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Abstract
Background and Objective: This paper presents the dynamic response of pre-stressed Rayleigh beam resting on variable bi-parametric
elastic foundation under moving distributed masses. The system is governed by fourth order partial differential equation with variable
and singular coefficients. The aim of the study was to obtain the dynamic deflections of the bi-parametric elastic subgrade having shear
layer under moving distributed force and moving distributed mass, respectively. Materials and Methods: Generalized Galerkin Method
(GGM) was employed to reduce the governing equation to second order ordinary differential equations and a modification of Struble’s
asymptotic technique was used to solve the reduced equations. Results: From the obtained results, it was observed that the deflection
profile of moving distributed mass was higher than the moving distributed force for the boundary conditions considered in this new study.
Conclusion: From this new study, the moving distributed force is not a safe approximation to the moving distributed mass problem. Thus,
safety not guaranteed for a design based on the moving distributed force solution.
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INTRODUCTION

In Applied Mechanics and Construction and Engineering,
attention has been given to the dynamic response of elastic
structures (beams and plates) on an elastic foundation which
happen to be one of the structural engineering problems of
theoretical and practical interest. The interest for the study of
these problems originated for design of rail road bridges and
highway  structure.  In  most  of  the  previous  investigations,
only structures not resting on an elastic foundation were
considered. Meanwhile, for practical applications, it is useful to
consider structures such as beams supported by an elastic
foundation. For instance, an analysis involving such a
foundation can be used to determine the behavior of beams
and plates of runways and bridges.

Previous studies on the dynamics of structures under
moving loads mainly considered masses resting on Winkler-
type elastic foundation. That is the simplest mechanical
foundation model which expresses the relation between the
pressure and the deflection of the foundation surface. The
work of Timoshenko1 gave impetus to research work in this
aspect by using energy methods to obtain solutions in series
form for simply supported finite beams on elastic foundation
subjected to time-dependent point loads moving with
uniform velocity across the beam. Steele2  studied the
response of a finite, simply supported Bernoulli-Euler beam to
a unit force moving at a uniform velocity. The effects of this
moving force on beams with and without an elastic
foundation were analyzed. In the aforementioned works,
considerations have been given to moving concentrated loads
on Winkler elastic foundation.

However, the Winkler model has various shortcomings3

because it predicts discontinuities in the deflections of the
surface of the foundation at the end of a finite beam, which is
in contradiction to observations made in practice. In fact,
when loading displays a discontinuity, similar discontinuity
will appear on the foundation surface as well. In order to take
care  of  these  short  comings  and  to  improve  the  model,
two-parameter model known as Pasternak foundation4 have
been  proposed.  Pasternak  model  is  one  of  the  simplest
two-parameter models uses commonly in the dynamic of
structures. It considers the continuity of the surface
displacement beyond the region of the load. In the model, a
second foundation constant, the “shear modulus” k0, enters
the analysis.

Several authors have made tremendous efforts in the
study of dynamics of structures under moving distributed
loads, they include Oni and Ogunyebi5. They studied the
dynamical analysis of a prestressed elastic beam with general

boundary conditions under the action of uniformly distributed
masses. In their work, it assumed that both the foundation and
shear modulus are constant. In a recent development,
Awodola6 presented a dynamic behaviour under moving
concentrated masses of rectangular plates resting on elastic
foundation with stiffness variation. Numerical results in
plotted  curves  displayed  the  response  amplitude  of  the
plates resting on a variable Pasternak subgrade. Recently,
Celep et al.7 investigated the static and dynamic responses of
a completely free elastic beam resting on a two-parameter
tensionless Pasternak foundation by assuming that the beam
is symmetrically subjected to a uniformly distributed load and
concentrated load at its middle.

More recently, Usman et al.8 examined the vibration of
Timoshenko beam subjected to partially distributed moving
load. It used the method of series solution and numerical
method to solve the governing partial differential equation.
The result revealed that the amplitude increases as the fixed
length of the beam increases.

This present study therefore investigated the flexural
response of uniform Rayleigh beam on variable bi-parametric
elastic foundation when under the action of moving partially
distributed loads. Both the foundation stiffness and shear
modulus are of variable type for moving distributed forces and
moving distributed masses respectively. The analytical
approximate solutions to the fourth order partial differential
equation are given and the effects of some important beam
parameters on the motions of the vibrating system are
studied.

MATERIALS AND METHODS

Mathematical model: The equation governing the transverse
displacement W(x, t) of a uniform Rayleigh beam when it is
resting on a variable Pasternak subgrade and traversed by
several moving distributed masses is the fourth order partial
differential equation given by:
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where,  x  is  the  spatial  co-ordinate,  t  is  the  time,  W(x, t)  is
the  transverse  displacement,  EI  is  the  flexural  rigidity  of
the   structure,   µ   is   the   mass   per   unit   length   of   the
beam,   N   is   the   axial   force,   Ro   is   the   rotatory  inertia
factor,   Qk(x)   is   the   foundation   reaction   and   P(x,   t)   is
the    moving    distributed    load.    The    boundary    condition

2



Asian J. Applied Sci., 2018

Lo

Shear

Pasternak

C

12.9

Fig. 1: A distributed load on Pasternak foundation

condition of the structure under consideration is arbitrary and
the initial condition without any loss of generality is taken as:

(2)W(x,0)
W(x,0) 0

t


 



The relationship between the foundation reaction and the
lateral deflection W(x, t) is Fryba9:
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where, S(x) and K(x) are two variable parameters of the elastic
foundation. Specifically, S(x) is the variable foundation
stiffness and K(x) is the variable shear modulus. Figure 1
depicted the Rayleigh beam on Pasternak foundation and
traversed by moving distributed load.

Here, the focus is with the dynamical system when the
foundation parameter vary along x, Eq. 3 is re-written to take
the form:

(4)
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When the effect of the mass of the moving load on the
response  of  the  beam  is  taken  into  consideration,  the  load
P(x, t) takes the form:

(5)
2

f 2

1 d W(x, t)
P P (x, t) 1

g t

 
   

where, the continuous moving force Pf (x, t) acting on the
beam model is given by:

(6)
N
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where, g is the acceleration due to gravity and d2/dt2 is a
convective acceleration defined by Fryba9:
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And H(x-ct) is the Heaviside function defined as:
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As an example in this problem, a variable elastic
foundation stiffness of the form Fryba9:

S(x) = S0 (4x-3x2+x3) (9)

where, S0 is the foundation constant and a variable shear
modulus of the form:

K(x) = K0 (12-13x+6x2-x3) (10)

where, K0 is a constant.
Substituting Eq. 3-10 in Eq. 1, one obtains:
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Solution  procedures:  The  fourth  order  partial  differential
Eq. 11 has singular and variable coefficients and to solve this
initial value problem, a general approach is developed. The
approach involved expressing Heaviside function as a Fourier
series and then reducing the modified form of the fourth order
partial differential equation using generalized Galerkin’s
method. The resulting transformed differential equation
having variable coefficients was then simplified using
modified Struble’s asymptotic technique. The generalized
Galerkin’s method requires that the solution of  Eq. 11 be of
the form:

(12)n m m
m 1

W (x, t) V (t)U (x)



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where, Um(x) is chosen such that the pertinent boundary
conditions are satisfied. An appropriate selection  of  functions
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for beam problems are beam mode shapes. Thus, the mth
normal mode of vibration of uniform beam:

   (12a)m m m m
m m m m

x x x x
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L L L L

   
   

was chosen such that the boundary conditions are satisfied.
In Eq. 12a, λm is the mode frequency, Am, Bm, Cm are

constants which are obtained by substituting Eq. 12a into the
appropriate boundary conditions.

By the application of the Generalized Galerkin’s Method
(GGM) of Eq. 12, Eq. 11 can be written as:

(13)

 

 

 

 

n

A0 o A1 m B0 B1
m 1

0
C0 C1 C2

0
D0 D1 D2

0
E0 E1 E2 E3 m

F0 m H

2
F1 m F2 m

EI N
G R G V (t) G G

S
4G 3G G

K
13G 12G 3G

K
12G 3G 6G G V (t)

G (t)V (t) MgG (t)M

2cG (t)V (t) c G (t)V (t)




    

  


   



     

   
    

 




Expressing Heaviside function as a Fourier sine define as:
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Thus, in view of Eq. 12 and 14 in Eq. 13 and after some
simplification and rearrangements, one obtains:
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Equation 15 is the transformed equation governing the
problem of a uniform Rayleigh beam on Pasternak elastic
subgrade traversed by partially distributed masses at uniform
velocity.

The   coupled   non-homogeneous   second   order
ordinary  differential  equation  holds  for  all  general
boundary   conditions.   In   what   follows,   two   special   cases
of  Eq.  15  are  considered  in  this  section,  namely  (a)  the
moving   force   problem   and   (b)   the   moving   mass
problem.

Uniform   rayleigh   beam   traversed   by   moving
distributed  force:  An  approximate  model  of  the
differential equation describing the response of a Rayleigh
beam resting on variable elastic Pasternak foundation and
under  the  action  of  moving  distributed  load   which
assume the inertia effect of the moving mass as negligible
may be obtained by setting g0 = 0. Thus setting g0 = 0, Eq. 15
reduces to:
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A further rearrangement of Eq. 17 yields:
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Equation 18 when solved via the Laplace and convolution
methods and upon inversion yields:
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Equation 20 represents the displacement response to
moving distributed loads of a prestressed uniform Rayleigh
beam on a variable Pasternak elastic foundation at uniform
velocity. It is remarked here that Eq. 20 is valid for all variants
of classical boundary conditions.

Uniform rayleigh beam traversed by moving distributed
mass: If the mass of the moving load is commensurable with
that of the structure, the inertia effect of the moving mass is
not negligible. Thus, g0…0 and the solution to the entire Eq. 15
is required. This is termed the moving mass problem. The
homogeneous part of this equation can be replaced by a free
system operator defined by the modified frequency due to the
presence of the effect of rotatory inertia. Thus, Eq. 15 can be
written in the form:
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Further re-arrangements and simplification of Eq. 21 yields:
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unlike the moving distributed force problem, it is evident that an exact analytical solution to Eq. 22 is not possible. So, to obtain
analytical solution use was made of the modification of the asymptotic method due to Struble. By this technique, one seeks the
modified frequency corresponding to the frequency of the free system due to the presence of the effect of the moving mass. An
equivalent free system operator defined by the modified frequency then replaces (Eq. 22). Thus, a parameter λ0<1 is considered
for any arbitrary mass ratio defined by:
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1 cos(2n 1) ct
2c A(m, t)U Q (n,m,k)sin U t (m, t)

2n 1

1 sin(2n 1) ct
2c A(m, t)U





     

    

 
  

 
 

 




 

 

   

 

D33 m
n 0

2 2
mf m 0 mf C11 m

2
0 mf C22 m

n 0

2
0 mf C33

n 0

Q (n,m,k)sin U t (m, t)
2n 1

U A(m, t)cos U t (m, t) U Q (m,k)A(m, t)cos U t (m, t)

1 cos(2n 1) ct
U A(m, t) Q (n,m,k)cos U t (m, t)

2n 1

1 sin(2n 1) ct
U A(m, t) Q (n,m,k)c

2n 1













 


     

 
 

 
 


 





  

 

 

 

m

2
0 E11 m

2
0 E22

n 0

m

2
0 E33 m

n 0

os U t (m, t)

c A(m, t)Q (m,k)cos U t (m, t)

1 cos(2n 1) ct
c Q (n,m,k)

2n 1

A(m, t)cos U t (m, t)

1 sin(2n 1) ct
c Q (n,m,k)cos U t (m, t) 0

2n 1









 

   

 


 
   

 
   

 





So that:

(24)2
0 0 0( )    

And:

(25)
0 C11 C22 C33

n 0 n 0

2
0 C11 C22 C33 0

n 0 n 0

1

1 cos(2n 1) ct 1 sin(2n 1) ct
1 Q (m,k) Q (n,m,k) Q (n,m,k)

2n 1 2n 1

1 cos(2n 1) ct 1 sin(2n 1) ct
1 Q (m,k) Q (n,m,k) Q (n,m,k) 0( )

2n 1 2n 1

 

 

 

 

               

                   

 

   

Where:

(26)0 C11 C22 C33
n 0 n 0

1 (2n 1) ct 1 (2n 1) ct
Q (m,k) cos Q (n,m,k) sin Q (n,m,k) 1

2n 1 2n 1

 

 

            
 

Substituting Eq. 24 and 25 into Eq. 26, one obtain:

(27)

m 0 D11 D22 D33 m
n 0 n 0

2
mf 0 C11 C22 C33

n 0 n 0

1 cos(2n 1) ct 1 sin(2n 1) ct
V (t) 2c Q (m,k) Q (n,m,k) Q (n,m,k) V (t)

2n 1 2n 1

1 cos(2n 1) ct 1 sin(2n 1) ct
U 1 Q (m,k) Q (n,m,k) Q (n,m,k)

2n 1 2n 1

 

 

 

 

            

               

 

 

 

 

m

0
m m m m m m m m m m m m m m

m A

V (t)

gL
cos A sin B cosh C sinh cos ct A sin ct B cosh ct C cos ct

Q (m,k)






                


To 0(λ0) only.
When, λ0 is set to zero in Eq. 27, a situation corresponding

to the case when the inertia effect of the mass of the system
is neglected is obtained. Then the solution of Eq. 27 can be
written as:

Vm (t) = Cm cos [Umt-Nm] (28)

where,  Cm  and  Nm  are  constant  and  Vm(t)  is  previously
defined. Since, λ0<1, Struble technique requires that the
asymptotic solution to the homogeneous part of Eq. 27 be of
the form:

(29)  2
m m 0 1 0V (t) A(m, t)cos U t (m, t) V (m, t) 0( )      

where,   A(m,   t)   and   ψm   are   slowly   varying   functions   of
time.

Substituting Eq. 29 and its derivatives into the
homogeneous part of Eq. 27, one obtains:

(30)

retaining terms to 0(λ0) only.
The variational equations of the problem are obtained by

setting coefficients of sin [Umt-ψ(m, t)] and cos [Umt-ψ(m, t)] in
Eq. 30 to zero. Thus, we have:
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(31)
 

 
m m

0 m D11 m

2A(m, t)U sin U t (m, t)

2c A(m, t)U Q (m,k)sin U t (m, t) 0

  

    



And:

(32)
 
 

 

m m

2
0 mf C11 m

2
0 E11 m

2A(m, t)U (m, t)cos U t (m, t)

U Q A(m, t)cos U t (m, t)

c A(m, t)Q cos U t (m, t) 0

 

 

  



Solving Eq. 31 and 32, respectively, we have:

(33)0 D11c Q (m,k)tmA(m,k) C e 

And:

(34)
2

0 E11
m C11 m

m

c Q (m,k)
(m, t) U Q (m,k) t

2 U

 
     

 

where, Cm and ηm are constants.
Substituting Eq. 33 and 34 into Eq. 28, one obtains:

(35) 0 D11c Q (m,k) tm
m mm mV (t) C e cos U t   

Where:

(36)
2

0 E11
mm m C11 2

m

c Q (m,k)
U U 1 Q (m,k)

2 U

  
    

   

is called the modified frequency corresponding to the
frequency of the free system due to the presence of the
moving  mass.  Thus,  the  homogeneous  part  of  Eq.  27  can
now be written as:

(37)2
m mm mV (t) U V (t) 0 

Hence, the entire Eq. 22 takes the form:

(38)

2
m mm m

0
m m m m m m m

m A

m m m m m m m

V (t) U V (t)

gL
cos A sin B cosh C sinh

Q (m,k)

cos ct A sin ct B cosh ct C sinh ct]

 


       

       



Equation 38 is a prototype of Eq. 18. Thus, using similar
argument as in case (a), vm(t) can be obtained and which on
inversion yields:

(39)


2n
0 mm k mm m k mm

m m 2 2 2 2
m 1 m A mm mm k mm k

2 2 2 2m
mm k mm k k mm k mm k mm k4 4

mm k

2m
mm k mm4 4

mm k

L g (1 cosU t) cos t cosU t A (cos t cosU t)
W (x, t)

Q (m,k) U U U

B
2U sin2U tsin t cos2U tcosh U tcosh t (U )

U

C
2U sin2U tcos

U



     
     

         


 








2 2
k k mm k mm k

2 2 m m m m
k mm mm k m m m

h t cos2U tsinh t U sin t

x x x x
sinU (U ) sin A cos B sinh C cosh

L L L L

     

            

Equation 39 represents the response to a moving
distributed mass of a uniform Rayleigh beam on a variable
Pasternak elastic foundation at uniform velocity.

RESULTS

Clamped-clamped end condition and clamped free end
condition (cantilever beam) were considered to illustrate the
analyses.

Clamped-clamped end conditions: At a clamped end, both
deflection and slope vanish. Thus:

(40)W(0, t) W(L, t)
W (0, t) = 0 = W (L, t) and 0

x x

 
 

 

Hence, for normal modes:

Um(0) = 0 = Um (L) (41)

And:

(42)m mU (0) U (L)
0

x x

 
 

 

which implies that:

(43)k k
k k

U (0) U (L)
U (0) 0 U (L) and 0

x x

 
   

 

Thus, it can be shown that:

 (44)m m m m
m m m

m m m m

sinh sin cos cosh
A C and B 1

cos cosh sin sinh

     
     

     

In view of Eq. 44, the frequency equation is given as:

cosλm cosh λm = 1 (45)

It follows from Eq. 45, that:

λ1 = 437300, λ2 = 7.85320, λ3 = 10.99561 (46)

7
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Expression for Ak, Bk, Ck and the corresponding frequency
equation are obtained by a simple interchange of m and k in
Eq. 44 and 45. Thus, the general solution of the associated
moving distributed force and moving distributed mass
problems obtained by substituting the above results in Eq. 44
and 45 into Eq. 20 and 39.

Cantilever beam (one end clamped and one end free
condition): In this example, a cantilever with free right-hand
end and clamped at the left hand is calculated. Accordingly,
the boundary conditions are:

(47)
2 3

2 3

W(L, t) W(0, t) W(L, t)
W(0, t) 0 , 0

x x x

  
   

  

and hence, for normal modes:

(48)
2 3

m m m
m 2 3

dU (L) d U (0) d U (L)
U (0) 0 and 0

dx dx dx
   

which implies that:

(49)
2 3

k k k
k 2 3

dU (L) d U (0) d U (L)
U (0) 0 and 0

dx dx dx
   

Using Eq. 12a in Eq. 49, it can be shown that:

(50)m m m m
m m m

m m m m

sin sinh cos cosh
A C and B 1

cos cosh sinh sin

     
     

     

at end x=0 and at end x=L:

(51)m m m m
m m m

m m m m

sin sinh cos cosh
A C and B 1

cos cosh sinh sin

       
     

     

and the frequency equation for both end condition is:

cos λm cosh λm = -1 (52)

and we have, that:

λ1 = 1.875, λ2 = 4.694, λ3 = 7.855 (53)

Using Eq. 50-52 in Eq. 20 and 39, one obtains the
displacement   response,   respectively   to   a   distributed
moving force and a distributed moving mass of a uniform
clamped-free ends of Rayleigh beam resting on elastic
foundation.

Comments on closed form solutions: When undamped
system such as this is studied, it desirable to examine the
phenomenon of resonance. For the resonance conditions of
classical boundary conditions considered, Eq. 20 clearly shows
that the uniform Rayleigh beam resting on variable elastic
foundation and traverse by moving distributed loads with
uniform speed reaches a state of resonance whenever:

(54)k
mf

c
U

L




While Eq. 39 shows that the same beam under the action of a
moving mass experiences resonance effect whenever:

(55)k
mm

c
U

L




From Eq. 36:

(56)
2

0 E11
mm mf C11 2

mf

c Q (m,k)
U U 1 Q (m,k)

2 U

  
    

   

which implies:

(57)
2

0 E11 k
mm mf C11 2

mf

c Q (m,k) c
U U 1 Q (m,k)

2 U L

   
     

   

Solutions are as provided above and resonance
conditions are obtained for the problem. Numerical analysis
for both moving distributed forces and moving distributed
mass problems are carried out for all the parameters
considered. The analysis proposed in this paper can be
illustrated   by   considering   a   homogenous   beam   of
modulus  of  elasticity  E = 3.1×N mG2,  the  moment  of  inertia
I = 2.87698×10G3 m4, the beam span L = 12.192 m and the
mass per unit length of the beam µ = 2758.291 kg mG1. The
values of axial force N is varied between 0 and 2.0×108 N.

In Fig. 2, the deflection profile of a clamped-clamped
uniform Rayleigh beam under the action of moving
distributed forces at constant velocity for various values of
axial  force  N  and  for  fixed  values  of  foundation  stiffness
So = 30000 N mG2, shear modulus, Ko = 10000 N mG2 and
rotatory inertia correction factor Ro = 0.2 is displayed. The
figure showed that as N increases, the deflection profile of the
uniform Rayleigh beam decreases. Similar results were
obtained when the clamped-clamped beam was subjected to
a moving distributed mass under variable bi-parametric elastic
subgrade as shown in Fig. 3.
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Fig. 2: Deflection profile of clamped-clamped beam for a
moving  distributed  force  for  So = 30000, Ko = 10000,
Ro = 0.2 and various values of N

Fig. 3: Displacement response of clamped- clamped beam for
a moving distributed mass for So = 30000, Ko = 10000,
Ro = 0.2 and various values of N

For  various  time  t,  the  deflection  profile  of  the
clamped-clamped   uniform   Rayleigh   beam   for   various
values of shear modulus Ko and for fixed values of axial force
N = 2000 N mG2, foundation stiffness So = 30000 N mG2 and
rotatory inertia correction factor Ro = 0.2 are shown in Fig. 4.
It is observed that higher values of shear modulus Ko reduce
the  deflection  profile  of  the  uniform  Rayleigh  beam.  The 
same behavior characterizes the deflection profile of the
clamped-clamped beam under the action of moving
distributed mass for various values of foundation stiffness So
as shown in Fig. 5. Also, Fig. 6 and 7 displayed the transverse 
displacement response of the clamped-clamped uniform 
Rayleigh beam, respectively to distributed forces and masses

Fig. 4: Transverse displacement of clamped-clamped beam for
a moving distributed force for N = 10000, So = 30000,
Ro = 0.2 and various values of Ko

Fig. 5: Deflection profile of clamped-clamped beam for a
moving  distributed  mass  for  N = 10000, So = 30000,
Eo = 0.5, Ro = 0.2 and various values of Ko

moving at constant velocity for various values of rotatory
inertia Ro and for fixed values of axial force N = 2000 N mG2,
foundation  stiffness  So  =  30000  N  mG2  and  shear  modulus
Ko = 0000 N mG2. It is seen from these figures that as the
values of rotatory inertia correction factor increases, the
transverse displacement of the clamped-clamped uniform
beam under the action of both moving distributed force and
mass under variable bi-parametric elastic subgrade decreases.
Figure 8 displayed the deflection profile of uniform Rayleigh
beam for various values of foundation stiffness So and for
fixed  values  of  axial  force  N  =  2000  N  mG2,  shear  modulus
Ko  =  10000  N  mG2   and   rotatory  inertia  correction  factor
Ro   =   0.2.   It   is   seen   that   higher   values   of   foundation
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Fig. 6: Displacement  response  of  clamped-clamped  beam
for a moving distributed force for N = 2000, Ko = 10000,
So = 30000 and various values of Ro

Fig. 7: Transverse displacement  of  clamped-clamped  beam
for  a  moving  distributed mass for N = 2000, Eo = 0.5,
Ko = 10000, So = 30000 and various values of Ro

stiffness So reduces the deflection profile of the thick beam.
The same behavior characterize the deflection profile of the
clamped-clamped beam under the action of moving
distributed mass for various values of foundation stiffness So
as shown in Fig. 9. Figure 10 displayed the deflection profile of
the mass ratio Eo for the uniform Rayleigh beam traversed by
moving distributed mass. As the value of E0 increases,
response amplitude of the beam for the moving distributed
mass decreases. Figure 11 displays the comparison of the
deflection profile of moving distributed force and moving
distributed mass cases of the clamped-clamped uniform
Rayleigh   beam   traversed   by   a   moving   distributed   load

Fig. 8: Displacement response of clamped- clamped beam for
a  moving distributed force for N = 2000, Ko = 10000,
Ro = 0.2 and various values of So

Fig. 9: Displacement  response  of clamped- clamped beam
for a moving distributed  mass  for  N = 2000, Eo = 0.5,
Ko = 10000, Ro = 0.2 and various values of So

under  variable  Pasternak  elastic  subgrade  for  fixed  values
of  N = 1000 N mG2,  Ro = 0.2,  E0 = 0.5,  Ko = 2000 N mG2  and
So = 30000 N mG2.

For the clamped-free uni form Rayleigh beam traversed
by moving distributed forces under variable bi-parametric
elastic subgrade, Fig. 12 displayed the displacement response
for fixed values of rotatory inertia Ro = 0.2, foundation stiffness
So = 30000 N mG2 and shear modulus Ko = 10000 N mG2. It is
observed that as the values of axial force N increases the
deflection of the clamped-free uniform thick beam decreases.
Similar results obtain for the same beam under the action of
moving distributed masses for various values  of  axial force N
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Fig. 10: Transverse displacement of clamped-clamped beam
for   a   moving   distributed   loads   for   N   =   10000,
So = 30000, Ko = 2000, Ro = 0.2 and various values of
mass ratio Eo

Fig. 11: Comparison of the displacement response of moving
distributed force and moving distributed mass for
clamped-clamped beam for fixed values of N = 10000,
So = 30000, Ko = 2000, Eo = 0.5, Ro = 0.2

and for fixed values of rotatory inertia Ro, shear modulus Ko
and foundation stiffness So as seen in Fig. 13. In Fig. 14, the
deflection profile of clamped-free uniform Rayleigh beam
under the action of moving distributed force is displayed. It is
clearly observed that as we increase the values of shear
modulus Ko, for fixed values of axial force N, foundation
stiffness So and rotatory inertia Ro, the deflection of the
uniform beam decreases. Also, for the same clamped-free
beam traversed by moving distributed masses, Fig. 15 showed
that   as   the   values   of   shear   modulus   Ko   increases,   the

Fig. 12: Deflection   profile   of   a   clamped-free   beam
traversed      by      moving      distributed      force     for
So  =  30000,  Ko  =  10000,  Ro  =  0.2  and  various
values of N

Fig. 13: Transverse displacement of a clamped-free beam
traversed by moving distributed mass for So = 30000,
Eo = 0.5, Ko = 10000, Ro = 0.2 and various values of N

deflection of the beam reduces for fixed values of axial force
N = 10000 N mG2, Eo = 0.5, rotatory inertia Ro = 0.2 and
foundation stiffness So = 30000 N mG2.

Figure 16 displays the displacement response of a
clamped-free uniform beam under the action of moving
distributed force for various values of rotatory inertia Ro and
for fixed values of foundation stiffness So = 30000 N mG2, shear
modulus Ko = 1000 N mG2 and axial force N = 2000 N mG2. It is
clearly seen from the figure that higher values of the rotatory
inertia correction factor Ro reduce the displacement response
of  the  clamped-free uniform beam. While Fig. 17 displayed a
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Fig. 14: Transverse displacement of a clamped-free beam
traversed by moving distributed force for N = 10000,
So = 30000, Ro = 0.2 and various values of Ko

Fig. 15: Deflection   profile   of   a   clamped-free   beam
traversed by moving distributed mass for N = 10000,
So = 30000, Eo = 0.5, Ro = 0.2 and various values of Ko

similar result for the same clamped-free beam under the
action  of  moving  distributed  masses  under  variable
Pasternak elastic foundation for various values of rotatory
inertia Ro.

Figure 18 presents the deflection profile of uniform
Rayleigh beam for various values of So and for fixed values of
N = 2000 N mG2, Ko = 10000 N mG2 and Ro = 0.2. It is observed
that higher values of foundation stiffness So reduce the
deflection profile of the beam. The same result characterize
the deflection profile of the clamped-clamped beam under
the action of moving distributed mass for various values of
foundation stiffness So as shown in Fig. 19.

Fig. 16: Displacement response of a clamped-free beam
traversed  by  moving distributed force for N = 2000,
Ko = 10000, So = 30000 and various values of Ro

Fig. 17: Transverse displacement of a clamped-free beam
traversed      by      moving      distributed      mass      for
N = 2000, Eo = 0.5, Ko = 10000, So = 30000 and
various values of Ro

Figure  20  displayed  the  deflection  profile  of  the  mass
ratio for the uniform Rayleigh beam traversed by moving
distributed mass. As the value of E0 increases, response
amplitude of the beam for the moving distributed mass
decreases.

Finally,  Fig.  21  presented  the  comparison  of  the
displacement response of moving distributed force and
moving    distributed    mass    cases    of    a    uniform
clamped-free     Rayleigh     beam     for     fixed     values       of
N   =   1000   N   mG2,    Ro   =   0.2,   Ko   =   2000   N   mG2   and
So = 30000 N mG2.
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Fig. 18: Deflection profile of a clamped-free beam traversed
by moving distributed force for N = 2000, Ko = 10000,
Ro = 0.2 and various values of So

Fig. 19: Displacement response of a clamped-free beam
traversed  by  moving distributed mass for N = 2000,
Eo = 0.5, Ko = 10000, Ro = 0.2 and various values of So

DISCUSSION

A theory has been developed for the dynamic behavior of
uniform Rayleigh beam to an arbitrary number of distributed
loads on variable elastic foundation and the obtained closed
form solution compares favorably with the existing solutions
for prismatic and non-prismatic problems. The results shown
in Fig. 2-21 showed a good agreement with those reported in
Oni and Ogunyebi5, Awodola6, Usman et al.8, Omolofe and
Ogunyebi10,  Ogunyebi  and  Adedowole11,  Oni  and  Jimoh12,
Kien et al.13, Kien14 and Prokic et al.15. It is remarked at this
stage that the approach presented in this study is applicable
to two dimensional problems for all variants of classical
boundary conditions.

Fig. 20: Transverse displacement of a clamped-free beam
traversed by moving distributed loads for N = 10000,
So = 30000, Ko = 2000, Ro = 0.2 and various values of
mass ratio Eo

Fig. 21: Comparison  of  the  deflection   of  moving
distributed    force   and   moving  distributed  mass
for        clamped-free    beam    for    fixed    values    of
N    =   10000,   So   =   30000,  Eo  =  0.5,  Ko  =  2000,
Ro = 0.2

CONCLUSION

This study presented a closed form solutions to the
Rayleigh  beam  problem.  It  reported  a   new   solution   to
the  structural  members  with variable  subgrade
incorporating  foundation  stiffness  and  shear   modulus.
From    the   obtained   results,   it   was  deduced  that the
study  has  authenticated  its  results  with  theoretical
solutions.
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SIGNIFICANCE STATEMENT

This present study examined the influence of structural
parameters on uniform Rayleigh beam. The study will help
researchers in dynamics of structures under moving loads to
observe the effect of variable elastic subgrade on thick beam
on constant velocity which has been neglected over time.
Thus, the study discovered that an increase in these vital
parameters decrease the response amplitude.
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