

Trends in Bioinformatics

ISSN 1994-7941

Trends in Bioinformatics

ISSN 1994-7941 DOI: 10.3923/tb.2017.1.10

Research Article *In silico* Analysis of BRCA1 Gene and its Phylogenetic Relationship in some Selected Domestic Animal Species

¹E.V. Ikpeme, ¹O.U. Udensi, ¹M.E. Kooffreh, ²H.E. Etta, ¹B.B. Ushie, ¹E. Echea and ^{1,3}M. Ozoje

¹Department of Genetics and Biotechnology, University of Calabar, PMB Calabar, Nigeria ²Department of Biological Science, Cross River State University of Science and Technology, Calabar, Nigeria ³Department of Animal Science, Federal University of Agriculture, Abeokuta, Nigeria

Abstract

Background: Breast cancer type 1 (BRCA1) gene also known as breast cancer type 1 susceptibility protein homologue plays important role in DNA double-strand break repair, homologous recombination, chromatin remodeling, cell cycle regulation and transcription regulation. Objective: Considering the importance of this protein, the present study was undertaken to analyze BRCA1 gene of different mammalian species by assessing the identity and similarity, phylogenetic relationship, physicochemical properties, predict the motifs, secondary and the tertiary structures. Materials and Methods: Seventeen nucleotide and protein sequences of BRCA1 gene of different mammalian species were retrieved from National Centre for Biotechnology Information (NCBI). Multiple sequence alignment was done using CLUSTAL W software, while identity and similarity was determined by constructing a pair wise comparison. Results: Results obtained at the end of the experiment showed that there was no percentage identity or similarity that was less than 70%. The phylogenetic relationship of BRCA1 gene of the mammalian species clustered into aquatic, herbivores, carnivores and omnivores, respectively. The highest time of divergence (95MYA) of the BRCA1 gene was observed between the BRCA1 gene of killer whale and human, while the least time of divergence (4.6MYA) was observed between the BRCA1 gene of cattle and American buffalo. Physicochemical properties of BRCA1 proteins in the five mammalian species (cattle, sheep, pig, American buffalo and human) were found to be unstable, hydrophilic and intracellular in nature. The following motifs were present at various positions in the BRCA1 gene of the five mammalian species; zinc finger RING, BRCT domain, N-myristoylation site, N-glycosylation, cAMP and cGMP dependent protein kinase phosphorylation site, tyrosine kinase phosphorylation, casein kinase 2 phosphorylation site, protein kinase C phosphorylation site and cell attachment sequence but leucine zipper pattern and microbodies c-terminal motifs were found in only human BRCA1 gene. The BRCA1 secondary structure contained the alpha helix, extended strand and random coil. Conclusion: Based on the results obtained, it can be deduced that BRCA1 gene has identical homologue, functional similarity and highly conserved in these mammalian species.

Key words: Mammals, BRCA1 gene, evolution, physicochemical analysis, divergence time

Received: September 11, 2016

Accepted: November 14, 2016

Published: December 15, 2016

Citation: E.V. Ikpeme, O.U. Udensi, M.E. Kooffreh, H.E. Etta, B.B. Ushie, E. Echea and M. Ozoje, 2017. *In silico* analysis of BRCA1 gene and its phylogenetic relationship in some selected domestic animal species. Trends Bioinform., 10: 1-10.

Corresponding Authors: E.V. Ikpeme and O.U. Udensi, Department of Genetics and Biotechnology, University of Calabar, PMB Calabar, Nigeria Tel: +2348037245930

Copyright: © 2017 E.V. Ikpeme *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Breast cancer 1 early onset (BRCA1) also known as breast cancer type 1 susceptibility protein homologue is a breast and ovarian tumour suppressor¹. BRCA1 genes are involved in the process of DNA damage repair, regulation of cell cycle and transcription as well as other important pathway in the bid to inhibit tumour and make sure genome stability is maintained^{2,3}. However, protein-truncating mutations across BRCA1 have been implicated with an increased cumulative risk of breast (60-80%) and ovarian (20-40%) cancers⁴⁻⁷. According to Shen and Vadgama⁸, nearly half of the reported changes in BRCA1 are frame-shift mutations9 and thus expected to be disease-linked. Yuan et al.¹⁰ reported bovine BRCA1 gene as a new candidate gene for bovine mastitis, although BRCA1 gene polymorphism associated with bovine mastitis in various cattle breeds have not been investigated. Nash et al.¹¹ and Ruegg¹² independently observed that mastitis is a complex and common disease of dairy cattle, which causes major economic losses to the dairy industry. The genetic association of bovine mastitis notwithstanding¹³, highlighted other factors that might cause bovine mastitis such as pathogens, poor management practices and health of the dairy cattle. Mastitis can manifest as clinical and subclinical forms. The clinical mastitis shows noticeable symptoms such as red and swollen mammary glands, while subclinical mastitis do not reveal any obvious signs but is characterized by high Somatic Cell Count (SCC), a normal or elevated body temperature and milk samples that should test positive on culture¹⁴.

The bovine BRCA1 gene has been mapped to chromosome 19 (BTA19)⁶ and this location was within a region of similar gene order as the BRCA locus in human (chromosome 17) and mouse (chromosome 11)^{6,15,16}. According to Madsen *et al.*¹⁷, BRCA1 gene within mammalian species shows high degrees of divergence, which probably might affect its functionality and structural architecture in different organisms. With this in mind, in the present study, we x-rayed BRCA1 gene of different mammalian species with particular emphasis on the domestic farm species (cattle, sheep, pig and American buffalo) in comparison with the BRCA1 gene of human in terms of its physicochemical properties, phylogenetic relationship with time of divergence, percentage identity and similarity of amino acid sequences as well as to predict the protein motifs. This will essentially expand the knowledge about the functions, structure and evolutionary relationships of the gene.

MATERIALS AND METHODS

Retrieval of nucleotides and amino acids sequences: Nucleotides and amino acid sequences of *Bos taurus* (cattle), *Ovis aries* (sheep), *Sus scrofa* (pig), *Bison bison* (American buffalo), *Homo sapien* (Human), *Tursiops truncatus* (Bottlenose dolphin), *orcinus orca* (Killer whale), *Physeter catodon* (sperm whale), *Odobenus rosmarus divergens* (Walrus), *felis catus* (Cat), *Ailuropoda melanoleuca* (Giant panda), *Pongo abelii* (Sumatran orangutan), *Canis lupus* (Dog), *Colobus guereza* (Colobus monkey), *Panthera tigris* (Tiger), *Pan troglodytes* (Chimpanzee) and *Camelus ferus* (Camel) were downloaded from NCBI. Basic Local Alignment Search Tool (BLAST) was used to obtain similar sequences in other organisms. Multiple sequence alignment was carried out on all obtained amino acid sequences using CLUSTALW software¹⁸.

Determination of percent identity and similarity: The percent identity and similarity among the amino acid sequences of BRCA1 gene in cattle, sheep, pig, American buffalo and human and other mammalian species was determined by conducting a pairwise comparison of the sequences using BLAST.

Phylogenetic analysis and time of divergence: Phylogenetic relationship using the amino acid sequences of the gene retrieved from NCBI was done according the method of Tamura *et al.*¹⁹. The evolutionary relationship was inferred using unweighted pair group method with arithmetic mean (UPGMA) based on the Jones-Taylor-Thornton (JTT) matrix-based model. The reliability of the inferred phylogenetic tree was evaluated with bootstrap analysis of 1000 replications. The divergence time of BRCA1 gene for each species was calculated based on the nucleotide percent substitution per site.

Determination of physicochemical properties of BRCA1 protein: Physicochemical properties of BRCA1 protein of the five mammalian species were determined using the Expert Protein Analysis System (Expasy), which is the proteomic server of Swiss Institute of Bioinformatics (SIB) (web.expasy. org). We chose only cattle, sheep, pig and American buffalo as domestic farm animals while human was used as a reference point.

Prediction of protein motifs and protein structures: Motifs in the amino acid sequence of BRCA1 gene of the five selected domestic farm animals and human were predicted using

PROSITE software²⁰ while the protein secondary structures were predicted using GORIV²¹. Additionally, the protein tertiary structure (protein 3D structure) of BRCA1 gene was predicted based on the canonical amino acid sequence obtained from NCBI database using phyre2 according to Kelley and Sternberg²².

RESULTS

Retrieved nucleotide and amino acids sequences of BRCA1 gene: The lengths of the retrieved nucleotide and amino acid sequences showed variations. The length of the nucleotide sequence of BRCA1 gene varied from 5550-5777 bps while the length of the amino acid sequence varied from 1849-1863 amino acid residues. Among the five selected domestic farm mammals, the length of the nucleotide sequence for pig BRCA1 was the longest (5777 bps), followed by human (7224 bps) while that of the cattle was the shortest (5550 bps). The amino acid residues for pig and human were the same (1863) while for cattle and A. buffalo had 1849 and 1850 amino acid residues, respectively. For emphasis however, the amino acid sequence length for Sumatran Orangutan and chimpanzee were the same with that of pig and human (Table 1).

Percent identity and similarity among the amino acid sequence of BRCA1 gene: Percentage identity among amino

acid sequences of human BRCA1 gene with cattle, sheep, pig, A. buffalo revealed over 70% identity while percent similarity showed more than 80% (Table 2). Within the domestic farm mammals, sheep and A. buffalo had 99% identity with the least recorded for human (72%). This trend was also maintained for amino acid sequence similarity of cattle with sheep (95%), A. buffalo (99%), pig (84%) and human (81%). Generally, however, BRCA1 gene amino acid sequence of human has higher percent similarity with that of cattle, sheep, pig as well as A. buffalo when compared with its percent identity.

Phylogenetic relationship of BRCA1 gene among the five domestic farm mammals: The phylogenetic relationship among the BRCA1 genes of the different mammalian species showed that the gene came from common ancestry root but diverged into two major clades A and B in the course of evolution. Though our report laid more emphasis on four domesticated mammalian species (cattle, sheep, pig and A. buffalo) as well as human, however, the clustering was based on feeding habits-omnivores (clade A), carnivores (Sub-clade B₁) and herbivores (Sub-clade B₂). It is also reported that BRCA1 gene of cattle, sheep, pig and A. buffalo are more related as compared to that of human BRCA1 gene (Fig. 1).

Time of divergence: We looked at the time of divergence of BRCA1 gene of human and the BRCA1 genes of cattle, sheep,

Fig. 1: Phylogenetic tree showing the evolutionary relationship among the mammalian species BRCA1

lable 1: Retrieved nucleotide and amino	acid sequences of BRCA1 gene or	t the mammalian sp	ecies with their	accession number	s and sequence	length	,		,
		Gei	nBank		5	enBank accession	Nucleot	tide	Amino acids
Species	Gene name	acces	ision No.	Protein nar	ne	No. for protein	sequence	length	sequence length
**Cattle (<i>Bos taurus</i>)	BRCA1, mRNA	NM1785	573.1	BRCA1	2	IP848668.1	555(0	1849
**Pig (<i>Sus scrofa</i>)	BRCA1, mRNA	AB2719.	21.1	BRCA1	Β	AF622961.1	577.	7	1863
**A. buffalo (<i>Bison bison</i>)	BRCA1, mRNA	XM0108	342468.1	BRCA1	×	P010840770.1	682	6	1850
** <i>Ovis aries</i> (sheep)	BRCA1, mRNA	XM0150	98805.1	BRCA1	×	P014954291.1	668	2	1862
** Human (<i>Homo sapiens</i>)	BRCA1, mRNA	NM0072	294.3	BRCA1	2	IP009225.1	722	4	1863
Monkey (<i>Colobus guereza</i>)	BRCA1, mRNA	KM0176	523.1	BRCA1	A	IG88487.1	559	2	1864
Walrus (Odobenus rosmarus divergens)	BRCA1, mRNA	XM0125	65923.1	BRCA1	×	P012421377.1	573	-	1881
Cat (<i>Felis catus</i>)	BRCA1, mRNA	XM0112	89122.1	BRCA1	×	P011287424.1	653	-	1871
Giant panda (<i>A. melanoleuca</i>)	BRAC1, mRNA	XM0112	16747.1	BRCA1	×	P011215049.1	670	2	1869
Sumatran orangutan (<i>Pongo abeli</i> i)	BRCA1, mRNA	XM0092	51702.1	BRCA1	×	P009249977.1	579	4	1863
Sperm whale (<i>Physeter catodon</i>)	BRCA1, mRNA	XM0071	02091.1	BRCA1	×	P007102153.1	702	2	1860
Killer whale (<i>Orcinus orca</i>)	BRCA1, mRNA	XM0125	37731.1	BRCA1	×	P012393185.1	585	4	1862
Bottlenose dolphin (<i>T. truncatus</i>)	BRCA1, mRNA	XM0043	12200.1	BRCA1	×	P004312248.1	579	4	1815
Tiger (<i>Panthera tigris</i>)	BRCA1, mRNA	XM0070	187694.1	BRCA1	×	P007037756.1	646(0	1874
Chimpanzee (<i>Pan troglodytes</i>)	BRCA1, mRNA	XM0094	32082.7	BRCA1	×	P009430357.1	726	_	1863
Camel (<i>Camelus ferus</i>)	BRCA1, mRNA	XM0061	75151.2	BRCA1	×	P006175213.1	573(9	1859
Dog (<i>Canis lupus familaris</i>)	BRCA1, mRNA	NM001C	013416.1	BRCA1	2	IP001013434.1	5637	7	1878
Identity	Identity Identity	Identity to	ldentity	Similarity	Similarity	Similarity	Similarity to	Similaritv	to
Species to cattle	to sheen to nig	A huffalo	to himan	to cattle	to sheep	to bio	A huffalo	himan	enlev-3
**Cattle 100	94 77	99	77	100	95	85 85	99	81	0.00
**Sheen 99	100 76	94	- 77	95	100	85	96	87	000
**Dia 76	76 100	76	74	78	85	100	78	83	00.0
**A hiffalo 99	94 76	100	C2	66	96	85	1001	68	00.0
**Human 72	72 74	72	100	81	82	83	82	100	0.00
Chimpanzee 72	72 74	72	98	82	82	84	82	98	0.00
Camel 77	77 81	77	76	86	85	87	86	85	0.00
Tiger 74	74 77	74	76	82	82	84	82	84	0.00
Sperm whale 80	80 83	80	77	87	87	88	87	84	0.00
Killer whale 80	80 82	80	76	86	86	88	87	84	0.00
Bottlenose dolphin 79	79 81	79	76	86	86	87	86	84	0.00
Walrus 75	75 77	75	77	83	83	85	83	84	00.0
Cat 74	74 76	74	75	82	82	84	82	83	00.0
Giant panda 74	73 76	74	75	83	83	84	83	83	00.0
Sumatran orangutan 72	72 74	72	97	81	81	83	82	97	00.0
Dog 72	72 74	72	74	81	80	82	81	82	00.0
Colobus monkey 71	71 73	71	93	81	81	83	81	93	00.0
**Mammalian species of interest									

Trends Bioinform., 10 (1): 1-10, 2017

Physicochemical properties	Cattle value	Sheep value	Pig value	A. buffalo value	Human value
Theoretical pl	5.40	5.49	5.60	5.43	5.21
Molecular weight	206278.6	207372.1	206747.4	206552.9	207720.8
No. of amino acids	1849	1862	1863	1850	1862
Aliphatic index	68.84	68.46	66.71	68.43	69.01
Grand average hydropathicity (GRAVY)	-0.778	-0.767	-0.815	-0.794	-0.785
Total No. of negatively charged residue	282	277	272	283	283
(aspartate+glutamine)					
Total No. of positively charged residue	217	217	221	220	213
(arginine+lysine)					
Atomic composition	C (8865), H (14191),	C (8908), H (14251),	C (8851), H (14178),	C (8874), H (14213),	C (8908), H (14246),
	N (2541), O (2979), S (70)	N (2563), O (2978), S (77)	N (2584), O (2988), S (67)	N (2549), O (2983), S (69)	N (2554), O (3014), S (74)
Total No. of atoms	28646	28777	28668	28688	28796
Extinction coefficient	0.459	0.477	0.458	0.452	0.500
Instability index	55.51	54.13	54.63	56.34	54.68

pig as well as A. buffalo. It is revealed that human BRCA1 gene diverged from the BRCA1 genes of the domestic mammals selected about 88MYA. Important to mention for emphasis is the fact that the clade where the canine BRCA1 genes diverged from the BRCA1 genes of the omnivores about 75MYA. Figure 1 showed that there were varying time of divergence among the four selected domestic farm animals, the least being approximately 4MYA (Fig. 1).

Physicochemical properties of BRCA1 protein: The analysis of BRCA1 protein of cattle, sheep, pig, A. buffalo and human showed varying physicochemical properties when compared. The result revealed that the least theoretical pl was for human BRCA1 protein (5.21) while the highest was for pig BRCA1 protein (5.60). The molecular weights of BRCA1 proteins from the 5 mammalian species revealed that human BRCA1 protein weigh 207720.8 kDa while sheep BRCA1 protein weigh 207372.1 kDa. Cattle BRCA1 protein had a weight of 206278.6 kDa, which was the least. The number amino acids in BRCA 1 protein of the species showed the following: Cattle (1849), sheep (1862), pig (1863). The A. buffalo (1850) and human (1862), implying that the number of amino acids in the BRCA1 protein of human and sheep are the same (Table 3).

Predicted motifs in BRCA1 proteins: Nine motifs were reported as predicted in the BRCA1 gene of the different mammalian species selected, which include zinc finger ring, BRCT domain, N-myristoylation site, N-glycosylation site, cAMP and cGMP dependent protein kinase phosphorylation site, tyrosine kinase phosphorylation site, cell attachment sequence, leucine zipper pattern as well as micro-bodies c-terminal targeting signal motifs. However, cell attachment sequence motif was absent in the BRCA1 proteins of sheep and human while human BRCA1 protein possess leucine zipper pattern and micro-bodies c-terminal targeting signal motifs, which were lacking in those of cattle, sheep, pig as well as A. buffalo (Table 4).

Protein secondary structures BRCA1 gene: The secondary structures of BRCA1 protein was predicted using GORIV software for the five selected mammalian species. It is showed that their BRCA1 protein contain basically alpha helix, extended strand as well as random coil. However, the alpha helix for human BRCA1 protein was 32.15% while for cattle it was 30.18%. The least was for sheep whose alpha helix occupies 28.68% of the structure. Conversely, the extended strand of the BRCA1 protein for pig was the longest (14.65%) with that of the human being the shortest (12.56%). Ther were

Montinanes Carte Sheep Pig A buffialo Human Zinc finger RNG 24-65 24-55 <th></th> <th>Positions</th> <th></th> <th></th> <th></th> <th></th>		Positions				
Zinc finger RNG 24-65	Motif names	Cattle	Sheep	Pia	A. buffalo	Human
BRCT domain (42-172) 179-1848 (64-173, 175-1834 (645-1732, 1752-1822 (643-1730, 1750-1849) (642-1730, 1750-1849) (642-173) (645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1730, 1645-1740, 1640, 1642-407, 263-568, 164-166, 1645, 1646, 1645, 1646, 1045, 1045, 1046, 1	Zinc finger RING	24-65	24-65	22-63	24-65	24-65
Nrryritorylation site 98-103, 160-165, 183-188, 263-266, 754-560, 755-860, 545-566, 755-460, 756-765, 133-188, 545-59, 675-660, 755-860, 545-59, 675-660, 755, 760-7125, 1233-1138, 1223-1257, 1260-1265, 139-1144, 1234-1326, 1256-1276, 1256-1260, 1139-1144, 1254-1261, 1287-1282, 1266-1257, 1232-1232, 1277-1325, 1234-138, 1266-1271, 1237-1326, 1265, 1269-1704, 1254-1761, 1287-1292, 1377-1325, 1254-1324, 1287-1326, 1267, 1287-1326, 1265, 1269-1704, 1759-1764, 175, 1752-1277, 1287-1323, 1138-1143, 1256-1761, 1267-1262, 1278-1326, 1267, 1257-1362, 1267-1262, 1278-1323, 1269-1204, 1255-1761, 1277-1222, 1487-1492, 1699-1704, 1756-1761, 1267-1262, 1277-1322, 1377-1322, 1277-1322, 1277-1322, 1277-1322, 1277-1322, 1278-1333, 1138-1143, 1759-1764, 1759-1764, 1127-122, 1487-1492, 1699-1704, 1759-1764, 1127-122, 1487-1492, 1699-1704, 1759-1764, 1127-122, 1487-1492, 1699-1704, 1759-1764, 1127-122, 1487-1492, 1699-1704, 1759-1764, 1127-122, 1378-1333, 1138-142, 1259-1764, 1378-133, 1618-1617, 156-1761, 157-176, 1778-1733, 1138-142, 1579-1764, 174, 210-233, 669-683, 708-711, 234-234, 255-553, 695-698, 236-550, 237-536, 688-99, 247-250, 2 376-339, 474-44, 56, 569, 554-554, 552-555, 555-555, 555-553, 600-600, 100, 175-178, 287-230, 306-509, 247-250, 2 376-339, 474-44, 56, 568, 558, 1147-117, 215-1518, 1477-1422, 1477-1422, 1478-1476, 55-553, 55-5555, 55-5555, 55-555, 55-555, 55-555, 55-555, 55-555, 55-555, 55-	BRCT domain	1642-1729, 1749-1848	1648-1735, 1755-1854	1645-1732, 1752-1852	1643-1730, 1750-1849	1642-1736, 1756-1855
263-268, 401-406, 402-407, 268-273, 406-411, 407-412, 202-207, 257-268, 402-407, 257-680, 394-396, 457 263-268, 401-406, 402-407, 263-268, 394-396, 457 263-268, 401-406, 402-407, 263-268, 394-396, 457 263-258, 605-455, 575-680, 394-396, 473 263-258, 605-455, 575-680, 394-396, 473 263-258, 605-455, 53-558, 53-558, 53-558, 53-558, 53-558, 53-558, 53-558, 53-558, 53-566, 56-656, 105-1132, 1132-1132, 1138, 125-1257, 1260-1265, 1267-127, 1280-1293, 1022-107, 1737-1762, 1137-1132, 1487, 1492, 1699-1704, 1046-1046, 1048-1053, 1124-1133, 1488-1493, 1065-105, 1137-1142, 1487-1492, 1699-1704, 176-1167, 1759-1762, 1147-1122, 1487-1492, 1699-1704, 176-1161, 1729-1782, 1132-1132, 1133-1143, 1132-1137, 1287-1292, 1133-1143, 1132-1137, 1287-1292, 1133-1143, 1132-1137, 1287-1292, 1133-1143, 1132-1137, 1287-1292, 1133-1143, 1132-1137, 1287-1292, 1133-1143, 1132-1137, 1287-1292, 1291-1560, 1747-142, 1487-1492, 1699-1704, 176-1761, 1729-1762, 1729-1763, 1129-1150, 1720-1762, 1721-1723, 1729-1720, 1291-1506, 100-101, 1721-172, 1237-120, 1201-120,	N-myristoylation site	98-103, 160-165, 183-188,	98-103, 160-165, 183-188,	96-101,182-187,198-203,	98-103,160-165,183-188,	98-103,160-165,183-188,
334-539, 544-546, 675-680, 549-556, 1038-103, 1032-1036, 1048-1053, 1046, 104		263-268, 401-406, 402-407,	268-273, 406-411, 407-412,	202-207, 257-262, 402-407,	263-268, 401-406, 402-407,	263-268, 312-317, 323-328,
1042-1047, 1049-1054, 1079-1084, 1055-1066, 1139-1144, 671-676, 769-774, 808-813, 1043-1048, 1050-1055, 1134-1139, 543-548, 65 1133-1138, 1232-1257, 1260-1255, 1266-1271, 1227-1237, 1280-1293, 7378-539, 7378-1392, 7378-533, 7785-1392, 7378-533, 7378-533, 7378-533, 738-548, 1038-1052, 736-1371, 1237-1322, 1488-1493, 736-1371, 1237-1322, 1488-1493, 736-1371, 1237-1322, 1488-1493, 736-1371, 1237-1322, 1488-1493, 736-1372, 1288-1293, 7378-53129, 738-1333, 738-734, 7422-1427, 1147-1422, 1487-1442, 1687-1492, 1699-1704, 1759-1764, 1759-1762, 1778-1733, 1133-113, 133-134, 132-1137, 1337-1327, 1332-133, 737-570, 1778-1733, 1422-1427, Nglycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 292-295, 502-565, 550-556, 550-550, 505-569, 506-309, 737-570, 317-762, 177-176, 737-550, 317-373, 755-7162, 737-560, 316-319, 113-113, 138-1143, 1422-1427, 1422-1427, 1422-1427, 1422-1427, 1422-1427, 1422-1427, 1422-1427, 1422-1428, 1422-1428, 1422-1428, 1422-1427, 1422-1428, 1422-1427, 1422-1428, 1422-1427, 1422-1427, 1422-1427, 1422-1427, 1427-420, 378-376, 68		534-539, 544-549, 675-680,	549-554, 640-685, 1048-1053,	530-535, 538-543, 540-545,	534-539, 544-549, 675-680,	394-399, 484-489, 535-540,
1133-1138 125-1257, 1260-1265, 1266-1271, 1272-1277, 1293-1298, 943-948, 1041-1046, 1048-1053, 1267-1272, 1288-1293, 778-783, 83 1266-1271, 1287-1292, 1377-1382, 1423-1428, 1493, 1705-1707, 1705-176, 1758-1783, 960-65, 11 1266-1271, 1287-1292, 1377-1382, 1423-1428, 1493, 1705-1707, 1705-176, 1758-1783, 960-65, 11 1256-1761 1765-1761 1752-178, 287-290, 306-309, 1762-1767, 1313-1138, 1381, 1418-1423, 1488-1493, 1702-1707, 1705-175, 1757-1762, 1778-1783, 193-1145, 1756-1761 1767-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 247-250, 357 554-557, 533-656, 680-687, 709, 247-550, 357-530, 376-379, 472, 505-535, 542-545, 557-530, 376-379, 472-50, 527, 537-530, 376-379, 472-50, 557, 535-536, 556-558, 552-588, 710-712, 202-123, 100+101, 164 <td></td> <td>1042-1047, 1049-1054, 1079-1084,</td> <td>1055-1060, 1139-1144,</td> <td>671-676, 769-774, 808-813,</td> <td>1043-1048, 1050-1055, 1134-1139,</td> <td>543-548, 677-682, 774-779,</td>		1042-1047, 1049-1054, 1079-1084,	1055-1060, 1139-1144,	671-676, 769-774, 808-813,	1043-1048, 1050-1055, 1134-1139,	543-548, 677-682, 774-779,
1266-12/1, 1287-1292, 1377-1382, 1423-1438, 1705-17/0, 1109-1114, 1132-1137, 1287-1292, 1383-143, 1438-1493, 1762-1767 960-965, 10 1417-1422 1487-1492, 1487-1492, 1487-1492, 1488-1493, 1762-1707, 1762, 1778-1783 11321-1432, 1488-1493, 1702-1707, 1702-1762, 1728-1783 911381-143, 1488-1493, 1702-1707, 1702-1762, 1728-1783 911314, 912-1437 Nelycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 292-295, 104-107, 174-177, 281-284, 106-109, 175-178, 287-290, 306-399, 376-379, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-370, 472-470, 378-379, 471-474, 555-553, 555-569, 553-555-595, 552-555, 555-55, 555-55, 555-555, 555-55, 555		1133-1138, 1252-1257, 1260-1265,	1266-1271, 1272-1277, 1293-1298,	943-948, 1041-1046, 1048-1053,	1261-1266, 1267-1272, 1288-1293,	778-783, 813-818, 949-954,
1417-1422 1487-1492, 1699-1704, 1762-1767 1418-1423, 1488-1493, 1702-1707, 1700-1705, 1757-1762, 1778-1783 1138-1143, 1756-1761 1756-1761 1759-1764 1759-1764 130-1159, 1472-1422, Nejlycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 155-1764 159-1566, St6-379, 471-474, 546-549, 554-557, 311-314, 381-384, 551-554, 300-303, 370-373, 467-470, 376-379, 471-474, 520-533, 56-599, 247-250, 25 633-636, 679-682, 708-711, 734-737, 55-562, 580-583, 592-595, 542-545, 550-553, 695-698, 737-760, 817-320, 1615-1618 714-717, 85 605-763, 816-819, 1614-1617 638-648, 714-717, 85 55-525, 530-533, 695-698, 554-557, 633-636, 699-683, 709-712, 547-550, 55 605-763, 816-819, 1614-1617 638-648, 71424, 705, 700, 1444-1447, 251-738 714-77, 85 714-77, 85 6AMP and CGMP- 464-467, 465-468, 610-613, 611-614, 613-614, 617-613, 611-614, 913-916, 916 6AMP and CGMP- 661-619, 655-658, 1097-1100, 1444-1477, 1515-1518 714-777, 85 715-718 Cold Disploylation site 1164-164 656-653, 856-699, 655-658, 607-610, 646-649, 856-859, 650-653, 859-66, 161-614, 667-649, 856-868, 1151-717, 85		1266-1271, 1287-1292, 1377-1382,	1423-1428, 1493-1498, 1705-1710,	1109-1114, 1132-1137, 1287-1292,	1378-1383, 1418-1423, 1488-1493,	960-965, 1048-1053, 1055-1060,
1756-1761 1759-1764 1422-1427, Nglycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 1422-1427, Nglycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 247-250, 23 Nglycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 174-177, 281-284, 106-109, 175-178, 287-290, 306-309, 247-250, 23 376-379, 471-447, 566-539, 554-557, 311-314, 381-384, 551-554, 300-303, 37, 467-470, 378-379, 471-447, 520-553, 546-549, 376-379, 471-477, 520-553, 546-549, 376-379, 471-477, 520-553, 546-549, 376-379, 471-77, 83 700-763, 816-819, 1614-1617 586-641, 685-688, 714-717, 705-708, 157-760, 815-818, 735-738, 761-764, 817-820, 1615-1618, 714-717, 83 700-763, 816-819, 1614-1617 586-641, 685-688, 714-717, 705-708, 757-760, 815-818, 735-738, 761-764, 817-820, 1615-1618, 714-717, 83 700-763, 816-819, 1614-1617 586-641, 685-668, 704-710, 378-374, 467-467, 465-468, 509-712, 547-550, 55 700-760, 816-819, 1614-1617 740-715, 65 1097-1100, 144-1447, 1515-1518 11251-128 11251-128 700-760, 816-818, 1040-1043, 1620-1653 869-461, 685-668, 950-563, 680-683, 709-712, 461-4467, 465-468, 500-561, 640-49, 555-558,		1417-1422, 1487-1492, 1699-1704,	1762-1767	1418-1423, 1488-1493, 1702-1707,	1700-1705, 1757-1762, 1778-1783	1138-1143, 1332-1337, 1350-1355,
Noplycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 1591-1590, Noplycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 247-250, 237-250, 236-309, 247-250, 237-250, 236-399, 247-250, 237-250, 237-250, 237-250, 236-549, 247-250, 237-250, 237-250, 236-549, 247-250, 237-250, 236-549, 247-550, 237-550, 237-64, 106-109, 175-178, 287-290, 306-309, 247-550, 237-550, 237-550, 237-550, 237-550, 237-560, 237-560, 237-560, 237-560, 255, 552-555, 554-557, 633-636, 609-683, 709-712, 574-577, 633-636, 609-683, 709-712, 574-577, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 574-757, 633-636, 609-683, 709-712, 7144-1477, 1515-1518 714-717, 81 714-717, 8		1756-1761		1759-1764		1422-1427, 1492-1497, 1515-1520,
N-glycosylation site 106-109, 175-178, 287-290, 306-309, 106-109, 175-178, 287-290, 306-309, 247-250, 23 N-glycosylation site 106-109, 175-178, 287-290, 306-309, 376-379, 477-470, 376-379, 477-474, 520-523, 546-549, 376-379, 477-470, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 520-523, 546-549, 376-379, 477-474, 550-553, 557-553, 567-569, 376-379, 467-470, 378-379, 467-470, 378-379, 467-470, 378-379, 477-474, 567-523, 546-549, 376-370, 317-312, 547-550, 553-553, 569-568, 714-717, 81						1591-1596, 706-1711, 1763-1768
376-379, 471-474, 546-549, 554-557, 311-314, 381-384, 551-554, 300-303, 370-373, 467-470, 378-379, 471-474, 520-523, 546-549, 376-379, 47 633-636, 679-682, 708-711, 734-737, 55-562, 580-583, 592-595, 542-545, 550-553, 695-698, 554-557, 633-636, 680-683, 709-712, 547-550, 553 760-763, 816-819, 1614-1617 638-641, 685-688, 714-717, 705-708, 157-700, 815-818, 735-738, 761-764, 817-820, 1615-1618 714-717, 83 700-763, 816-819, 1614-1617 638-641, 685-688, 714-717, 705-708, 157-700, 815-818, 735-738, 761-764, 817-820, 1615-1618 714-717, 83 700-763, 816-819, 1614-1617 638-641, 65-769, 822-825, 829-892, 1008-1011, 913-916, 91 913-916, 91 Adm Pand CGMP- 464-467, 465-468, 504-507, 610-613, 1640-1043, 1620-162, 821-867, 1044-1447, 1515-1518 1151-1218 1151-1218 Adm Pand CGMP- 464-467, 465-468, 504-507, 610-613, 1040-1043, 1620-163, 615-619, 655-658, 605-609, 464-467, 465-468, 610-613, 611-614, 467-470, 56 Admosphorylation site 1641-1647 1644-1647, 1515-1518 1241-1645 865-868, 814-867, 1755-1762 821-831, 11 Phosphorylation site 1641-1647 1541-1647 1549-1557, 1756-1763 823-831, 11 Phosphorylation site 1548-1	N-glycosylation site	106-109, 175-178, 287-290, 306 -309,	106-109, 175-178, 292-295,	104-107, 174-177, 281-284,	106-109, 175-178, 287-290, 306-309,	247-250, 287-290, 306-309,
633-636, 679-682, 708-711, 734-737, 55-562, 580-583, 592-595, 542-545, 550-553, 695-698, 554-557, 633-636, 680-683, 709-712, 547-550, 553, 695-698, 714-717, 83 760-763, 816-819, 1614-1617 638-641, 685-688, 714-717, 705-708, 155-818, 735-738, 761-764, 817-820, 1615-1618 714-717, 83 760-763, 816-819, 1614-1617 638-641, 685-688, 714-717, 705-708, 757-760, 815-818, 735-738, 761-764, 817-820, 1615-1618 714-717, 83 740-743, 766-769, 832-825, 839-992, 1008-1011, 7105-718 714-7147, 1515-1518 913-916, 92 adpendent protein kinase 611-614, 4657, 465-468, 504-507, 610-613, 460-407, 465-468, 610-613, 611-614, 467-470, 56 phosphorylation site 1641-1647 1041-1647 1151-1518 867-863, 859-862, 1642-1645 865-868, 871, 115-1218 Tyrosine kinase 1141-1644 864-867, 1647-1650 928-931, 1644-1647 1549-1557, 1756-1763 823-831, 11 phosphorylation site 1548-1564 1755-1762 341-344, 353-356 1551-1583 823-881, 11 867-863, 1755-1763 823-831, 11 phosphorylation site 1541-1559 1549-1557, 1756-1763 823-831, 11 1549-1557, 1756-1763 823-831, 11 More coolis <td< td=""><td></td><td>376-379, 471-474, 546-549, 554-557,</td><td>311-314, 381-384, 551-554,</td><td>300-303, 370-373, 467-470,</td><td>378-379, 471-474, 520-523, 546-549,</td><td>376-379, 473-476, 537-340,</td></td<>		376-379, 471-474, 546-549, 554-557,	311-314, 381-384, 551-554,	300-303, 370-373, 467-470,	378-379, 471-474, 520-523, 546-549,	376-379, 473-476, 537-340,
760-763, 816-819, 1614-1617 638-641, 685-688, 714-717, 705-706, 815-818, 735-736, 817-820, 1615-1618 714-717, 81 760-763, 816-819, 1614-1617 638-641, 685-668, 822-825, 829-932, 1008-1011, 735-738, 761-764, 817-820, 1615-1618 714-717, 81 cAMP and cGMP- 464-467, 465-468, 504-507, 610-613, 469-468, 710-713, 1620-1623 1097-1100, 1444-1447, 1515-1518 1215-1618 714-715, 720 obsphonylation site 611-614, 650-653, 858-861, 615-619, 655-658, 607-610, 646-649, 856-859, 650-653, 859-862, 1642-1647 867-868, 81 467-467, 65-468, 610-613, 615-619, 655-658, 607-610, 646-649, 856-859, 650-653, 859-862, 1642-1645 865-868, 81 Tyrosine kinase 1641-1644 864-867, 1647-1650 928-931, 1644-1647 1549-1557, 1756-1763 823-831, 15 Phosphorylation site 1549-1556 1549-1557, 1756-1763 813-383, 11 823-881, 11 823-881, 11 Cell attachment sequence 1730-1732 341-344, 333-356 1551-1559 1549-1557, 1756-1763 823-831, 11 Mosphorylation site 1730-1732 341-344, 333-356 1551-1559 1549-1557, 1756-1763 823-831, 11 Mosphorylation site 1730-1732 1549-1557, 1756-1763 823-831, 11 1549-1557, 1756-1763 823-831, 11 Mosphorylation site 1730-1732 1549-1557, 175		633-636, 679-682, 708-711, 734-737,	55-562, 580-583, 592-595,	542-545, 550-553, 695-698,	554-557, 633-636, 680-683, 709-712,	547-550, 555-558, 635-638,
740-743, 766-769, 822-825, 829-992, 1008-1011, 913-916, 92 cAMP and cGMP- 464-467, 465-468, 504-507, 610-613, 490-472, 470-473, 509-512, 401-444, 1447, 1515-1518 1215-1218 cAMP and cGMP- 464-467, 465-468, 504-507, 610-613, 490-472, 470-473, 509-512, 401-447, 1515-1518 1215-1218 phosphorylation site 611-614, 650-653, 858-861, 615-619, 655-658, 607-610, 646-649, 856-859, 650-653, 859-862, 1642-1645 865-868, 816, 126, 126, 126, 126, 126, 126, 126, 1		760-763, 816-819, 1614-1617	638-641, 685-688, 714-717,	705-708, 757-760, 815-818,	735-738, 761-764, 817-820, 1615-1618	714-717, 824-827, 838-841,
AMP and CGMP- 464-467, 465-468, 504-507, 610-613, 469-472, 470-473, 509-512, 461-464, 1515-1518 1215-1218 CAMP and CGMP- 464-467, 465-468, 504-507, 610-613, 469-472, 470-473, 509-512, 461-464, 500-503, 606-609, 464-467, 465-468, 610-613, 611-614, 467-470, 55 1215-1218 dependent protein kinase 611-614, 450-473, 509-512, 461-4647 461-467, 465-468, 610-613, 611-614, 467-470, 55 467-470, 55 dependent protein kinase 611-614, 650-633, 858-861, 615-619, 655-658, 607-649, 856-899, 650-639, 856-899, 650-639, 856-889, 856-868, 85 865-868, 85 hoosphorylation site 1641-1644 864-867, 165-1162 381-31, 15 phosphorylation site 1541-1554 1549-1557, 1756-1763 823-831, 15 phosphorylation site 1730-1732 663-665, 1733-1735 1731-1733 1209-1230, 1200-1230, 1200-1230			740-743, 766-769, 822-825,	829-832, 989-992, 1008-1011,		913-916, 924-927, 961-964,
cdMP and cGMP- 464-467, 465-468, 504-507, 610-613, 469-472, 470-473, 509-512, 461-464, 500-503, 606-609, 464-467, 465-468, 610-613, 611-614, 467-470, 50 dependent protein kinase 611-614, 650-653, 858-861, 615-618, 615-618, 616-619, 655-658, 607-610, 646-649, 856-859, 650-653, 859-862, 1642-1645 865-868, 85 phosphorylation site 1641-1644 864-867, 1647-1650 928-931, 1644-1647 1559 1559, 1559-1557, 1756-1763 823-831, 12 prosine kinase 1548-1556, 1755-1762 341-344, 353-356 1551-1559 1551-1559 1557, 1756-1763 823-831, 12 phosphorylation site 1730-1732 663-665, 1733-1735 1731-1733 120-1230, 1200-1230, 1600-165 cminal 1600-165 cminal			1040-1043, 1620-1623	1097-1100, 1444-1447, 1515-1518		1215-1218
dependent protein kinase 611-614, 650-653, 858-861, 615-618, 616-619, 655-658, 607-610, 646-649, 856-859, 650-653, 859-862, 1642-1645 865-868, 85 phosphorylation site 1641-1644 864-867, 1647-1650 928-931, 1644-1647 863-862, 1642-1645 855-868, 85 Tyrosine kinase 1548-1556, 1755-1762 341-344, 353-356 1551-1559 1549-1557, 1756-1763 823-831, 15 phosphorylation site 1730-1732 341-344, 353-356 1551-1559 1571-1733 823-831, 15 cell attachment sequence 1730-1732 663-665, 1733-1735 1731-1733 1209-1230 Microbodies c-terminal 1660-618 c-terminal 1663-665, 1733-1735 1731-1733 1861-1883	cAMP and cGMP-	464-467, 465-468, 504-507, 610-613,	469-472, 470-473, 509-512,	461-464, 500-503, 606-609,	464-467, 465-468, 610-613, 611-614,	467-470, 506-509, 612-615, 613-616,
phosphorylation site 1641-1644 864-867, 1647-1650 928-931, 1644-1647 1549-1577, 1756-1763 823-831, 15 Tyrosine kinase 1548-1556, 1755-1762 341-344, 353-356 1551-1559 1549-1557, 1756-1763 823-831, 15 phosphorylation site 1730-1732 341-344, 353-356 1551-1559 1731-1733 1209-1230 Cell attachment sequence 1730-1732 663-665, 1733-1735 1731-1733 1209-1230 Microbodies c-terminal 1861-1863 1861-1863 1861-1863 1861-1863	dependent protein kinase	611-614, 650-653, 858-861,	615-618, 616-619, 655-658,	607-610, 646-649, 856-859,	650-653, 859-862, 1642-1645	865-868, 893-896, 1648-1651
Tyrosine kinase 1548-1556, 1755-1762 341-344, 353-356 1551-1559 1549-1557, 1756-1763 823-831, 15 phosphorylation site 261 attachment sequence 1730-1732 823-831, 15	phosphorylation site	1641-1644	864-867, 1647-1650	928-931, 1644-1647		
phosphorylation site Cell attachment sequence 1730-1732 663-665, 1733-1735 1731-1733 1209-1230, Leucin zipper pattern Microbodies c-terminal 1861-1863	Tyrosine kinase	1548-1556, 1755-1762	341-344, 353-356	1551-1559	1549-1557, 1756-1763	823-831, 1555-1563, 1762-1769
Cell attachment sequence 1730-1732 663-665, 1733-1735 1731-1733 1209-1230. Leucin zipper pattern Microbodies c-terminal 1861-1863	phosphorylation site					
1209-1230, Microbodies c-terminal 1861-1863	Cell attachment sequence	1730-1732		663-665, 1733-1735	1731-1733	
Microbodies c-terminal 1861-1863	Leucin zipper pattern					1209-1230, 1732-1739
	Microbodies c-terminal					1861-1863
targeting signal	targeting signal					

6

Table 4: Motifs in cattle, sheep, pig, A. buffalo and human BRCA1 protein

Fig. 2(a-e): Tertiary structures of (a) Cattle, (b) Sheep, (c) Pig, (d) A. buffalo and (e) Human BRCA1 proteins in cartoon model as displayed by Rasmol

The alpha helix (pink spiral sheet), the random coil (blue strand), extended strands (white strands), beta sheet (yellow)

Secondary structure					
element (%)	Cattle	Sheep	Pig	A. buffalo	Human
Alpha helix	30.18	28.68	28.77	30.11	32.15
310 helix	0.00	0.00	0.00	0.00	0.00
Pi helix	0.00	0.00	0.00	0.00	0.00
Beta bridge	0.00	0.00	0.00	0.00	0.00
Extended strand	13.30	14.12	14.65	12.97	12.56
Beta turn	0.00	0.00	0.00	0.00	0.00
Bend region	0.00	0.00	0.00	0.00	0.00
Random coil	56.52	57.20	56.58	56.92	55.29
Ambiguous states	0.00	0.00	0.00	0.00	0.00
Other states	0.00	0.00	0.00	0.00	0.00

 Table 5: Protein secondary structure of BRCA1 protein as calculated using GORIV

variations on the random coil of the secondary structure of BRCA1 protein of the five species with the random coil of sheep BRCA1 protein occupying 57.20% of the structure (Table 5, Fig. 2).

DISCUSSION

The BRCA1 genes are reportedly involved in processes such as DNA repair, regulation of cell cycle, transcription processes as well as other important pathways leading to the inhibition of tumour and to ensure that the organism's genome maintain stability^{2,3}. Regrettably, protein-truncating mutations across BRCA1 gene have predisposed organisms, especially human to increased cumulative risk of breast (60-80%) and ovarian (20-40%) cancers⁴⁻⁷. implicated as a new candidate gene for bovine mastitis, however, its polymorphism in various cattle breeds have not been investigated. The thrust of the present report was to evaluate the phylogenetic relationship of BRCA1 genes in different mammalian species but with more emphasis on domesticated species. The essence is that the disease that may be linked to the BRCA1 genes of these domestic mammals might spell doom on food security and nutrition as it causes major economic losses to the dairy industry. Rajasekaran *et al.*⁹ reported that 50% of the reported changes in BRCA1 gene are frameshift mutations. Here, we report nucleotide amino acids sequence lengths variations comparing the cattle, sheep, pig, A. buffalo and the human BRCA1 gene. It is also affirmed that

Yuan et al.¹⁰ reported that bovine BRCA1 gene has been

sequence length variations are caused by indels mutations, which might have accumulated during evolution.

Organisms with high percentage similarity in their genes have a similar pattern of evolution as well as differentiation²³. From our result, percentage identity among cattle, sheep, pig and A. buffalo when compared with that of human BRCA1 amino acids ranged 72-74% showing that they may had similar pattern of evolution. This was also the case for percentage similarity (81-83%). Importantly, sequences with percent similarity approximately 70% imply that identical homology, function similarity and very high conservation in BRCA1 gene. Additionally, Joshi and Xu²⁴ observed that if two sequences have sequence identity greater than 70%, it is suggested that they have about 90% probability or more to share the same biological processes and functions. Proteins in the same family share at least more than 30% amino acid sequence similarity. This might lead to sharing of some structural characteristics²⁵. The implication of zero E-value is that the percent identity and similarity obtained were significant²⁶ suggesting that the result reported here is correct.

The phylogenetic relationship of the mammalian BRCA1 genes is such that species of similar eating habits are clustered together. These result suggested that the closer the percentage identity and similarity among species, the more possibility of being clustered together. Yuan et al.¹⁰ reported that BRCA1 gene is the candidate gene for bovine mastitis, this may not imply that it should be implicated for other tumour-related diseases in other mammalian species found in the same sub-clade such as sheep, pig and A. buffalo. To buttress the above, Ma et al.27 reported that BRCA1 gene knockout in mouse model provoked embryonic lethality while conditional knockout in breast tissue resulted to tumour development after a long latency. It might be pertinent here to stress that though the different domestic farm mammals chosen have BRCA1 gene at different chromosome locations, their breast biology²⁸ as well as cancer genetics²⁹ vary widely. It thus becomes difficult to use one model to infer the function of BRCA1 gene in another species even when mutated.

Laud *et al.*³⁰ opined that BRCA1 gene has regulatory effects on steroid and growth hormones, especially in the induction of mammary epithelial cell proliferation. Taking together with other functions of BRCA1 genes earlier mentioned, the implication is that BRCA1 gene might play different role in different mammalian species even when mutated. This might be dependent on the motifs where the action takes place. To underscore the adequacy of the phylogenetic tree, the time of divergence of the mammalian species corroborates the previous reports of Stone *et al.*²³ Babb *et al.*³¹ and Psouni *et al.*³². According to Kyte and

Doolittle³³, GRAVY value greater than zero indicates a relatively hydrophobic protein. However, the GRAVY values obtained in this study for cattle, sheep, pig, A. buffalo and human BRCA1 protein are less than zero, which implies that they are rather hydrophilic in nature. The fact that BRCA1 protein in all the five mammalian species discussed in this report have higher negatively charged residues than positively charged residues makes BRCA1 protein in these species intracellular³⁴. According to Guruprasad et al.35, instability index, which is the measure of the stability of a protein *in vitro* when it is greater than 40, it means that the protein may be stable. This as reported by Sharma et al.³⁶ is accounted for by the abundance of cysteine as a result of the formation of disulphide bond in the protein molecule. Regrettably, we report instability index that are greater than 50, which might suggest that this protein is probably unstable in vitro.

Sequence motifs are short recurring patterns in the DNA that are presumed to have a biological function. Most often they indicate sequence-specific binding sites for proteins such as nucleases and transcription factors. However, others may be involved in important processes at the RNA level, including ribosome binding, mRNA processing as well as transcription termination. Out of the nine motifs predicted in the mammalian species investigated, leucine-zipper pattern and microbodies c-terminal targeting signal were only present in the BRCA1 protein of human suggesting that they may be linked to DNA binding and protein dimerization³⁷ and give assistance in the conversion of lipids to carbohydrate. For emphasis, other motifs that are found in the mammalian species are very important in the correct functioning of the system. Chung et al.38, Whisler et al.39, Maurer-Stroh et al.40 and Jin et al.41 reported lay credence to the above claim.

Our result showed that on the secondary structure of BRCA1 protein of the five mammalian species, secondary elements were only alpha helix, extended strands as well as random coil. These three structures have been implicated for the folding stability and function of the protein.

CONCLUSION

The implication of results taking together is that BRCA1 gene is found in diverse mammals but with varying gene and protein characteristics. Though BRCA1 gene has been indicted to cause breast/ovarian cancer in human and as candidate gene for bovine mastitis, it might be difficult to generalize that the gene may also be responsible for any mammary tumour in these mammals evaluated.

SIGNIFICANCE STATEMENTS

- BRCA1 gene has been implicated in breast and ovarian cancer in humans
- Different domestic mammals are also susceptible to this disease
- There is every possibility that the gene implicated in humans may have evolutionary relationship, which may be correlated with the disease
- It therefore becomes imperative to use bioinformatics tools to understand this relationship, which may help veterinary experts and provide baseline information as regards prevention and treatment

ACKNOWLEDGMENTS

The author would like to thank the Bioinformatics and Genome Science Unit of the Department of Genetics and Biotechnology, University of Calabar, Nigeria for technical assistance as well as Dr. Durosaro of FUNNAB, Abeokuta, Nigeria.

REFERENCES

- Donninger, H., K. Hobbing, M.L. Schmidt, E. Walters, L. Rund, L. Schook and G.J. Clark, 2015. A porcine model system of BRCA1 driven breast cancer. Frontiers Genet., Vol. 6. 10.3389/fgene.2015.00269.
- 2. Scully, R. and D.M. Livingston, 2000. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature, 408: 429-432.
- Xu, J., B. Wang, Y. Zhang, R. Li, Y. Wang and S. Zhang, 2012. Clinical implications for BRCA gene mutation in breast cancer. Mol. Biol. Rep., 39: 3097-3102.
- 4. Antoniou, A.C., S.A. Gayther, J.F. Stratton, B.A.J. Ponder and D.F. Easton, 2000. Risk models for familial ovarian and breast cancer. Genet. Epidemiol., 18: 173-190.
- Kennedy, R.D., J.E. Quinn, P.G. Johnston and D.P. Harkin, 2002. BRCA1: Mechanisms of inactivation and implications for management of patients. Lancet, 360: 1007-1014.
- Krum, S.A., J.E. Womack and T.F. Lane, 2003. Bovine BRCA1 shows classic responses to genotoxic stress but low *in vitro* transcriptional activation activity. Oncogene, 22: 6032-6044.
- Whitehouse, C., J. Chambers, A. Catteau and E. Solomon, 2004. BRCA1 expression is regulated by a bidirectional promoter that is shared by the Nbr1 gene in mouse. Gene, 326: 87-96.
- 8. Shen, D. and J.V. Vadgama, 1999. BRCA1 and BRCA2 gene mutation analysis: Visit to the breast cancer information core (BIC). Oncol. Res. Featuring Preclinical Clin. Cancer Ther., 11: 63-69.

- 9. Rajasekaran, R., C. Sudandiradoss, C.G.P. Doss and R. Sethumadhavan, 2007. Identification and in silico analysis of functional SNPs of the BRCA1 gene. Genomics, 90:447-452.
- Yuan, Z., J. Li, J. Li, L. Zhang, X. Gao, H.J. Gao and S. Xu, 2012. Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene, 505: 190-194.
- 11. Nash, D.L., G.W. Rogers, J.B. Cooper, G.L. Hargrove and J.F. Keown, 2003. Heritability of intramammary infections at first parturition and relationships with sire transmitting abilities for somatic cell score, udder type traits, productive life and protein yield. J. Dairy Sci., 86: 2684-2695.
- 12. Ruegg, P.L., 2003. Investigation of mastitis problems on farms. Vet. Clin. N. Am.: Food Anim. Pract., 19: 47-73.
- Zhang, L.P., Q.F. Gan, T.H. Ma, H.D. Li and X.P. Wang *et al.*, 2009. Toll-like receptor 2 gene polymorphism and its relationship with SCS in dairy cattle. Anim. Biotechnol., 20: 87-95.
- 14. Awale, M.M., G.B. Dudhatra, A. Kumar, B.N. Chauhan and D.R. Kamani *et al.*, 2012. Bovine mastitis: A threat to economy. Open Access Scient. Rep., Vol. 1.
- 15. Miki, Y., J. Swensen, D. Shattuck-Eidens, P.A. Futreal and K. Harshman *et al.*, 1994. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266: 66-71.
- Lane, T.F., C. Deng, A. Elson, M.S. Lyu, C.A. Kozak and P. Leder, 1995. Expression of BRCA1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev., 9: 2712-2722.
- 17. Madsen, O., M. Scally, C.J. Douady, D.J. Kao and R.W. DeBry *et al.*, 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409: 610-614.
- Thompson, J.D., D.G. Higgins and T.J. Gibson, 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol., 28: 2731-2739.
- De Castro, E., C.J.A. Sigrist, A. Gattiker, V. Bulliard and P. S. Langendijk-Genevaux *et al.*, 2006. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucl. Acids Res., 34: W362-W365.
- 21. Garnier, J., J.F. Gibrat and B. Robson, 1996. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol., 266: 540-553.
- 22. Kelley, L.A. and M.J.E. Sternberg, 2009. Protein structure prediction on the web: A case study using the Phyre server. Nat. Protocols, 4: 363-371.

- 23. Stone, A.C., F.U. Battistuzzi, L.S. Kubatko, G.H. Perry, E. Trudeau, H. Lin and S. Kumar, 2010. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure. Philos. Trans. R. Soc. London B: Biol. Sci., 365: 3277-3288.
- 24. Joshi, T. and D. Xu, 2007. Quantitative assessment of relationship between sequence similarity and function similarity. BMC Genomics, Vol. 8. 10.1186/1471-2164-8-222
- 25. Lehninger, A.L., D.L. Nelson and M.M. Cox, 1993. Principles of Biochemistry. 2nd Edn., Worth Publisher, New York.
- 26. Lesh, A.M., 2002. Introduction to Bioinformatics. 2nd Edn., Oxford University Press, Oxford, Pages: 255.
- Ma, Y., S. Fan, C. Hu, Q. Meng and S.A. Fuqua *et al.*, 2010. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol. Endocrinol., 24: 76-90.
- 28. Dine, J. and C.X. Deng, 2013. Mouse models of BRCA1 and their application to breast cancer research. Cancer Metastasis Rev., 32: 25-37.
- 29. Kendall, S.D., C.M. Linardic, S.J. Adam and C.M. Counter, 2005. A network of genetic events sufficient to convert normal human cells to a tumorigenic state. Cancer Res., 65: 9824-9828.
- Laud, K., I. Gourdou, L. Belair, D.H. Keisler and J. Djiane, 1999. Detection and regulation of leptin receptor mRNA in ovine mammary epithelial cells during pregnancy and lactation. FEBS Lett., 463: 194-198.
- Babb, P.L., E. Fernandez-Duque and T.G. Schurr, 2010. AVPR1A sequence variation in monogamous owl monkeys (*Aotus azarai*) and its implications for the evolution of platyrrhine social behavior. J. Mol. Evolution., 71: 279-297.
- 32. Psouni, E., A. Janke and M. Garwicz, 2012. Impact of carnivory on human development and evolution revealed by a new unifying model of weaning in mammals. PloS One, Vol. 7. 10.1371/journal.pone.0032452.

- Kyte, J. and R.E. Doolittle, 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 157: 105-132.
- Andrade, M.A., S.I. O'Donoghue and B. Rost, 1998. Adaptation of protein surfaces to sub cellular location. J. Mol. Biol., 276: 517-525.
- Guruprasad, K., B.V.B. Reddy and M.W. Pandit, 1990. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting *in vivo* stability of a protein from its primary sequence. Protein Eng. Des. Sel., 4: 155-161.
- Sharma, N., R. Kushwaha, J.S. Sodhi and T.C. Bhalla, 2009. *In silico* analysis of amino acid sequences in relation to specificity and physicochemical properties of some microbial nitrilases. J. Proteom. Bioinform., 2: 185-192.
- 37. Sessa, G., C. Steindler, G. Morelli and I. Ruberti, 1998. The Arabidopsis athb-8,-9 and genes are members of a small gene family coding for highly related HD-ZIP proteins. Plant Mol. Biol., 38: 609-622.
- Chung, M., J. Lee, T. Terasawa, J. Lau and T.A. Trikalinos, 2011. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: An updated meta-analysis for the U.S. preventive services task force. Ann. Internal Med., 155: 827-838.
- Whisler, R.L., M.A. Goyette, I.S. Grants and Y.G. Newhouse, 1995. Sub lethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch. Biochem. Biophys., 319: 23-35.
- Maurer-Stroh, S., B. Eisenhaber and F. Eisenhaber, 2002. N-terminal N-myristoylation of proteins: Prediction of substrate proteins from amino acid sequence. J. Mol. Biol., 317: 541-557.
- Jin, Y., Y. Wang, D.L. Walker, H. Dong, C. Conley, J. Johansen and K.M. Johansen, 1999. JIL-1: A novel chromosomal tandem Kinase implicated in transcriptional regulation in *Drosophila*. Mol. Cell, 4: 129-135.