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Abstract
Background and Objective: Angiogenin is a monomeric protein which has been considered as an important factor in angiogenesis.
Recent studies on angiogenin proved that it is an ideal drug target for treating cancer and vascular dysfunctions. The present study aimed
to develop a Quantitative Structure Activity Relationship (QSAR) model with small molecules of angiogenin inhibitors. Methodology: The
small molecule inhibitors were divided into training and test sets to build the QSAR model. Multiple Linear Regression (MLR) and Partial
Least Square (PLS) methods were used to develop QSAR models.  Results: In the MLR model, the descriptors generated for the compounds
showed multicollinearity and resulted in a mono-parametric equation. The model generated by PLS satisfied both internal and external
cross validation parameters. The predicted model showed the positive contribution of ring atoms and donor hydrogen bonds to the
activity. Conclusion: As these parameters are reported to be crucial for biological activity of drugs, it can be used to do develop effective
small molecule drug candidates for angiogenin. 
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INTRODUCTION

Angiogenesis is a natural process involved in the
formation of new blood vessels which promises greater
importance in normal physiological functions. However,
angiogenesis has also been known for its devastating effects
under pathological conditions such as cancer and vascular
dysfunction1. Clinically, it has been ascertained that tumor
angiogenesis is closely connected to metastasis in many kinds
of human cancers2,3. Hence, blocking angiogenesis could be
an additional therapeutic approach to treat cancer4.
Advancements in technology has uncovered the role of
various angiogenic factors involved in angiogenesis such as
TGF2-", TGF-$, aFGF and bFGF5,6. Angiogenin, one among the
various factors of angiogenesis, is considered as an ideal drug
target for blocking angiogenesis7. It is a single chain protein
containing 123 amino acids and is a homolog of bovine
pancreatic ribonuclease A8. It has been reported that it
contributes to the ribonucleotlytic cleavage of both 28S and
18S RNA9 and has distinctive catalytic and cell-binding
domains which are essential for its angiogenic property10,11.
The role of angiogenin in neovascularization has been shown
to be interacting with endothelial and smooth muscle cells to
induce various cellular responses like cell migration, invasion,
proliferation and tubular structure formation. The detailed
mechanism of action of angiogenin-induced angiogenesis
involves ribonucleolytic activity, cell basement membrane
degradation, activation of signal transduction and nuclear
translocation7. From these observations it is quite clear that
the inhibition of angiogenin would be an effective therapeutic
strategy for cancer. Angiogenesis inhibitors are becoming a
new class of drugs which target one of these several
angiogenic factors12. Although, angiogenin was reported to be
regulated by endogenous ribonuclease inhibitors13, synthetic
inhibitors are needed for the treatment of diseases caused by
pathological neovascularization. Search for the inhibitors of
angiogenin was started even before two decades. Many
angiogenic inhibitors have been reported so far which
includes proteins, oligonucleotides, peptides and
nucleotides14,15. The main drawback with the nucleotide
inhibitors is that they had very high Ki values which were
greater than or equal to 500 µM under physiological
conditions16. This had led to search for low molecular weight
inhibitors.  Shapiro et al.17 have patented many small
molecular weight compounds as effective inhibitors of
angiogenin.

Quantitative Structure-Activity Relationship (QSAR) is one
of the promising areas of research in medicinal chemistry and
chemometrics arena. It aims to derive relationship between
the structural features or descriptors of the chemical entities
and their own biological activity through linear or nonlinear
mathematical equation. Thus QSAR studies provide useful
information that how the structural features of a chemical or
drug molecule influences the biological activity. In silico  QSAR
has become one of the advantageous approaches for
bioactivity evaluation as compared to experimental testing18.
The success of QSAR model depends on the quality of the
input  data,  selection  of  appropriate  descriptors  and 
statistical  methods  to validate the developed model19. In this
study,   we   report  the  development  of  a  2D-QSAR  model
for   angiogenin   inhibitors   which   has   not   been  explored
so far.

MATERIALS AND METHODS 

Data set:  The inhibitor compounds of angiogenin and their
biological activities (Ki) were collected from the literature17.
They were used for QSAR analysis (Table 1).  These 
compounds   showed   significant  diversity in their  structure 
and  activity  profiles. The Ki values (given in µM unit) were
converted into their molar units and then into their negative
logarithmic scale (pKi = -log Ki). The Ki values collected from
the literature were in the range of 3-500 µM. Hence the
insignificant compounds with higher Ki values were removed
from the data set and the compounds in the activity range of
3-85 µM were chosen for the present study. The data set
comprises of 30 compounds of these, 75% of the compounds
were assigned to training set and 25% of the compounds were
assigned to test set. The grouping of compounds into training
(23) and test set (7) was done by sorting out the compounds
with their biological activities (that is both set of compounds
should span the entire activity range). A univariate statistics for
the training and test set compounds was generated to check
the correctness of selection criteria which is shown in Table 2.
The distribution of compounds within the experimental
activity range is shown in Fig. 1. 

Computational data:  The compounds were sketched with
Maestro (Maestro, version 9.1) provided by Schrodinger, LLC,
NY. They were then converted into their 3D-structures using
Ligprep (LigPrep, version 2.4, Schrodinger, NY). Addition of
implicit hydrogen atoms, geometry optimization and energy
minimization were carried out using MacroModel by applying
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Table 1: List of angiogenin inhibitor compounds chosen for the study along with their Ki and pKi values
Compound I.D Structures Ki (µM) Ki (M) pKi

NCI-65828 81 0.000081 4.091515
N
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o
OH
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NCI-65845 3 0.000003 5.522879
S
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O
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NCI-242027a 5 0.000005 5.30103

NCI-65841a 5 0.000005 5.30103

NCI-79596 5 0.000005 5.30103

NCI-9617 5 0.000005 5.30103
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Table 1: Continue
Compound I.D Structures Ki (µM) Ki (M) pKi

NCI-665534-P 5 0.000005 5.30103

NCI-16224 5.5 5.5E-06 5.259637

Sigma-Suramin 10 0.00001 5

NCI-N-73358 14 0.000014 4.853872

NCI-7815 14 0.000014 4.853872

NCI-45618a 15 0.000015 4.823909
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Table 1: Continue
Compound I.D Structures Ki (µM) Ki (M) pKi

NEWa 20 0.00002 4.69897

NCI-65568 23 0.000023 4.638272

NCI-79741 23 0.000023 4.638272

NCI-65820 25 0.000025 4.60206

NCI-58047 36 0.000036 4.443697

Sigma-xylidene 49 0.000049 4.309804

Sigma-eriochromea 50 0.00005 4.30103

5



Trends Bioinform., 9 (1): 1-13, 2016

Table 1: Continue
Compound I.D Structures Ki (µM) Ki (M) pKi

Sigma-Amarantha 60 0.00006 4.221849

Sigma-newcoccine 69 0.000069 4.161151
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Table 1: Continue
Compound I.D Structures Ki (µM) Ki (M) pKi

NCI-47755 84 0.000084 4.075721
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Table 2: Univariate statistics of the training and test set compounds
Data set Mean Median Mode Range Max. Min. Variance SD RMSD
Training 4.5700 4.4437 5.3010 1.4523 5.5229 4.0706 0.2530 0.5030 0.4919
Test 4.6770 4.6990 5.3010 1.2095 5.3010 4.0915 0.2487 0.4987 0.4617

Fig. 1: Distribution of compounds within the activity range of 1-90 µM which explains the significant diversity in the data set

OPLS-2005 all atoms forcefield. Descriptors for QSAR model
were generated from the program Qikprop (QikProp, version
3.3, Schrodinger, NY). The important descriptors are listed in
Table 3. Two regression approaches, Partial Least Square (PLS)
regression and Multiple Linear Regression (MLR), were used to
build the QSAR model. MINITAB (MINITAB, statistical software
of Minitab Inc.,  USA)  was  used  for  PLS  method.  Strike
(Strike, version 1.9, Schrodinger, NY) was used for MLR. All
these programs were implemented and executed on a
machine with Core 2 duo 2.8GHz processor and Windows 7
operating system.

2D-QSAR:  The 2D-QSAR models were developed from the
dataset using the methods MLR and PLS. The MLR is used to
find the linear relationship between a dependent and a set of
independent variables. In the present study, 50 different
structural descriptors were taken into consideration. Eighteen
of them were found to possess constant values which were
removed from further analysis. The remaining 32 descriptors
were chosen for MLR studies. The descriptors were chosen
based on their inter correlation coefficient. The PLS or Partial
Least Square regression or Projection on Latent Structures is
a method that combines features   from  Principal Component
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Table 3: Descriptors used for building the QSAR model
Descriptors Description
#rotor Number of non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds
donor HB Estimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution.

Values are averages taken over a number of configurations, so they can be non-integer
QPlog Kp Predicted skin permeability, log Kp
EA (eV) PM3 calculated electron affinity
#ring atoms Number of atoms in a ring

Analysis (PCA) and MLR. The PLS model finds new variables or
latent variables or components which are linear combinations
of the original variables. The PLS is especially useful in cases
where the data set contains highly inter-correlated descriptors
(Multicollinearity) and in cases where the number of
descriptors exceeds the number of observations20. The
optimum number of PLS components (latent variables) for the
study was determined based on leave one out cross validation
approach. The model refinement procedure applies Predicted
Residual Error Sum of Squares (PRESS) of the cross validation
to select the optimum number of PLS components21. The
number of factors that produced the least PRESS was selected
as optimum value. The same 32 descriptors, as used in MLR,
were selected for the PLS studies. The descriptors with
negligible/low regression coefficients were sequentially
removed from further process until reliable statistical
measures were obtained. The PRESS was calculated based on
the following expression:

PRESS = E (Yi,obs-Yi,pred) 2

In the above expression, Yi,obs means observed activity of
“i”th compound in the training set and Yi,pred means leave-one-
out cross validated activity of the same “i”th compound in the
training set. 

Statistical measures:  The statistical reliability of the model
was adjudged by the following parameters; squared
correlation coefficient (R2), Adjusted squared correlation
coefficient (R2

a), Standard Deviation (SD), Predicted residual
Error Sum of Squares (PRESS), Fisher’s value for statistical
significance (F) and Significance level of variance ratio (P).

Cross  validation:  Cross  validation  is  a   practical   and
reliable  method   of   testing   the   significance   of   the 
model22. Internal cross validation of the model was carried out
with Leave-One-Out (LOO) approach in which every single
compound from the training set is left out once and the
activity of that compound is predicted using the model
generated with the remaining compounds. The internal cross
validation parameter is stated by Leave-One-Out cross
validation coefficient (q2) which is calculated using the
formula:

q2 = 1-(E(yi-yir)2/E (yi-ymean)2)

where, Yi and Yi´ are observed and leave-one-out predicted
activities, respectively, of the “i”th compound in the training
set and Ymean is mean value of the training set compounds20.
Internal cross validation is never adequate to validate the
predictive ability of the model. So it is necessary to validate the
model with the test set compounds which are not included in
the QSAR model development. In external cross validation,
values of each of the test set compounds were predicted by
applying their descriptor values in the model generated with
training set compounds. External cross validation is expressed
in terms of external cross validation coefficient, r2pred which can
be calculated using the formula:

r2pred = 1 ‒ (E(Yi(Test)-Y´i(Test))2/E(Yi(Test)-Ymean)2)

where Yi(Test) and Y´i(Test) are actual and predicted activities of
the ith compound in the test set, respectively and Ymean is mean
value of the training set compounds23.

RESULTS AND DISCUSSION

Multiple linear regression: Based on the inter-correlation
coefficients of the descriptors, highly correlated descriptors
were removed from the study. According to the rule of thumb
in MLR (ratio of sample size to the number of descriptors
should be greater than or equal to 5), a tetra-parametric
model can be expected with the current training set of 23
compounds. The existence of multicollinearity among the
descriptors in the present study resulted in a mono-parametric
model as described below.

pIC50 = 3.5727(±0.1620)-0.1756 (±0.0264) QPlogBB (1)

n = 23, R2 = 0.6777, R2
a = 0.6147, F = 44.1, p = 0.000001, 

q2 = 0.6240, r2Pred = 0.2138

Equation 1 indicates that the model obtained with MLR
showed  good   squared   correlation   coefficient  (R2) value
and  good   internal  predictive  power  (q2)  but  lack in
external predictive power (r2Pred). The removal of two outliers,
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compounds 7 and 15, from the data set did not improve the
external predictivity of the model. The scatter plot which is
plotted between observed and predicted pKi values for
training set and test set are shown in the Fig. 2a and
b,respectively. To overcome the issues like, multicollinearity
among the descriptors and poor external predictivity, PLS
method was preferred for building a 2D-QSAR model.

Partial  least   square   regression:    The  same  training  set,
as  used   in   MLR,   was  used  to  build  the  PLS model. The
PLS  regression  was  initially  started  with  32   descriptors. 
The  descriptors  with  negligible  regression  coefficients were
removed from the study until there was no improvement in q2.
The number of optimum components and descriptors for PLS
model was found to be 5 (optimized by leave one out cross
validation). The scatter plot which is plotted between
observed and predicted values for training set and test set are
shown in the Fig. 3a and b, respectively. The values of
descriptors obtained for PLS analysis is shown in Table 4. The
Table 5  represents the observed and predicted values for both
MLR and PLS models. The following model equation was
obtained by PLS regression analysis:

pIC50 = 3.02371-0.12701(#rotor)-0.37289
(EA(eV))+0.03648 (donorHB)+0.05865 

(#ringatoms)-0.29521 (QPlogKp) (2)

n = 23, R2 = 0.7846, R2
a = 0.6624, F = 12.38 (p = 0.000005),

q2 = 0.638184, r2pred = 0.65008

The above equation is based on five PLS components and
five descriptors. The equation could explain 66.2% of the
variance and predict 63.8% of the variance. The coefficients of
donor HB and #ring atoms contribute positively to the
biological activity of the model equation whereas the other
coefficients like #rotor, EA(eV) and QPlogKp negatively
contribute to the activity. It is quite evident from Table 4 that
the activity and the number of donor hydrogen bonds
correlate well together. Hydrogen bonding is considered as
one  of  the  most  important   interactions   that   take   place
in any protein-ligand complex formation24,25. Moreover,
Hydrogen  bonds  are  observed  with  a  variety  of strengths
and geometries in the active sites of  protein-ligand
complexes26.

Fig. 2(a-b): MLR analysis demonstrating the correlation between observed and predicted pKi values for the (a) Training set and
(b) Test set
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Fig. 3(a-b): PLS analysis demonstrating the correlation between observed and predicted pKi values for the (a) Training set and
(b) Test set

Table 4: Values of important descriptors for training and test set compounds
Compounds #rotor donor HB QPlogKp EA (eV) #ring atoms
Training set
1 7 3.5 -4.022 1.368 22
2 15 5 -9.877 2.137 32
5 16 7 -6.829 1.627 38
6 19 8 -10.513 1.777 32
7 17 6 -9.984 1.953 32
8 13 5.5 -7.678 1.694 32
9 22 12 -9.595 3.054 44
10 11 4.5 -5.848 1.386 28
11 13 5.5 -7.516 1.607 32
14 15 5 -9.111 2.085 32
15 18 7.5 -8.347 2.171 38
16 8 3 -7.491 2.383 16
17 9 3 -5.379 2.093 22
18 7 2 -5.504 1.833 16
21 9 4 -6.927 2.194 20
22 9 5.5 -6.926 1.748 16
23 12 3 -4.528 1.665 32
24 15 5.5 -4.856 1.576 34
25 7 4 -5.001 1.656 16
27 7 3 -4.915 1.951 16
28 15 5 -6.380 2.234 32
29 7 3 -5.790 1.715 16
30 10 3 -5.584 1.812 26
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Table 4: Continue
Compound #rotor donor HB QPlogKp EA (eV) #ring atoms
Test set
3 11 5 -5.946 1.589 32
4 16 8 -9.488 2.103 32
12 11 5 -5.837 1.485 32
13 7 4 -4.014 0.986 22
19 7 3 -5.439 1.981 20
20 9 3 -7.362 2.172 20
26 8 3.5 -5.529 1.59 22

Table 5: Observed and predicted values of MLR and PLS
Predicted pKi 

--------------------------------------------------------------------------------------------------------------------------------------
Compounds pKi Model-1 (MLR) Model-2 (PLS)
Training set
1 4.09151 4.03846 4.22986
2 5.52288 5.25402 5.2967
5 5.30103 4.89116 4.88494
6 5.30103 5.3371 5.22009
7 5.30103 5.16445 5.17936
8 5.25964 4.80493 5.08499
9 5.00000 4.84005 4.94161
10 4.85387 4.47052 4.64255
11 4.85387 4.76506 5.06961
14 4.63827 5.00497 5.08996
15 4.63827 5.12669 4.89443
16 4.60206 4.30666 4.37829
17 4.4437 4.28892 4.08785
18 4.3098 4.09923 4.08734
21 4.16115 4.30543 4.42634
22 4.1549 4.30209 4.41247
23 4.14874 4.39623 4.20172
24 4.11919 4.47245 4.15921
25 4.11351 4.10801 4.0778
27 4.08092 4.02705 3.90594
28 4.07572 4.63298 4.2282
29 4.07058 4.14419 4.25224
30 4.07058 4.3316 4.36075
Test set
3 5.30103 4.51355 4.84863
4 5.30103 5.15338 5.17697
12 4.82391 4.52356 4.85523
13 4.69897 4.04215 4.38818
19 4.30103 4.13524 4.28404
20 4.22185 4.38253 4.52648
26 4.09152 4.23043 4.46495

Furthermore, it is reported that hydrogen bonds stabilize the
ligand at the target site and increases binding affinity and
drug efficacy27. The next foremost descriptor is #ringatoms.
The number of atoms present in the ring correlates positively
with the activity. Rotor or number of rotatable bonds is a
measure of molecular flexibility (i.e., more the number of
rotatable bonds more the molecule is flexible). The negative
regression coefficient of rotor in our model indicates that the
increase in number of rotatable bonds or increase in flexibility
of compounds might reduce the activity. The  EA(eV)   means
electron  affinity  calculated  by PM3  semi empirical methods.

Electron affinity is another descriptor which is a measure of
change in energy when a neutral atom is attracted towards an
electron to form a negative ion. Oxygen, sulphur and nitrogen
atoms hold the key for electron affinity values in the
compounds used in the present study. As the regression
coefficient of EA (eV) contributes negatively to the model, we
deduce that the compounds with more electron affinity values
will decrease the activity.

The reliability or predictability of the model is further
assured by the external validation with test set compounds
(r2pred). The model resulted in this study is said to be predictive
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since it meets the following conditions R2 >0.6, q2>0.6 and
r2pred>0.5 as reported in the literature28.

DISCUSSION 

The present study involves 2D-QSAR model development
with angiogenin inhibitors. Two regression methods namely,
Multiple Linear Regression (MLR) and Partial Least Square
Regression were used in the present study to build the QSAR
model. This is in accordance with the study by Sahu et al.29

who derived 2D-QSAR models based on MLR for predicting
the anti-malarial activity of compounds. Similarly, MLR was
used to derive QSAR models to predict biological activities of
Aurora-A kinase inhibitors30  and to predict  anti-leishmanial 
activity  of  diaryl  sulfides31. The descriptors or independent
variables generated for the model development showed
multicollinearity. Multicollinearity is high multiple correlations
between subsets of the variables, which leads to removal of
variables from the model32. This made the task difficult for
building the QSAR model with MLR. The model established
with MLR had ended up with a mono-parametric equation as
well as poor external predictability. This led us to go for
another well known regression approach called PLS which
handle the data set that shows multicollinearity with
numerous descriptors33. The PLS was widely used by many
researchers  to  derive  QSAR  models  with  predictive
capability34-36. In this study, the QSAR model developed with
PLS exhibited good internal as well as external predictability.
The model also indicates the importance of donor hydrogen
bonds and ring atoms for the biological activity. The
predictivity of the model was tested using various statistical
parameters. The model developed in this study can act as a
predictive model as the q2 value of the current model is in par
with the q2 of models derived by Kovalishyn et al.37. The model
developed in this study can be still enriched with more
number of data sets in order to increase the predictivity of the
model. As the reported number of effective small molecule
inhibitors to angiogenin, albeit their vast potential, has been
found to be very low, it is thus indispensable to optimize the
existing structures of small molecule inhibitors and to screen
for them from various compound libraries for designing an
effective lead against angiogenin.
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