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ABSTRACT
Protein-Protein Interactions (PPIs) play crucial role in regulation of virtually all biological

processes in any living system such as DNA transcription, replication, metabolic cycles and
signaling cascades. The PPIs also play an important role in the complex process of cell death which
occurs via apoptosis and necrosis in eukaryotic cells. The PPIs detection via high throughput
experimental methods are time consuming, expensive and are generating huge amount of PPIs
data. Therefore, there is need to develop computational methods to efficiently and accurately
predict PPIs. This study attempts to develop computational model for predicting human death
domain PPIs. First, the protein primary sequences are encoded into descriptors based on amino
acid composition of proteins which are monomers of protein. Then, the support vector machine and
sequential minimal optimization of WEKA tool is employed to classify interacting and non
interacting protein pairs. The various kernel functions were evaluated to build the model and it is
observed that libSVM with linear kernel is found to be the best on the basis of performance
measures. The validation has been performed by 10 fold cross validation technique. The optimum
model gives us the accuracy of 76.47% in predicting human death domain protein-protein
interactions. Such models can be useful in providing PPI information of death domain proteins
which can be useful in understanding the molecular mechanisms involved in death of cells taking
place due to ageing, programmed cell death and various diseases.

Key words: Protein-protein interactions, support vector machine, sequential minimal
optimization, cell death, apoptosis, death domain, death effector domain, caspase
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INTRODUCTION
Understanding protein functions is fundamental to understand various biological processes.

The Protein-Protein Interactions (PPIs) are responsible for cellular processes such as DNA
transcription, replication, metabolic cycles and signaling cascades. The study of the PPIs provides
crucial insights into molecular mechanisms involved in the cell and their related disease processes.
The PPIs also play an important role in the complex process of cell death which is extremely
important process of the eukaryotic cells. There are millions of cells which are getting created by
human  body  every  day  and  same  amount  dies  as  well  by  programmed  cell  death known as
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apoptosis. Approximately, 10 million cells per day undergo apoptosis in a healthy adult human
(Curtin and Cotter, 2002). Cell death is classified by its morphological appearance as apoptosis
(Kerr et al., 1972) necrosis (Golstein and Kroemer, 2007) autophagy (Kroemer et al., 2008) and
cornification (Melino, 2001). Apoptosis is an orderly cellular suicide program which is critical for
the normal development and maintaining homeostasis of a multicellular organism. Cell undergo
lots of alterations during apoptosis like chromatin condenses, cell looses their attachment to the
surrounding and shrink, cell membrane starts blebbing and engulfment by resident phagocytes
(Kerr et al., 1972; Kroemer et al., 2008). Necrosis involves cytoplasmic swelling (oncosis) gain in cell
volume, swelling of organelles, plasma membrane rupture and subsequent loss of intracellular
content (Golstein and Kroemer, 2007; Proskuryakov et al., 2003). Autophagy serves as a cell
survival mechanism (Levine and Yuan, 2005) and is related to numerous physiological and
pathological processes (Mehrpour et al., 2010). Cornification leads to the formation of the outermost
skin barrier i.e., the cornified layer (keratinization) as well as to the formation of hair and nails.
Epidermal keratinocytes undergo a unique form of terminal differentiation known as cornification
(Candi et al., 2005; Eckhart et al., 2013).

Apoptosis and inflammation (Coussens and Werb, 2002) are associated with many human
diseases and they have crucial importance in myriad of physiological and pathological processes.
Failure to regulate apoptosis negatively is associated with degenerative disease and failure to
regulate apoptosis positively is associated with cancer and autoimmune disease. Thus, too much
or too little cell death can have catastrophic consequences (White, 1993). Upon receiving signals
to trigger apoptosis or inflammation signals, the assembly of caspase activating complexes occur
via the DD superfamily (Bratton et al., 2001). The death domain superfamily is possessed with
apoptotic or non apoptotic functions and therefore their functional role is classified as death related
and death unrelated. The death domain superfamily is one of the largest class of protein interaction
modules which consists of Death Domain (DD) subfamily, the Death Effector Domain (DED)
subfamily, the CAspase Recruitment Domain (CARD) subfamily and the PYrin (PYD) domain
subfamily (Reed et al., 2004). They are instrumental in apoptosis, inflammation, necrosis and
immune cell signaling pathways. These domains play important roles in the assembly and
activation of apoptotic and inflammatory complexes. They have major role in human diseases and
disorders such as cancers, neuro-degenerative diseases and immunological disorders, thus their
study have great biological and clinical importance and therefore, DD superfamily has emerged as
a promising target for therapeutic intervention (Rieux-Laucat et al., 2003).

There are various experimental attempts reported in the literature for the study of  PPIs.
Oncley et al. (1952) studied PPIs between human lipoprotein and globulin. Waugh (1954) studied
the basic principles of PPIs. Chothia and Janin (1975) studied the principles of protein-protein
recognition and reported that the hydrophobicity is major factor stabilizing protein-protein
association. Phizicky and Fields (1995) studied the methods for detection and analysis  of PPI.
Jones and Thornton (1996) reviewed the principles of PPIs. There are many experimental
techniques which have been introduced to identify the PPIs such as  yeast  two-hybrid (Y2H)
(Fields and Song, 1989; Ito et al., 2001), mass spectrometry (Ho et al., 2002), co-
immunoprecipitation (CoIP) (Gavin et al., 2006), Tandem Affinity Purification (TAP) (Gavin et al.,
2002) and other high throughput experimental techniques. The experimental approaches are very
expensive and time consuming. Also, the results obtained from experimental methods suffer from
both false positive, false negative and may contain missing values (Von Mering et al., 2002).
Therefore, there is a need for the development of fast computational approaches for the study of
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PPIs which can efficiently and accurately predict the PPIs. Attempts are reported in the literature
for Insilco studies of interactions among different types of proteins. Marcotte et al. (1999) proposed
computational method for inferring protein interactions from genome sequences. Bock and Gough
(2001) studied the PPIs based solely on primary structure of protein and associated
physicochemical properties. Valencia and Pazos (2002) proposed the computational method for PPI
prediction based on sequence and genomic information.

There are few methods which derive information directly from amino acid sequences for PPIs
prediction. These methods are sequence based methods which are based on encoding sequence
features of primary sequence and selection of machine learning algorithms. The experimental
results  shows that information of amino acid sequences alone is sufficient to predict the PPIs
(Yang et al., 2010). Among them, Martin et al. (2005) encoded the sequence information for a
protein pair by a product of signatures. Shen et al. (2007) proposed the conjoint triad frequency of
continuous subsequences of three residues. Guo et al. (2008) used auto-correlation values of seven
different physicochemical scales of protein sequences as protein interaction predictors. From the
literature survey it is evident that no attempt is reported for the study of human death domain
protein-protein interactions by any computational approach.

In recent days, with the rapid development of high throughput sequencing technologies, the
sequence data is growing at a faster rate. Therefore, efficient and accurate prediction of PPIs
directly from amino acid sequences is one of the challenges. In the present study, support vector
machine model is proposed to predict the human death domain protein-protein interactions based
upon amino acid composition of human death domain proteins. First, the protein primary
sequences are encoded into descriptors based on amino acid composition. Then, the support vector
machine and sequential minimal optimization framework of WEKA software is employed to classify
interacting and non interacting protein pairs. The sequence information of both positive and
negative data set of PPIs is used in the proposed model to classify the pairs of potentially
interacting proteins. Various kernel functions are evaluated to propose the optimum SVM model.
Various evaluation metrics like sensitivity, specificity, precision, accuracy, AUROC etc., have been
computed. The validation is performed by 10 fold cross validation technique. The results
demonstrate that the proposed approach has performed well in terms of evaluation metrics, has
achieved the good accuracy and they are in agreement with available experimental data.

MATERIALS AND METHODS
Construction of dataset: The focus of this study is human death domain proteins. Therefore, the
data  is  collected  from  Death  Domain  (DD)  database (Kwon et al., 2011) which is maintained
at  www.deathdomain.org website.  The  database  provides  comprehensive  information on
Protein-Protein Interactions (PPIs) of the death domain superfamily and the database was created
by manually curating hundreds of peer reviewed studies that were published in the literature. This
is an experimental data produced by relevant analytical methods. The major proteins of whole data
set includes Apaf-1 (Apoptosis protease activating factor), ASC (Apoptosis associated Spec-like
protein containing a CARD), Bcl-10 (B-cell lymphoma/leukemia 10), BinCARD (Bcl-10 interacting
CARD protein), CARD (Caspase recruitment domain containing protein), Caspase protein, CIAP
(Baculoviral IAP repeat containing protein), MAVS (Mitochondrial antiviral signaling protein),
NLRP (NACHT, LRR and PYD domain containing protein), NOD (Nucleotide binding
oligomerization domain protein), RAIDD (Death domain containing protein CRADD), RIG1
(Probable  ATP  dependent  RNA  helicase),  RIPK  (Receptor  interacting  Ser/Thr  protein  kinase),
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ANK3 (Ankyrin 3), DAPK (Death associated protein kinase), DR (Tumor necrosis factor receptor
superfamily member), IRAK (Interleukin receptor associated kinase), FADD (Fas-associated death
domain), DEDD (Death effector domain containing protein), POP (Pyrin domain containing protein)
etc. Sixty eight death domain PPI pairs are studied in this work. The redundancy in the data set
is identified and removed to obtain non redundant data set. This non redundant data set contains
68 pairs which are used to compute the feature vectors for input to the SVM framework. This final
dataset includes equal number of positive and negative training data.

Feature encoding: Feature encoding is an important step. To extract feature vectors from protein
primary sequences, in which the important information content of proteins accountable for
interaction purpose is encoded, is one of the most important computational challenges, while using
machine learning framework to predict the PPIs. Therefore, before prediction of PPI every protein
pair is to be represented as feature vectors. The features correspond to the amino acid composition
reflects the amino acid characteristics. Amino acid composition reflects the nature of protein and
will form the feature set. The complete set of these features are sufficient enough to decide upon
its interaction. Amino acid composition is suggested to have a weight attribute of numerical values
and its involvement gives importance to the nature of protein composition, likelihood of affinity and
binding towards interacting partner. Also, weightage to the compositional residue frequency in
terms of number of times of its occurrence, project the over presentation of certain residues which
are actually responsible for protein-protein interaction process.

Machine learning techniques such as SVM requires a fixed length of input data for training.
Since different proteins have different sequence length, the protein pairs are presented with
unequal length vectors of varied features. Therefore, the sequences should be first converted into
fixed size feature vectors (Shah et al., 2008). In order to simulate the interaction prediction problem
in the framework of learning algorithms, there is an essential need of a suitable encoding of the
protein information in some vector space. The features are created in terms of descriptors of
residues which drastically cuts off the data input to the classifier. The descriptors also convert
variable lengths of protein primary sequence to the homogeneous matrices. As such the
heterogeneous input data should be first converted into homogeneous fixed size data matrix for the
input to the SVM framework. Every protein sequence is represented by a vector space consisting
of features of amino acids, the PPI pair is characterized by concatenating the two vector spaces of
two  individual  proteins  of  protein  pair. These  features are then used in conjunction with
Support Vector Machine (SVM)  framework  to  predict  the  interaction  between  the proteins
(Zaki et al., 2006).

There are 20 amino acids, each is represented by amino acid composition. Each protein pair in
death domain dataset is represented by binary feature vector corresponding to the features of
protein pair. The computed features can be used directly within a Support Vector Machine (SVM)
framework.

Consider protein pair [Pi, Qi] which corresponds to each data point Zi , Zi Є RN (N dimensional
euclidean  space).  Compute  the  frequency  of  20  amino acids in each protein Pi (Eq. 1) and Qi

(Eq. 2) by generating 20 dimensional vectors for each Pi and Qi. The Xi  represents  the  frequency 
of 20 amino acids in a protein Pi. Each  dimension Xi is the frequency of particular amino acid in
Pi and Qi.

(1) i 1 2 3 20P  = X , X , X ,..., X
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(2) i 1 2 3 20Q  = X , X , X , ..., X

Each protein pair is represented as binary feature vector Sij (Eq.5) which is obtained from
concatenation  of  individual feature vectors Si (Eq. 3) and Sj (Eq. 4) associated with protein pair
[Pi, Qi], respectively. Si and Sj are computed as follows:

(3) i 1 2 3 20 20
S  = X , X , X , ..., X  

(4) j 1 2 3 20 20
S  = X , X , X , ..., X  

Binary feature vector Sij would be obtained as:

(5)ij i jS  = S S

where, r is a concatenation operator.
Therefore, Sij is the data matrix for support vector machine framework consisting of both

positive and negative protein interaction pairs. Finally, Si and Sj consist of total of 20 descriptors
values each i.e., 20 dimensional feature vector has been built to represent each protein sequence.
The representation of protein interaction pair is formed by concatenating descriptors of two protein
sequences in a protein pair leading to a total of 40 descriptors value i.e., 40 dimensional feature
vector in Sij. The protein interaction is predicted via binary classifier. Each data point Zi or protein
pair [Pi, Qi] is associated with a binary class variable, Yi (Eq. 6) which has two values +1 and -1:

Yi Є [+1, -1] (6)

where, +1 represents the interacting death domain protein-protein interaction pair. On the other
hand, -1 represents the non-interacting death domain protein-protein interaction pair.

Support Vector Machines (SVM): Support Vector Machine (SVM) is machine learning powerful
state  of  art  algorithm  to  study  and  analyze  the  biological  data and well suited for this
problem (Cristianini and Taylor, 2000). The SVM is based on statistical learning theory given by
Vapnik (1998). It is a supervised learning algorithm for classification and regression problems. It
has improved generalization performance over other techniques in real world problems. The
training in SVM seeks a global optimized solution and avoids over fitting. Therefore, it has ability
to deal with large number of features (Cortes and Vapnik, 1995). First, SVM maps the original data
into high dimensional feature space through linear or non linear mapping function which is based
on the selection of the kernel function. Then, within the feature space it seeks an optimized linear
division i.e., a separating hyperplane shall be constructed by viewing an input data as two sets of
vectors which separates the data into two classes. The SVM aims to find the maximum margin
hyperplane to separate two classes of patterns. It is based on structural risk minimization principle
of statistics theory (Cortes and Vapnik, 1995).

WEKA package: WEKA is a collection of data mining algorithms for solving data mining tasks
(Holmes  et al., 1994). It contains tools for data pre-processing, classification, regression, clustering,
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association rules and visualization (Hall et al., 2009). The support vector machine classifiers SMO
(Platt, 1999) and libSVM (Chang and Lin, 2011) with various kernel function of WEKA have been
used for classification of death domain protein-protein interaction prediction in the present study.

Ten-fold cross validation and performance evaluation: For validation purpose in this study
the 10 fold cross validation technique is used. The data set is randomly partitioned into 10 equal
sized bins. The 9 bins are picked 10 times to train the models and remaining bin is used to test
them each time leaving out a different bin. The performance of prediction models for two class
problem is typically evaluated using confusion matrix. There are many measures for two class
classifiers such as sensitivity (SN, Eq. 7), specificity (SP, Eq. 8), precision (PE, Eq. 9), accuracy
(ACC, Eq. 10) and Mathew Correlation Coefficient (MCC, Eq. 11), F-measure (Eq. 12), Area Under
Receiver Operating Curve (AUROC) (Ferri et al., 2009). These measures have also been employed
in the present study for the assessment of models and their expressions are given below:

(7)
TP

Sensitivity 100
TP FN

 


(8)
TP

Specificity 100
TP FN

 


(9)
TP

Precision 100
TP FN

 


(10)
TP TN

Accuracy 100
TP FP TN FN


 

  

(11)
     

    
TP TN FP FN

MCC 100
TP FP TP FN TN FP TN FN


 

   

(12)
Precision.Recall

F measure 2
Precision

  

where, TP, TN, FP and FN are True Positives, True Negatives, False Positives and False
Negatives, respectively. If the outcome from the prediction is true and actual value is also true then
it is called as True Positive (TP) which is the number of true PPIs that are predicted correctly. If
the outcome from the prediction is negative and actual value is also negative then it is called as
True Negative (TN) which is the number of true non interacting pairs that are predicted correctly.
If the  outcome  from  the prediction is positive and actual value is negative then it is called as
False Positive (FP) which is the number of true non interacting pairs that are predicted to be PPIs.
If  the  outcome  from  prediction  is  negative  and  actual  value  is positive then it is called as
False Negative (FN) which is the number of true PPIs that are predicted to be non interacting
pairs.
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There is tradeoff between precision and recall and therefore combination of both is required in
a single efficiency measure known as F-measure which considers both precision and recall equally
important (Witten and Frank, 2005). It is important to note that ROC analysis provides important
information about the classifiers performance. Therefore, for drawing ROC curves True Positive
Rate (TPR) and False Positive Rate (FPR) are required. The TPR defines how many correct positive
results occur among all the positive samples available. The FPR defines how many incorrect
positive results occur among all negative samples available. The ROC curve is defined by FPR and
TPR as x and y-axes, respectively which depicts relative trade-offs between true positive and false
positive. Each prediction result or instance of a confusion matrix represents one point in the ROC
curve (Hanley and McNeil, 1982). If the prediction method yields points in the upper left corner or
coordinate (0,1) of ROC space, it represents 100% sensitivity (no false negatives) and 100%
specificity (no false positives). The coordinate point (0,1) is called the perfect classification. A
completely random guess would give a point along a diagonal line (the line of no discrimination)
from the left bottom to the top right corners. The diagonal divides the ROC space in two parts.
Points above the diagonal represent good classification results while points below the diagonal line
are considered as poor results. The closer the apex of the curve toward the upper left corner, the
greater  is  the  discriminatory  ability  of the classifier (i.e., the TPR is high and FPR is low).
Mostly  the  machine  learning  community uses the AUROC statistic for model comparisons.
Huang and Ling (2005) suggested that AUROC is a better measure than accuracy when comparing
the classifiers.

RESULTS AND DISCUSSION
The data of human death domain protein-protein interaction is collected from the death domain

database (Kwon et al., 2011). The death domain protein-protein interaction pairs were obtained
from the death domain database. The redundancy in the data set is identified and removed to
obtain non redundant data set. This non redundant data set contains 68 pairs which are then used
to compute the 40 dimensional feature vector for input to SVM framework. The problem of human
death domain protein-protein interaction prediction is a two class prediction problem making it as
a binary classification problem in which the outcome of classifier is labeled as positive (interacting)
or negative (non-interacting). The data is transformed into feature vectors to prepare input in
appropriate format required by SVM framework. A total of 40 dimensional feature vector is
obtained after concatenation of both protein sequence features of protein pairs. Two different
classifiers namely (Sequential Minimal Optimization) SMO and libSVM which have been
implemented  in  WEKA  are used  to propose  the models. In SMO, four kernels namely
Normalized Polykernel, Polykernel, Puk and RBF were employed and in libSVM two kernels
namely Linear and Polynomial were employed leading to total of six support vector machine
models. Out of these six, an optimal model is identified. The values of performance measures like
sensitivity/recall, specificity, precision, accuracy, MCC, F-measure, kappa statistic, ROC area were
computed for each of the kernels employed and are presented in Table 1. Also, the ROC curves have
been plotted for each of the six kernels and presented in Fig. 1a-f. Figure 2 shows the plot of
evaluation criterions for each of the classifier built before standardization of the feature vectors.

From Table 1 and Fig. 1a-f, it can be observed that among SMO with four different kernels,
SMO with Puk kernel has given the maximum accuracy of 67.64%, along with sensitivity of 64.70%,
specificity of 70.58%, precision of 68.75%, MCC of 0.3535, F-measure of 0.6666, kappa statistic of
0.3529  and  AUROC  of  0.686  (Fig.  1c). Among libSVM with two different kernels, it is found that
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Fig. 1(a-f): ROC  Curve  of  Classifiers  (a)  SMO, Kernel-normalized polykernel, AUROC = 0.619,
(b)  SMO,  Kernel-polykernel, AUROC = 0.687, (c) SMO, Kernel-Puk, AUROC = 0.686,
(d) SMO, Kernel-RBF, AUROC = 0.492, (e) LibSVM, Kernel-linear, AUROC = 0.811  and
(f) LibSVM, Kernel-polynomial, AUROC = 0.692 

Table 1: SVM based prediction performances of different kernels for the discriminating between interacting and non interacting death
domain protein pairs

Sensitivity/ Specificity Precision Accuracy Kappa ROC
Classifier Kernel recall (%) (%) (%) (%) MCC F-measure statistic area
SMO Normalized polykernel 61.76 58.82 60.00 60.29 0.2059 0.6086 0.2059 0.619
SMO Polykernel 67.64 61.76 63.88 64.70 0.2946 0.6571 0.2941 0.687
SMO Puk 64.70 70.58 68.75 67.64 0.3535 0.6666 0.3529 0.686
SMO RBF 35.29 47.05 40.00 41.17 -0.1777 0.3750 -0.1765 0.492
LibSVM Linear 73.52 79.41 78.12 76.47 0.5303 0.7575 0.5294 0.811
LibSVM Polynomial 35.29 85.29 70.58 60.29 0.2377 0.4705 0.2059 0.692
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Fig. 2: Performance of different measures of classifiers

libSVM with Linear kernel has given the maximum accuracy of 76.47%, along with sensitivity of
73.52%, specificity of 79.41%, precision of 78.12%, MCC of 0.5303, F-measure of 0.7575, kappa
statistic of 0.5294 and AUROC of 0.811 (Fig. 1e). After applying different classifiers with different
kernels, it is observed that the most efficient model created is libSVM with Linear kernel which has
given the maximum accuracy of 76.47% and achieved highest MCC of 0.5303, F-measure of 0.7575
with AUROC of 0.811 (Fig. 1e) using 10 fold cross validation technique.

Since no model is reported in the literature for prediction of human death domain protein-
protein interaction and therefore, no existing theoretical results are available for comparison.
However, the results obtained in this study are in agreement with the available experimental data
of protein-protein interaction of death domain proteins (Kwon et al., 2011).

CONCLUSION
A computational approach for constructing SVM model is proposed and successfully employed

for prediction of human death domain protein-protein interactions based on amino acid composition
of protein. On the basis of performance measures it is concluded that libSVM with linear kernel is
optimal model for the prediction of human death domain protein-protein interactions. The accuracy
of model is also good. The results obtained are in agreement with the available experimental data
and can be useful in understanding the signaling network which is mediated by death domain
superfamily. Also, the information generated can be useful in getting crucial insights into molecular
mechanisms  of  their  actions,  cellular  processes  and related disease processes providing the
basis for new therapeutic approaches. Such models can be developed further to generate interaction
sites in death domain proteins which can serve as a potential site for drug designing. Also, these
models can be useful to generate information for understanding complex biological networks and
evolution.
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