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Abstract
Background and Objective: Precursor microRNA expressions vary depending on their cellular environment and a large amount of
genome segments can be folded in similar pseudo precursor’s microRNA hairpins like structure. Therefore, detection of true precursor
microRNA in a genome is challenging task. The computational prediction of precursor MicroRNAs first distinguishes a large amount of
similar folded hairpins like structure in genome sequence as a pseudo or true precursor miRNAs. However, researchers need to be
improving methods for identification of precursor MicroRNA in a genomic sequence. Materials and Methods: In this computational
method, supervised machine learning approach was used as a classifier for classifying the true precursor miRNAs using sequence and
secondary structure information. Results: The support vector machine (SVM) classifier achieved accuracy (Q) of 96.28% for predicting true
pre-miRNAs.  Here,  a  new  precursor  miRNA  identification  tool-PremipreD  was  developed  which  performs  better  in  comparison
to existing tools, in terms of overall performance and specificity. Conclusion: The PremipreD algorithm reduces the number of false
positive prediction rate by using effective Support vector machine methods.
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INTRODUCTION

MicroRNAs (miRNAs) are ~22 nucleotide long with small
non-coding single-stranded RNA molecules serving as master
regulators  of  gene  expression  at  the  post-transcriptional
level1. MicroRNAs are primarily transcribed by RNA polymerase
II to produce primary miRNA with hairpin-like secondary
structures1. The primary miRNAs are processed by the Drosha
to generate precursor miRNA (Pre-miRNA) hairpin structures1,2.
The hairpin pre-miRNAs are transported to the cytoplasm
through the nuclear pore with the help of exportin-5 protein3.
The  pre-miRNA  hairpin  structures  act  as  a  structural  motif
for exportin-5 protein and also as a substrate for Dicer
enzyme1-3. The precursor secondary structures of the miRNA
are   important   for   miRNA   biogenesis.   In   the   cytoplasm,
pre-miRNAs are sliced by RNase III enzyme Dicer, which cuts
them  into  ~22  nucleotide  long  miRNA  duplexes2.  The
miRNA duplexes quickly convert into ~22 nucleotides long
single-stranded small miRNAs. These miRNAs recognize their
targets mainly by base-pairing interactions between the 5-end
of the miRNA with the 3 -UTR of the genes2. The importance of
miRNA research was rapidly increasing in molecular biology
due to its impact on gene regulation. The MicroRNAs are
associated with many gene regulation phenomena, such as
those of neurodegenerative disorders, diabetes, cancer, cell
development and cell death4. The MicroRNAs have low levels
of expression and some are expressed in specific conditions
only4,5. Due to these reasons, analysis of miRNA expressions
with experimental studies is difficult. The miRNA sequences
are found in non-coding sequences, making the identification
of miRNA a technically challenging task in wet lab
experiments5. The MicroRNA expression depends on various
external factors such as cell type, physiological state of the
organism and molecular tinkering of the gene4,5. Identification
of miRNA discovery in next-generation sequencing (NGS)
technology identifies thousands of gene expression in a single
run, but miRNA expression depends on the biological
condition4,6. The discovery of novel miRNAs from the
organisms is still a great challenging task, therefore, a
computational approach can help analyze the miRNA
expression and miRNA detection7.

Some researchers have developed computational
methods for identifying miRNAs by using homology-based
search and machine learning approaches. Homology-based
approaches identify the conserved miRNAs from genomic
sequences using BLAST search8. Many miRNA genes are not
conserved, making the identification of non-conserved
miRNAs from homology unfeasible.

Several authors suggested that pre-miRNA hairpin
secondary structure and sequential information can  assist  in

the computational identification of precursor miRNAs9-11.
Machine learning approaches such as Support Vector Machine
(SVM) can solve this problem. Some miRNA detection tools are
developed based on machine learning algorithms, such as
MiRenSVM12, MiRPara13, MiPred14, ViralmiR15, microPred16,
MiRFinder17,        iMcRNA-PseSSC18,        iMiRNA-PseDPC19,
miRNA-deKmer20 and miRNA-dis21, that looks for the miRNA
gene. Most of the machine learning approaches uses known
pre-miRNA as a positive data set and pseudo hairpins as a
negative dataset for training their models. Some of the most
important features of the machine learning techniques are
nucleotide frequency, base-pairing interactions, structure
properties and thermodynamic stability.

The vast number of sequences in the genome can fold
into miRNA precursor like hairpin secondary structures17. The
computational prediction of pre-miRNAs first distinguishes a
genome sequence as a pseudo or true precursor miRNA22.
However, researchers have been using limited techniques for
identification of precursor miRNAs in genomic sequences. In
this study, a machine learning approach was presented based
on the support vector machine for identification of precursor
miRNA genes in a given unknown precursor miRNAs
secondary structures query sequence, called PremipreD, a
reliable computational approach for improved identification
of precursor miRNAs which can be used for identifying
precursor miRNAs more efficiently.

MATERIALS AND METHODS

Research initial starting on March, 2016 and finalized by
April, 2017.

Support vector machine dataset: The precursor miRNAs
classifying system is trained with known precursor miRNAs as
a positive dataset and the pseudo precursor miRNAs hairpins
as a negative dataset. For positive miRNA precursors’ datasets
were downloaded from miRBase in 03/07/2014 (release 20)
which    contains    24521    precursor    miRNA23.    Duplicate
pre-miRNAs are removed from the dataset and then randomly
selected 10579 precursor miRNAs sequences from different
species (animal, plant and virus). The Negative dataset is
collected from Xue 8494 pseudo miRNAs22, Zou 1446 pseudo
miRNAs24 and 639 tRNA from GtRNAdb 2.025,26. The Negative
dataset is selected by widely accepted pseudo-miRNAs
characteristics:  Minimum  of  18  base  pairings,  maximum  of
-15 kcal molG1 free energy and one loop22. To avoid imbalance
problem,  10579  negative  pseudo-miRNAs  precursor
sequences and 10579 positive miRNA precursors’ sequences
were selected.
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Support vector machine feature extractions: Based on
observations, the method focused on precursor miRNAs
secondary  structural  conformation  and  sequence
information12,22,24. In present study, we used three featured
category    for    classifying    the    pre-miRNAs    and    pseudo
pre-miRNAs. In the first featured category, we focused on
secondary structure conformation based on class intervals12.
In the second featured category triplet structure-sequence
elements information were considered 22. The third featured
category focused on Tri-nucleotides sequence composition
information23. The miRNA precursor secondary structures are
predicted using RNAfold (Vienna package)27. Precursor miRNA
secondary structures are represented in dot-bracket notation.

Secondary structural conformation feature: Precursor
miRNA secondary structural pattern such as the intramolecular
base pairing of precursor miRNA is a significant important
feature for classifying the precursor miRNAs12. The
discriminative  powers  of  the  two  different  class  of
precursor    miRNAs    secondary    structural    conformation
(dot-bracket notation) are analyzed27. Precursor miRNA
secondary structural feature such as Minimum Free Energy,
Watson-crick base pairing (AU, GC), Wobble base pairing (G-U)
and unpaired bases (A, G, C, U) is divided by sequence length.
The precursor miRNA feature is analyzed in the class interval
based in F-score method as can be seen in Eq. 112. The
discriminatory power of each precursor miRNA secondary
structural conformation feature F-score was shown in Table 1
and the 13 most important SVM features F-score are selected
and the selected SVM features are highlighted in bold.

Triplet structure-sequence elements features: The RNAFold
predicted  dot-bracket  notation  secondary  structure,  paired
as   "("   and   unpaired   as   ".",   respectively.   In   triplet
structure-sequence feature selections for precursor miRNA,
three contiguous structures information "(((", "((.", "(..", "(.(",
".((",  ".(.",  "..("  ,"..."  and  one  middle  nucleotides  among  the
3 information in bold "xAx", "xUx", "xGx", etc "xCx" , there are
32  (8×4)  possible  structure-sequence combinations,  which

we denote as "U(((", "A((." and so on are shown in (Table 2). For
each 32 triplet structure-sequence, features were analysed
using F score (Eq. 1). The 11 most important SVM feature are
selected and selected SVM features were highlighted in bold22.

Tri-nucleotide sequence composition features: In the third
method,  we  focus  on  the  Tri-nucleotide  sequence
composition of precursor miRNA. For Tri-nucleotide feature
selection,  we  analyzed  the  discriminative  powers  of  the
two    different    class    of    precursor    miRNA    sequence24.
64  Tri-nucleotide  composition  elements  are  analyzed  using
F-score described in Eq. 1. Table 3 showed that the most
discriminative 10 tri-nucleotide SVM features are selected and
the selected SVM features are highlighted in bold.

Feature selection: The F-score is a feature selection technique
which measures the discriminate power of two sets of real
numbers. In general, most important feature selections of two
real datasets information of features lead to production of a
better performance of model. In training vectors xk, k = 1,... m,
if the number of true positive and true negative instances are
n+ and nG , respectively, then the F-score of the i-th feature
was defined in Eq. 1:
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negative are the average of the i-th feature of the data sets,
respectively,  is the i-th feature of the k-th true positive( )

k, ix 

instance and  is the i-th feature of the k-th true negative( )
k, ix 

instance16. The F-score threshold was chosen based on SVM
model accuracy using various cut-off F-score. Using a cut-off
F-score, the retained features are 102, 92, 73, 66, 34 and 31
and the corresponding accuracy of the SVM model are 91.94,
92.39, 93.65, 94.13, 96.28 and 95.41%, respectively. F-score
greater than 34 features give better accuracy. Therefore it was
decided to use 34 precursor miRNA features as the best
feature for our SVM model.

Table 1: Frequency of secondary structural conformation feature in class interval (category 1)
Feature name 1-10 11-20 21-30 31-40 41-50 51-60 61-100
Pre-miRNA free energy 0.0000 0.0094 0.0686 0.0013 0.0405 0.0180 0.0047
Total base pairing (AU,GC,GU) 0.0000 0.0001 0.0903 0.0146 0.1686 0.0002 0.0000
Unpaired bases adenine (A) 0.0946 0.0629 0.0080 0.0000 0.0000 0.0000 0.0000
Unpaired bases guanine (G) 0.0536 0.0477 0.0008 0.0000 0.0000 0.0000 0.0000
Unpaired bases uracil (U) 0.0052 0.0027 0.0013 0.0000 0.0000 0.0000 0.0000
Unpaired bases cytosine (C) 0.1142 0.0915 0.0043 0.0000 0.0000 0.0000 0.0000
Base pairing (AU) 0.3680 0.0985 0.0669 0.0002 0.0000 0.0000 0.0000
Base pairing (GC) 0.0031 0.0036 0.0152 0.0000 0.0000 0.0000 0.0000
Wobble base pairing (G-U) 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 2: Frequency of triplet structure-sequence elements features (category 2)
A((( = 0.4424 U((( = 0.4664 G((( = 0.1192 C((( = 0.0661
A((. = 0.0923 U((. = 0.0853 G((. = 0.0408 C((. = 0.0431
A(.( = 0.0157 U(.( = 0.0590 G(.( = 0.0015 C(.( = 0.0376
A(.. = 0.0264 U(.. = 0.0058 G(.. = 0.0300 C(.. = 0.0402
A.(( =  0.0728 U.(( =  0.0661 G.(( =  0.0457 C.(( =  0.0145
A.(. =  0.0000 U.(. = 0.0003 G.(. =  0.0193 C.(. =  0.0113
A..( =  0.0289 U..( =  0.0038 G..( =  0.0317 C..( =  0.0450
A... =  0.0148 U... =  0.0000 G... =  0.1380 C... =  0.1512

Table 3: Frequency of tri-nucleotide sequence composition features (category 3)
AAA = 0.0861 UAA = 0.1305 GAA = 0.0292 CAA = 0.0547
AAU = 0.1520 UAU = 0.1924 GAU = 0.0698 CAU = 0.0696
AAG = 0.0241 UAG = 0.0779 GAG = 0.0011 CAG = 0.0397
AAC = 0.0397 UAC = 0.0753 GAC = 0.0103 CAC = 0.0007
AUA = 0.1571 UUA = 0.1606 GUA = 0.0747 CUA = 0.0959
AUU = 0.2030 UUU = 0.1865 GUU = 0.1362 CUU = 0.0572
AUG = 0.0798 UUG = 0.1827 GUG = 0.0162 CUG = 0.0126
AUC = 0.0470 UUC = 0.0584 GUC = 0.0037 CUC = 0.0023
AGA = 0.0116 UGA = 0.0893 GGA = 0.0059 CGA = 0.0051
AGU = 0.0663 UGU = 0.1627 GGU = 0.0003 CGU = 0.0000
AGG = 0.0192 UGG = 0.0025 GGG = 0.0381 CGG = 0.0318
AGC = 0.0023 UGC = 0.0121 GGC = 0.0597 CGC = 0.0199
ACA = 0.0345 UCA = 0.0497 GCA = 0.0019 CCA = 0.0240
ACU = 0.0515 UCU = 0.0476 GCU = 0.0000 CCU = 0.0172
ACG = 0.0006 UCG = 0.0000 GCG = 0.0154 CCG = 0.0556
ACC = 0.0113 UCC = 0.0190 GCC = 0.0605 CCC = 0.0789

Support vector machines and SVM model selection: For the
proper training of SVM models, selection of several hyper
parameters is an essential prerequisite, their parameters
values determine the function that SVM optimizes and it has
a significant impact on the performance of the trained SVM
classifiers. The best hyper-parameter set was selected  by  a
10-fold cross-validation on the dataset. The widely used radial
basis function (RBF) kernel was chosen for training of the
model12. The SVM learns from the transformation of the input
data into another higher dimensional feature space for
accurate classification. The training input vector corresponds
to  the  precursor  miRNA  specific  features  such  as  {+1,-1}
(+1 for true precursor miRNAs, -1 for pseudo precursor
miRNAs). We built SVM model based on the 34 features.
Therefore, all the positive and negative precursor miRNAs from
the training set are implicitly mapped from the input space to
a feature space determined by the RBF kernel. In this feature
space an optimal hyper-plane is learned by the SVM. In this
regard, a suitable setting of the SVM parameter C and the RBF
kernel parameter gamma (g) are determined with a 10-fold
cross validation on the training dataset. The parameter C is
used to control the trade-off between the training errors and
parameter gamma controls the width of the RBF kernel. From
the experiment, the best set of parameters for 34 feature set
were obtained as C = 10 and g = 0.212.

These performance metrics are defined as follows:

C Sensitivity (SE) = TP/TP+FN
C Specificity (SP) = TN/TN+FP
C Accuracy (Q) = TP+TN/TP+TN+FP+FN

RESULTS AND DISCUSSION

Performance  measures  for  the  SVM  model:  The
performance of this method was measured by the total
number of true positives (TP), true negatives (TN), false
positives (FP), false negatives (FN), sensitivity (SE), specificity
(SP)  and  accuracy  (Q)  and  area  under  the  curve  (AUC)12-17.
In order to assess the performance of models developed in
this study, various parameters like sensitivity, specificity and
accuracy  (Q)  and  area  under  the  curve  (AUC)  were
calculated  as  shown  in  Table  4.  Performance  measurement
of  SVM  model  tested  with  data  from  miRBase  in
03/07/2014   (release   20)23   in   ten-fold   cross   validation.
About  90%  of  the  dataset  was  employed  for  training  the
SVM models and the remaining independent 10% was used
for testing. This process was iterated 10 times. The predictive
performance of classifiers was evaluated by an SVM threshold
zero.

Comparison of PremipreD prediction abilities of precursor
miRNAs using completely independent test data with
existing prediction tools: The predictive ability of this
method (PremipreD) was compared to four other current
miRNA predictions software packages iMcRNA-PseSSC18,
iMiRNA-PseDPC19, miRNA-deKmer20 and miRNA-dis21. The
software was tested with randomly selected 500 positive,
completely independent test data set, which were retrieved
from new releases miRBase (v 21)23. About 500 pre-miRNA-like
hairpins negative test data set was built from (SinEx DB: A
database for single exon coding sequences in mammalian
genomes)28. This database curetted Eukaryotic ‘single exon
genes’ protein-coding sequence (CDS). These protein-coding
sequence   (CDS)   segments,   though   they   are   similar   to
pre-miRNAs   structures   but   have   not   been   reported   as
pre-miRNAs. For creating negative test data, widely accepted
characteristics were used: minimum of 18 base pairings,
maximum of -15 kcal/mol free energy and one loops are
taken22. Ability to correctly predict experimentally verified
known precursor miRNA and pre-miRNA-like hairpins negative
test data set is tested, PremipreD outperformed all other
packages (Table 5).
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Fig. 1: Screenshot of PremipreD tool GUI give precursor miRNA output

Fig. 2: ROC curve denotes the performance of this method,
the Y-axis represents the true positive rate (sensitivity)
and X-axis shows the false positive rate (1-specificity)

Table 4: Performance of the SVM model in ten-fold cross validation
TP FN TN FP Sensitivity Specificity Accuracy AUC
10294 285 10077 502 0.9731 0.9525 0.9628 0.9945

A large amount of miRNAs could not be identified in
many species. However, PremipreD can distinguish the true
pre-miRNAs (Fig. 1). In the modern research, precursor miRNA

Table 5: Comparison of prediction abilities of PremiPreD with other existing tools
Precursor miRNA
prediction software TP FN TN FP Sensitivity Specificity Accuracy
iMcRNA-PseSSC 448 52 416 84 0.896 0.832 0.864
miRNA-deKmer 366 134 371 129 0.732 0.742 0.737
miRNA-dis 479 21 402 98 0.958 0.804 0.881
iMiRNA-PseDPC 477 23 414 86 0.954 0.828 0.891
PremipreD 445 55 461 39 0.890 0.922 0.906

identification is the most important part for molecular biology
due to its impact on gene regulation. Existing prediction
method can predict thousand of miRNA genes by homology
search, but researchers need better and more efficient
methods for predicting true precursor miRNA. In genomic
sequences, many sequence segments can fold into the
hairpin-like secondary structure, so distinguishes segment into
true miRNA or Pseudo precursor miRNA gene. The result
showed that the SVM model can predict 96.28% data correctly
and ROC curve 0.9945 (Fig. 2) indicate that this algorithm
accurately predicts pre-miRNA. In this study, we present
PremipreD  (Fig.  3),  a  computational  method  that predicts
true precursor miRNA by utilizing SVM model on the basis of
the secondary structure of miRNA (Fig. 4). PremipreD method
is simpler than the existing methods, irrespective of any
specific class of precursor miRNA. The same feature filtering
and  SVM  parameter  optimization  steps  were  performed.
The SVM feature model parameter was used for training the
SVM classifier.
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Known precursor miRNAs
as positive dataset

Pseudo precursor miRNAs
as begative dataset

Precursor miRNAs secondary structure
are predicted using RNA?od

Feature extraction

SVM feature selections

Build SVM model

True and false precursor miRNA prediction

SVM classif ier 

Based on SVM feature build SVM
classifying dataset

User submitted unknown precursor
miRNAs secondary structures
in dot-bracket representation

Fig. 3: Screenshot of PremipreD tool GUI Input. User submits unknown precursor miRNAs secondary structures in the input box

Fig. 4: Workflow of the precursor miRNA prediction method in PremiPred

CONCLUSION

The PremipreD classifier can predict novel precursor
miRNA from animal, plant and viruses. The comparison of

prediction abilities between PremipreD and the existing
methods, in terms of specificity and overall accuracy indicate
that the overall performance of the PremipreD algorithm
significantly outperforms all other tools.
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SIGNIFICANCE STATEMENTS

This study predicts unknown precursor miRNA from
genomic sequences that can be beneficial for finding the true
precursor miRNAs in genomic sequences. This study will help
the researcher find out the uncover precursor miRNA that
many researchers were not able to explore. Thus a new
method on precursor miRNA predicted model could be
supportive to understand the characteristics precursor miRNA
involved in miRNA biogenesis.
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