants in the western section of the field.

Quantification of disease progress curves in zucchini
squash through mathematical modeling revealed more insight
into the virus epidemic which could otherwise not have been
possible. The spatial model and Inverse Distance Weighting
maps estimated areas, particularly toward the Eastern border
of the field, where disease intensities were expected to be high.
A significant number of symptomatic plants did not fall within
these critical zones; this could have been as a result of the
proximity of the already established cucumber field to the
western border of the zucchini squash field.
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