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Abstract
Background  and Objective: Early and late blight caused by Alternaria solani and Phytophthora infestans respectively, are the world’s
most important diseases of tomato. The objective of the study was to assess the morphological and molecular diversity of  A.  solani  and
P.  infestans  in tomato growing farms in Kirinyaga, Kenya. Materials and Methods: Infected tomato leaf samples were obtained from
tomato farms and cultured using V8 Agar for P. Infestans and PDA for A.  solani  to facilitate isolation of the pathogens. The isolates were
then subjected to morphological characterization using microscopic and macroscopic features and molecular characterization through
PCR amplification of their ITS regions. The PCR products were then sequenced and blasted using NCBI database. Results: The results
showed high morphological and molecular diversity within A. solani  but low genetic variability within P. infestans. At least four clones
of A.  solani  were found to exist in the study area but only one strain of  P.  infestans  was identified. Other disease-causing pathogens
were  also  isolated  from  the  samples  including  A.  alternata,  a  fungus  that  causes  leaf  spot  and  other diseases in plants and
Fusarium equiseti, a soil-borne fungus that causes wilt disease in different vegetable plants. Conclusion: These findings are useful in the
development of sustainable strategies to manage the early and late blight and other related diseases in tomato growing areas in Kenya.
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INTRODUCTION

Tomato (Solanum lycopersicum L.) is the second most
important vegetable in Kenya after Brassicas1. In Kenya tomato
contributes 14% of the entire vegetable produce and 7% of
the entire horticultural produce2. The crop is cultivated for its
fruits which are consumed by almost all the families to provide
vitamins A, C and lycopene. Kenya is one of the major tomato
producers in Sub-Saharan Africa (SSA) producing 410,033
tonnes of tomatoes annually3. Tomato also takes the lead in
processed vegetable crops in Kenya4. However, tomato
cultivation in Kenya is strained by a myriad of biotic and
abiotic stresses, key among them being pests and diseases.
Nowick et al.5 reported that over 200 pests and diseases attack
the tomato plant thus hampering its production. Biotic agents
of economic influence in tomato growing in Kenya include
pests and diseases caused by bacteria, fungi, viruses and
nematodes6.

Early and late blight caused by Alternaria solani and
Phytophthora infestans respectively, are the most important
diseases on tomato in the world6. Early blight is the most
catastrophic disease-causing production and post-harvest
losses resulting in 50-86% fruit yield cutback7. According to
Desta and Yesuf8, high yield losses are recorded depending on
disease severity. Torrential rain, high humidity and
temperature range of 24-29EC creates a conducive
environment for early blight development in tomatoes and
can result to complete damage to the plant leaves9. Late blight
is also a very disastrous tomato disease globally, causing
remarkable economic losses annually5 especially under cool
weather conditions10. In Kenya, the late blight together with
the early blight was estimated to cause up to 95.8% of all the
pre-harvest tomato losses11.

Alternaria solani is a soil-inhabiting fungus and spreads to
host plants through air and rain splash9. The pathogen can
survive for more than a decade in the soil, seed or crop
remains at optimum temperature9. The pathogen produces
toxins such as alternaric acid, altersolanol, macrosporin and
zinniol that act on the protoplasm of the host and distract
plant defence mechanisms12. Genetically, A. solani exhibits
high variation between isolates from tomato and potato crops
and different countries13. Isolates from unrelated host plant
species vary in terms of aggressiveness, physiology and
genetic diversity when inoculated in different plants13. 

On the other hand, P. infestans is a diploid, obligate,
biotrophic and heterothallic pathogen with two mating types:
A1 and A214. The pathogen is an oomycete and its asexual
lifecycle is distinguished by alternating phases of hyphal
growth, sporangial germination and sporulation5. Sexual

reproduction results in oospores that are thick-walled to
enable them to overcome severe climatic conditions such as
low temperatures, chemical fumigations and biodegradation,
thus conserving the inocula for the subsequent years15. The
pathogen has low levels of diversity and its population
structure and distribution is influenced by host preference16. 

Studying genetic variation within and among populations
of related disease-causing agents is important in
understanding pathogen-host co-evolution, disease
epidemiology, development of sustainable control methods
and preventing the development of host resistance17. For
example, gene recombination through sexual reproduction
can result in virulent genes thus complicating the
management of diseases16. Genetic diversity of A. solani and
P. infestans has been studied using various methods such as
vegetative compatibility, virulence analyses, biochemical
analyses and molecular analyses17. The most commonly used
methods are molecular techniques such as isozyme analysis
and PCR methods including Simple Sequence Repeats (SSR),
Random Amplified Polymorphic DNA (RAPD), Amplified
Fragment Length Polymorphism (AFLP) markers13,18,19.

Different previous studies reported significant genetic
variation within isolates of P. Infestans and A. solani. Van der
Waals et al.17 observed an exorbitant level of genetic
differences in A. solani using Random amplified microsatellite
markers which were not typical of a species  that is assumed
to reproduce  asexually  only.  Based  on RAPD-profiles,
Leiminger et al.20 reported the occurrence of significant
genetic heterozygosity in A. solani isolates from potatoes in
Southern Germany. Similar reports of the high degree of
genetic diversity between isolates of A. solani were made by
Nikam et al.21. Contrastingly, Cardenas et al.22 reported low
genetic diversity among P. infestans isolates from crops within
diverse Colombian regions and Venezuela. Similarly, Wu et al.23

observed    low   genetic   diversity   among   134   strains    of
P.  infestans  from four provinces in China. Generally, minimal
studies  have  been  conducted  on  the  genetic  diversity  of
P. Infestans and A. solani in Kenya despite the significance of
these pathogens in tomato and potato production. The
current study targeted to examine the morphological and
molecular diversity of A. solani and P. infestans isolated from
tomato plants in farmers’ fields in Kirinyaga County, Kenya.

MATERIALS AND METHODS

Study area: The study was conducted between May to
December, 2020. Sampling was done in Mwea, Kirinyaga
County because it is an area renowned for tomato cultivation
and blight diseases are rampant. The area lies within 0.6897ES,
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37.3400EE. It is characterized by annual rainfall ranging
between 800-1250 mm and is usually received in two seasons.
The annual range of temperature is between 19.6-26.3EC. It
has gentle rolling slopes with black cotton soils. 

Collection of infected samples: Stratified random sampling
was employed during the collection of samples whereby four
tomato  growing villages within the Sub-County were
selected. Random sampling was done on fifteen tomato
producing farms from each village for the collection of
infected samples. Through visual examination, unhealthy
tomato leaves showing symptoms of early and late blight
were identified and randomly collected from the targeted
farms. The collected diseased samples were put in cool boxes
and transported to the University of Embu where they were
preserved in a refrigerator at 4EC in the Microbiology
Laboratory awaiting the pathogen isolation process.

Isolation of target pathogens: The isolation of P. Infestans
and A. solani from the leaves that were infected was
conducted following the modified approach of Naik et al.18 as
adopted by Mugao et al.24. The tomato leaves bearing blight
symptoms were washed under clean running tap water first
before being surface sterilized in 1% sodium hypochlorite for
three minutes. Rinsing was then done in three changes of
sterilized distilled water and sterilized blotting paper was used
to blot them dry. Infected leaf tissues of 3×3 mm size were
cut using a sterilized scalpel towards the healthy tissues where
the blight pathogens were suspected to be more active. Direct
plating of the surface-sterilized tissues was done on the
sterilized PDA and V8 agar for early and late blight
independently and then incubated in the laboratory for three
days at room temperature (25EC). Pure cultures were obtained
through single spore isolation using a hyphal segment from
the three-day-old colonies of each of the pathogens. The
hyphal sections were introduced into a sterilized growth
medium (PDA and V8 agar) and the incubation was done at
room temperature.

Morphological characterization of the pathogen isolates:
Identification of the pathogens was done 8 days after single
spore isolation using morphological features based on
established keys25 to verify the identity of the target
pathogens. Morphological identification was based on visual
observation of pathogen growth patterns, mycelia colours,
margin colours and microscopic assessment of reproductive
and vegetative structures25. Colonies with similar
morphological characteristics were considered to be of the
same species. 

DNA extraction from pathogen isolates: The DNA extraction
followed the modified procedure of Aamir et al.26. Sterilized
wooden tooth sticks were used to aseptically scrap the
mycelia of the 5-day old culture of A. solani and P. infestans
isolates  into  separate   Eppendorf   tubes.   In   every   tube,
1.5 mL Lysis buffer (50 mM Tris [pH 8.5], 20 mM EDTA [pH 8.0],
3% SDS) and 200  mg LG1 of 10 µL proteinase K were added
and  the  content  mixed  by  inversion. Vortexing of the
mixture  was  done  and  then  incubated at 65EC for 60 min.
To the mixture, an equal volume of phenol-chloroform was
added  and  the content  was  centrifuged  at  13200  rpm for
5 min at 4EC. The supernatants were  transferred  to  new
tubes where 150 µL of sodium acetate  (pH 5.2) was added
and their volumes noted. An equal amount of isopropyl
alcohol was added  to  the  mixture and the content was
mixed  by  inverting gently. The tubes were then spun at
13,200  rpm  for  10  min  and the supernatant discarded. To
the resulting  DNA  pellets, 500 µL of 70% ethanol was added
to wash them and then they were centrifuged for 1 min at
10,000 rpm and the supernatant was discarded. The DNA
pellets  were  washed  again  with  70%  ethanol   and   then
re-suspended in 50 µL PCR water and stored at -20EC for
further processing. 

PCR  amplification  and  DNA   sequencing:   PCR   analysis
was done in a 25 µL reaction mixture comprising 1 µL of
genomic DNA, 0.5  µL  each  of  the forward and reverse
primers (ITS1 and ITS4), 0.125 µL of Taq polymerase, 2.5 mM
dNTPs  (2.5  µL),  0.125 µL of premix Taq buffer and 2.5 µL of
10x  dream Taq buffer (MgCl2). The final volume was topped
up  with 17.75  µL  of  molecular  grade  water  to  make   the
25 µL. Amplification was performed in a PCR with the
following cycling conditions: an initial hybridization at 95EC
for 2 min, followed  by  35  cycles  of denaturation at 95EC for
1 min, annealing  at  54EC  for  1  min,  extension at 72EC  for 
1  min  and  final extension at 72EC for 2 min. The amplicons
were resolved by gel electrophoresis in 1.2% agarose gel
stained with ethidium bromide (0.5 µg mLG1). The DNA bands
were  visualized  and photographed  under  UV  light.  The
sizes of the amplicon were estimated by  comparing them
with a commercial 1 kb ladder RTU 1151021805 on the
agarose gel. The primers ITS1 (5’-TCC GTA GGT GAA CCT GCG
G-3’) and ITS4 (5’-TCCTCC GCT TAT TGA TAT GC-3’) were used
to amplify the Internal Transcribed Sequences (ITS) region. The
PCR products were then sequenced and blasted using the
NCBI database. Related species were identified based on more
than 99% similarity between the query and reference
sequence27,28. 
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RESULTS

Morphological identification  of  Alternaria   isolates:
Twenty-four Alternaria  isolates suspected to be A. solani
varied in their morphological characteristics. Conidia
characteristics varied significantly between the isolates
although they were all solitary. The observed morphological
features characterized the isolates into five groups in Table 1.
Group one was the largest comprising of twelve isolates that
were characterized by an irregularly shaped colony of
greenish-brown colour with dark brown substrate colour and
greyish white margin in Fig. 1a-b. These isolates had septate
conidia with four transverse septa and elongated but
unbranched beak in Fig. 1c. Group two had four isolates
characterized by a circular dark brown colony with dark grey
substrate colour and brownish white margin in Fig. 2a-b.
Members of this group had muriform septate conidia with
three transverse septa, one longitudinal septum and an
unbranched slender short beak in Fig. 2c. Group three
comprised of two isolates with circular dark grey colony
having a black substrate and a white margin in Fig. 3a and b.
Their conidia were septate with three transverse septa, one
longitudinal septum and elongated branched beak in Fig. 3c.
Group four contained only one isolate (A23) with a circular
colony of grey colour, brown zoned substrate and grey margin
in Fig. 4a-b. The isolate had septate conidia with four
transverse  septa  and an unbranched slender short beak in
Fig. 4c. Group five consisted of five isolates with a circular
greyish brown colony with a brownish white margin Fig. 5a-b.
Their conidia were muriform with two transverse septa and
one  longitudinal  septum  and elongated branched beak in
Fig. 5c. The mycelia for all the groups were septate, straight,
hyaline and branched while the colour of the conidia was
brown in the entire group.

Morphological identification of Phytophthora infestans: All
the sixteen isolates suspected to be P. infestans did not vary in
their morphological characteristics. The isolates had a white
colony (front) colour and creamish substrate (reverse) colour.
The growth pattern was circular with white margin colour in
Fig. 6a-b. There were oospores with oogonia and
amphigynous antheridia in Fig. 6c. The mycelia were aseptate,
multinucleate and heterothallic in Fig. 6d. 

Molecular identification of Alternaria solani: The PCR
amplification of the ITS region of the twenty-four A. solani
isolates resulted in a product of about 580 bp. The band size
did not vary between the fungal isolates in Fig. 7. However,
isolate A24 did not amplify and thus could not be positively
identified through sequencing.
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Fig. 1(a-c): Group one of the Alternaria isolates (a) Upper and (b) Lower and (c) Conidium 

Fig. 2(a-c): Group two of the Alternaria isolates (a) Upper, (b) Lower and (c) Conidium

Fig. 3(a-c): Group three of the Alternaria isolates (a) Upper, (b) Lower and (c) Conidium

Fig. 4(a-c): Group four of the Alternaria isolates (a) Upper, (b) Lower and (c) Conidium
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Fig. 5(a-c):  Group five of the Alternaria isolates (a) Upper, (b) Lower and (c) Conidium

Fig. 6(a-d): (a) Upper, (b) Lower colour of P. infestans colony, (c) Sporangiophore with oospores and (d) Mycelia 

Sequence similarity searches of the 23 isolates whose ITS
fragment amplified successfully was carried out using the
nucleotide BLAST program in the NCBI database. Nineteen of
them were positively identified as A. solani while the other
four were identified as A. alternata in Table 2. Eleven A. solani
isolates showed 100% nucleotide similarity to Genebank clone
105 with accession number MN871613 together with isolate
A1 which showed 99.42%  nucleotide similarity to clone 105
in the Genebank. These had earlier been grouped under
morphological group 1. Four other A. solani isolates (A4, A6,
A9, A17) which were members of the morphological group 2
were found to be 100% similar to the Genebank clone 185
with accession number MN871616. 

Isolates A5 and A11 which belonged to the morphological
group 3 had 100% similarity with Genebank clone 43 with

accession  number  MN871610 (Table 2). Isolate A23 which
was the only one  in  morphological group 4 was found to
have 99.81% nucleotide similarity with A. solani accession
number LN879928 in  the  Genebank but its closest clone
could not be identified. The accession MN871613 was the
most prevalent with a total percent frequency of 52.18%
followed  by  MN871616  (17.39%)  and MN871610 (8.68%).
The four isolates (A3, A7, A19, A21) that were  identified to
belong  to Alternaria  alternata  resembled clones with
accession numbers MN822496, MN822565, KY570321 and
MW009021 respectively and they showed a 100% perfect
match    with   different   Genebank   strains  as  shown  in
Table 2. The four belonged to  morphological group 5
together with isolate 24 whose ITS fragment was not
amplified.
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Fig. 7: Gel image showing 580 bp (arrowed) DNA fragment amplified by ITS (1 and 4) primer in  A. solani   isolates on 1.2% agarose
gel electrophoresis 
Ld is the I kb RTU 1151021805 ladder

Fig. 8: Gel image showing 580 bp (arrowed) DNA fragment amplified by ITS (1 and 4) primer in P. infestans isolates on 1.2%
agarose gel electrophoresis
Ld is the I kb RTU 1151021805 ladder

Table 2: Molecular variability of Alternaria isolates
Similarity (%) to Frequency

Groups Isolate code Species Identity Accession number Closest match Genebank accessions (%)
1 A1 A. solani MN871613 Clone 105 99.42 4.35

A2, A8, A10, A12, A13, A14, A. solani MN871613 Clone 105 100 47.83
A15, A16, A18, A20, A22

2 A4, A6, A9, A17 A. solani MN871616 Clone 185 100 17.39
3 A5, A11 A. solani MN871610 Clone 43 100 8.68
4 A23 A. solani LN879928 Unidentified 99.81 4.35
5 A3 A. alternata MN822496 BJ-YZ-14 100 4.35

A7 A. alternata MN822565 BJ-SB-41 100 4.35
A19 A. alternata KY570321 Strain Te 19 100 4.35
A21 A. alternata MW009021 DT1884-B 100 4.35

Molecular identification of Phytophthora infestans: The ITS
sequence amplification of the sixteen (16) P. infestans isolates
by PCR resulted in a product of about 580 bp and there was no
variation among the isolates in Fig. 8.

Sequence similarity searches of the 16 isolates suspected
to be P. infestans was carried out using  the  nucleotide  BLAST

program which matched the isolates with Genebank
accessions. The results showed that eleven of these isolates
(68.75%) were positively identified as P. infestans with 100%
genotypic similarity Strain A2 of accession number JX666330
in Table 3. Three other isolates (P8, P15, P16) belonged to
unspecified  species  of  the genus Phytophthora and matched
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Table 3: Molecular variability of Phytophthora
Similarity (%) to Frequency

Groups Isolate code Species identity Accession number Closest match Genebank accessions (%)
1 P1, P2, P3, P4, P5, P7, P9, P.  infestans JX666330 Strain A2 100 68.75

P10, P12, P13, P14
2 P8, P15, P16 Phytophthora  sp. MT075724 Strain Phy-1i 100 18.75
3 P6, P11 Fusarium  equiseti MK571264 Strain P3B 100 12.5

100% with Strain Phy-1i with Genebank accession number
MT075724. The other two isolates (P6, P11) were identified as
Fusarium equiseti with 100% resemblance to Strain P3B that
had Genebank accession number MK571264.

DISCUSSION

The pathogenic, cultural, morphological and molecular
characterization of pathogens has been attempted by many
researchers in various countries18,21,29. In the current study, the
pathogen isolates that were suspected to be twenty-four A.
solani and sixteen P. infestans isolates until molecular
identification revealed that they were mixed with other closely
related fungal species. Therefore, morphological
characterization provided a good lead towards species
identification but could not specifically identify the isolates to
species level. Okayo et al.30 noted that morphological
classification of fungal species lacks precision but it is
important in  assisting  the  organization  of  the  fungal
isolates into groups allowing easier scrutiny by advanced
methods.

Out of the 24 isolates  that  were  initially  thought  to be
A.   solani,   four   of   them   were   confirmed   to   belong  to 
A. alternata, a fungus that causes leaf spot and other diseases
in plants31. The two pathogens, A. alternata  and A. solani,
were reportedly isolated from blight infected plants in several
previous  studies.  Zheng  et  al.32  reported the association of
A. alternate and A. solani  in causing potato blight in China.
The two pathogens were also found to cause foliar diseases in
Germany33. Loganathan et al.34 also reported A. alternata to
cause early blight diseases in India with 80-90% disease
incidence on susceptible tomato plants. However, A. alternata
was absent in foliage with blight symptoms in Sweden35. On
the other hand, out of the sixteen isolates that were suspected
to be P. infestans, three of them belonged to unspecified
species of the genus Phytophthora while two of them
belonged to Fusarium equiseti which does a soil inhabit
fungus known to cause wilt disease in different vegetable
plants36. 

Morphological characteristics such as colony colour,
colony texture, size and shape of the conidia have been used
to differentiate Alternaria species37 while asexual and sexual
features are mostly used to differentiate Phytophthora

species38. This study revealed high morphological variability
within A. solani isolates but low morphological variation
among P. infestans isolates. The macroscopic features such as
growth pattern, colony (upper) colour, substrate (lower) colour
and colour of the growth margin showed variability among A.
solani isolates. Similar results were reported by Kumar et al.39,
Tanvil et al.40, Brook and Dennis13 and Hubballi et al.41. In
addition,   microscopic   features  of  mycelia  and  conidia  of
A. solani were variable but similar to those reported by
Najibullah et al.42, Brooke and Dennis13 and Naik et al.18.
Gannibal et al.43 also documented heterogeneity in various
morphological attributes of A. solani.

High  genetic  diversity  of  A.  solani  have been reported
by several authors20,44,45. Chaerani  and  Voorrips46  reported
that genetic variation may occur among isolates obtained
from different lesions of the same leaflet.  According  to
Craven et al.47, genotypic variation in A. solani is caused by the
ability of its mycelia to interconnect by bridges made through
hyphal fusion that enable the distribution of nutrients, water
and signalling molecules all over the colony. Genetic diversity
is also contributed by mutations, selection, gene flow48,
heterokaryosis which occurs as a result of hyphal
anastomosis46, recombination and movement of the pathogen
over long distances17. 

The   low   genetic  diversity  observed  in  this  study
among P. infestans isolates corroborates the reports of
Cardenas et al.22 and Wu et al.23 who also reported low
diversity among isolates of P. infestans collected in the
Northern    Andean   region   and   China    respectively.
Njoroge et al.49 also reported low variability within P. infestans
in East Africa. The low variability among P. infestans isolates
has been attributed to the existence of clonal populations of
the  pathogen  in  the  target  regions22-23. However, Han et al.50

reported high genetic diversity among P. infestans field
isolates in China despite their high frequency of self-fertility.
The possible sources of genetic variation in P. infestans
include mitotic crossing over, gene conversion,
extrachromosomal elements51, migration and sexual
recombination of A1 and A2 mating types52-53. Other
researchers attributed the diversity to self-sterility54,
segregation of heterokaryons55, presence of many wild species
of the host plant56 and ideal climate for the pathogen
development57.
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This study successfully identified A. solani and P. infestans
isolates to species level through amplification and subsequent
sequencing of their ITS region. The band size generated from
the PCR product with ITS 1 and ITS 4 primers was about 580 bp
for the two pathogens. These findings aligned with those of
Loganathan et al.34 who used ITS1 and ITS4 to amplify the DNA
of A. solani and obtained a band  of  580  bp.  Zheng et al.32

also obtained a 580 bp band in A. solani DNA amplified with
primer set H3-1a/H3-1b. Reports of Manter and Vivanco58 and
Embong et al.59 showed that different A. solani species
generate bands ranging from 400-600 bp depending on the
primers used. For P. infestans, different band sizes have been
obtained by different researchers using different primers. The
Genomic DNA of P. infestans amplified using TUBUF2 and
TUBUR1  primers  resulted  in  bands  of  about  990  bp20.
Khalid et al.60 amplified the genomic DNA of  P.  infestans
using ITS3 and ITS4 primers and yielded a band of 612 bp.

Sequencing and similarity matching of the isolates with
available accessions through blasting on the NCBI database
enabled identification of A. solani clones and P. infestans
strains that are available in the study area. These findings
indicated that different clones of A. solani existed in the study
area which is not typical of a species that is known to
reproduce only asexually. Clone 105 was the most prevalent
with a total percent frequency of 52.18% followed by clone
185 (17.39%) and clone 43 (8.68%). The results also revealed
the presence of one unidentified clone of A. solani in the study
area. Van der Waals et al.17 and Leiminger et al.20 also reported
the presence of different clones of A. solani in the same region
in China and Southern Germany respectively. In addition, the
results portrayed a close association  between  A.  solani  and
A.  alternata. The close association between the two
pathogens in causing blight and other foliar diseases in plants
have been reported by other researchers33-34. All the eleven
isolates that were positively identified as P. infestans were
found to be Strain A2 indicating high dominance of this strain
in  the  study  region. The high occurrence of the A2 strain of
P.  infestans  has been reported in several parts of China50,61,62.

CONCLUSION

This study concluded that there is higher genetic
variability within A. solani than P. infestans in Kirinyaga
County, Kenya. At least four clones of A. solani were identified
in the area including clone  105  which  was the most
dominant, clone 185 and clone 43. However, only one strain of
P. infestans (Strain A2) was identified in the study region. The
study also revealed a close association between A. solani and
A. alternata as well as between P. infestans and other
identified Phytophthora species. The variability of the

pathogens can be studied across seasons and different host
plants to understand the changes in epidemiology and host-
pathogen interactions. It may also be important to investigate
the nature of the association between the target pathogens
and the other pathogens identified in the area. In addition, the
study revealed the presence of Fusarium equiseti a soil-borne
fungus that causes wilt disease in different vegetable plants. 

SIGNIFICANCE STATEMENT 

This  study discovered  that  the  early  blight  pathogen
A. solani exist in more variable forms than the late blight
pathogen P. infestans in Kirinyaga County, Kenya. These
findings will be useful in the development of sustainable
strategies to manage the early and late blight diseases in
tomato growing areas in Kenya. The close association revealed
by this study between A. solani and A. alternata as well as
between P. infestans and another unidentified phytophthora
species will form the basis of further research to determine the
nature of that association.
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