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An Enhanced Numerical Approach in Entrance Region of Annular Passages
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Abstract: In this study, a numerical method is presented to solve the laminar flow forced
convection in combined entry length of annular duct. The fluid viscosity has been taken as
a function of temperature. The governing equations which have the elliptic nature are solved
in coupled form by successive over-relaxation finite difference method. A feature of this
scheme is the easy implementation of solid boundary conditions. A FORTRAN code is
written for all the simulation processes. The fluid having Prantd]l numbers ranging from 0.01
to 10 are considered. Comprehensive comparisons were made between the results of present
method and available data, in which good agreement would exist.

Key words: Finite difference, stream function, vorticity, point successive over-relaxation,
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INTRODUCTION

Heat exchangers with double-pipe configuration have tremendous applications in industry. To
calculate the heat transfer coefficient in double-pipe heat exchangers, empirical correlations are used
which is applicable only for one-side annulus.

In three-fluid heat exchangers, in which one of the fluids flows in annular passage, for calculation
of the heat transfer surface, the convection coefficient is required. At the entrance region, local Nusselt
mumber starts to decrease intensively and reaches its mimimum value at the end of thermal entry length.

As reported in the references, heat exchangers are designed by using fully-developed flow
equations. Therefore, for all exchangers, especially for multi-pass ones, in which fluid flows through
entry region of each pass, calculated heat transfer surface becomes over design.

Also, when properties of fluids intensively depend on temperature, heat transfer coefficient
varies nonlinearly through the passage and usually wall heat flux is not constant. Therefore, it is
necessary to calculate local Nusselt number as a function of passage length and other characteristics.
So, the best approach is to solve equations continuously and consecutively on the longitudinal
elements.

Heaton ef af. (1964) and Kays and London (1984) have studied the heat transfer problem in
annular duct for laminar flow with constant properties in combined entry length. By Langhaar’s (1951)
method, the momentum integral equation is solved for the hydrodynamic entry length.

This method was applicable for constant wall heat flux and the results have been obtained by
assuming one wall with heat exchange and the other as insulated. For heat exchange at both walls the
results of linearized momentum and energy equations by use of superposition principle was applied.

Sellars er al. (1956) solved the differential energy equation by separation of variables and changing
the constant wall temperature to constant wall temperature gradient the flow in smooth circular tubes
with varying heat flux along the tube axis and considered Re.Pr=100 in which the effect of axial heat
conduction is ignorable. So, strum-liouville type differential equation has been obtained, so divided
whole surface to longitudinal elements with constant heat flux and for each element came up by
Stieltjes integral, then entered the flux continuous variation part to the Reimann integral and converted
the discontinuous variation part to a summation because this integral was not solvable analytically.
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This summation and integral can be solved analytically just on surfaces with simple temperature
distribution. It is clear that this simplifying method is complicated and according to several
assumptions the results can not be reliable.

Lundberg ef af. (1972) and Kays et af. (2004) presented an analytical method for laminar flow
with constant properties in annular duct with unequal heating conditions and solved the problem for
fully developed flows separately. By using correlated parameters with diameters ratio in simplified
momentum equation to one-dimensional laminar and developed flow from circular tubes and applying
congruous limits to integration equation, the velocity profile in annular duct was gotten and by putting
it in the energy equation for developed flow and according to this principle that the appointed heat flux
from each surface, the temperature gradient on surface was specified and energy equation was
integrated directly. In order to provide the heat exchanging boundary conditions from the surface in
energy equation two special forms was necessary. Heating from outer surface of annulus as the inner
one isinsulated and the other one is: Heating from inner surface of anmilus as the outer one is insulated.

The linearized energy equation lead to calculation of integral of both cases and for unequal heating
via walls superposition principle was applied.

It is obvious that previous solutions used some simplifying assumptions so the results were not
accurate enough. This study presents a full mumerical method for forced convection heat transfer of
laminar flow which uses elliptical differential equations.

GOVERNING EQUATIONS

For incompressible steady state laminar flow in annular duct with heat transfer because of duct
symmetry Navier-Stokes equations in cylindrical coordinate, introducing stream function () which
satisfy continuity equation, vorticity has been obtained as below:

wolow 1w (0
r o r &
2 2
oo 1[0y 1oy ow 2)
& a rlax ra o

Introducing hydraulic radius as:

L

and velocity (V), which is equal to inlet uniform velocity the variables and vorticity would be non-
dimensionalized as below:

W I, 3
et o 3)
From now on the asterisk sign will be dropped. So non-dimensional vorticity equation will be as:

2 2
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And so on for temperature:

T#= T_Tw
T-T

15:

gr  FT 4(@T 1 ar &7T) 4B (s)
U——tVU—=——| 5+~ —+— [+ — D,
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o, -4 LW (10w 1 0w 10w (6)
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Assumptions

. The fluid properties as density, specific heat and thermal conductivity are temperature
independent:

p = Const. C, = Cont. K = Const.
. There is no energy source:

uy =0

v

. For probability of high viscosity fluids, dissipation (®,,) is used

E[KQJ 0
s\ a8

. Temperature and velocity distribution are axisymmetric

u=p)

To avoid complexity of nonlinear partial differential equations, at first viscosity considered
constant and then obtained temperature distribution is used to define grid viscosity value in order to
correct velocity and temperature values, iteratively.

Used non-dimensional groups and temperature difference are:

2
Re:ﬂ, Pr:p"CP, Ec:vi, Pe:4vrh=Re.Pr (N
n K Co(T,-T,) o
DISCRETIZED EQUATIONS

Central difference is used for interior nodes, hence discretized form of Eq. (2, 5) are:
U ;= ('“I"j,,n - LIJI,J—I)/ZI:"AI' (8)
ViiT _(q"m,, - W;-l,,)/zrj'AX (9)
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Fig. 1. A part of grid

w,, = (ar)? oy + -Ar 2r)y, A+ AT 2y, + (g )] (10)
o, = [03,+1,,-(2 -Re, .um) + 03,,1:](2+ Re, .um) + 031,]+1(2 + Ar/rj -Re, .vu.) (11
+ay (2-Ar/r + Re v, MU, —ug 4y, - v, ORe+ [8+ 2(a0) /T

T, ={T, a2+ (Ar/r)—Pe v, ]+ T, [2—(Ar/r) + Pe v, ] (12)
+T,(2-Peu, + T, (2+Pe u, ) }/8+EcPr(Ar/2)’ @,
@, = [(W1+1,J+1 Wi " Wina T 1|"1-1,J-1)/2r, (Ar)z ]2 + {LI"),J-PI [1-(Ar/ zrj)] (13)

L A 261 (i iy ) (AN

According to Fig. 1, the longitudinal and radial increments are assumed equal (Ax = Ar) and cell
Reynolds and Peclet numbers {Arpaci and Larsen, 1984, Minkowycz ef of., 1988) are defined as:

Re, = %.Re, Pe, =Re, Pr

Results independency of grid is related to cell Reynolds number. For example for 30 nodes in
radius direction and Re = 780, cell Reynolds number will be Re, = 0.05, thereafter increasing number
of nodes has no effect on results.

BOUNDARY CONDITIONS

Non-dimensionalized boundary conditions are:

Inflow Conditions (x = 0):

u=1 v=0, 2 _o (4
ar
B 7£_ Wi~ 2'4"2,] Wy (15)
= T, (Ax)?
_n (16)
W, = 2
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QOutflow Conditions (x = 1):
According to White (2005):

X= Ly (L, is hydrodynamic entry length)
L

h

u= %[17 (AN® + BLn(AD]

Where:

1-r
2
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T
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Solid Boundary Conditions

u=0, v=0, % = 0(No slip condition)

Forr=r,
L5y — 16w + Wy 2 T-T
@ = b LU =—~ _=Consgt, T, ,,=—2=0
LN+ 6(ALY — 4(AT) Winn a-17 4,1+ T T,
Forr=r1;:
R e P 2’ —const. T — T-T, —0

T e —aar? T a ooy
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Table 1: Initial conditions for water, air and mercury flows

Tnitial cindition Water Air Mercury
T; (k) 280.85 350 534

P, 10 0.7 0.01
Vim sec!) 5%1073 0.5 5%1072
Re 57.1043 379.4216 1052.22

Table 2: Viscosity as a function of temperature for water, air and mercury

Water = -0.741 x107°TH7.033 21078 T2-2.2375%1 073 T+0.2301 79
Air = 1183107 T3-3.808x 10~ TH6, 7381 0 T+1.3554 <10~
Mercury 1L = (14278.567-2.306T )x L 01696+ 330247

NUMERICAIL SCHEME

To solve system of elliptic equations in finite difference form, the point successive over relaxation
method is chosen because of its fast convergence (Chung, 2002; Parshant, 2000). Over relaxation
parameter (¢) and also relaxation value uf; is used instead of explicitly calculated values to control the
convergence (Apaci and Larsen, 1984; Roache, 1976).

Ui =0+ ey, (U — 1 ) (27)

where, U;; is obtained from previous iteration.

To speed up the convergence the over relaxation parameter lies in the range of 1<o,,<2. Its
optimized value is calculated as {(Bejan, 1984; Nakamura, 1991):
C20-y1—c) o Cos(r/N) + bSin(x/M) | _ [EJZ (28)
o o’ T l+b T Ax

INITTAL CONDITIONS

Initial conditions are shown in Table 1.

The viscosity (kg m sec™) is given by Reid ef &/. (1988) and Schmidt ez a/. {1984) as shown in
Table 2.

In order to compare results of present study with others, eight non-dimensional lengths are
chosen:

X" = x/(D, -Re Pr)=0.001.0.002,0.01,0.02,0.05,0.1,0.2,0.25 (29)

RESULTS AND DISCUSSION

The results of present study and Kays ef al. (2004) are shown in diagrams. Nu, and Nu; by
Kays’s ef al. (2004) method are given:

Nu, = Iju“ , Nu, = N”um” (30)
1-{q;/qDZ, 1-(q{/qDZ,

Nu; = Nusselt number when outer surface is insulated
Nuee = Nusselt number when inner surface is insulated
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Z, and 7; are correction factors related to Prandtl number and non-dimensional length. Also to
match the curves the following coordinate conversion is used:

Nu = 1001og(Nu, ), X = 50 log(1000x ") (3L

Regarding Fig. 2, from the Kays’s er af. (2004) data the Nu, curves for Pr = 1,0.7 after x = 0.2
approaches to a constant and same value, but for Pr = 0.01 with considerable difference reaches a
higher value. Because the molten metal have great conductivity and during the thermal entry length in
which temperature gradient is considerable along the flow direction the longitudinal heat conduction
effect, especially in the laminar flow and for the Pe<50, is important and effective (Ozisik, 1988).

Here according to the input temperature Pe = 10.5, so it will decrease the local Nusselt number
along the entry length. In Kays’s ef al. (2004) method because of linearization of conservation
equations this effect hasn’t been considered so Kays’s ef al. (2004) data show higher Nusselt number.

Figure 5 for Kays’s et af. (2004) data shows that when, Pr = 0.01 Nusselt number is higher than
two other fluids, because air and water flows have Pe>50, so longitudinal heat transfer is ignorable. But
in this study according to Fig. 3 and 4 for Nu, and Fig. 6 and 7 for Nu, the curves are converged to one
specific value for all three Prantdl numbers because conservation equations are solved considering
longitudinal heat transfer.

180+ Kays,s data for r* = 0.5 and q" o/q"i =1

=X=Pr 0.01, NUS,, Kays
—%- Pr 0.70, NUS,, Kays
-+=-Pr 10.0, NUS,, Kays

Fig. 2: Local Nu, versus x" for different Pr from the Kays data

180 Fluent data for r* = 0.5 and q" 0/q"i = 1

—O— Pr0.01, NUS,, Fluent
160+ —0— Pr0.70, NUS,, Fluent
—o— Pr 10.0, NUS,, Fluent

1404

NUS,
I~
(==}

L

100+

80+

60 T T T T T T

Fig. 3: Local Nu, versus x" for different Pr from the Fluent data
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180 Thesis data for r* = 0.5 and q" 0/q"i =
—o— Pr0.01, NUS,, Work
—o— Pr0.70, NUS,, Work

—+— Pr 10.0, NUS,, Work

NUS
0
S

1

100

801

60 U 1 | U ) T 1
20 40 60 80 100 120 140

Fig. 4: Local Nu, versus x" for different Pr from the present study data

1804  Kays,sdata forr* =0.5and q" 0/q"i=1

—o— Pr0.01, NUS, Kays
1604 —o— Pr 0.70, NUS, Kays
140 —— Pr 10.0, NUS, Kays
£ 120
Z
100+
804
60 T T T T

Fig. 5. Local Nu, versus x* for different Pr from the Kays data

180 Fluent data for r* = 0.5 and q" o/q"i = 1

—0— Pr0.01,NUS,, Fluent
—o— Pr0.70, NUS,, Fluent
—— Pr 10.0, NUS,, Fluent

20 40 60 80 100 120 140

Fig. 6: Local Nu, versus x* for different Pr from the present study data

Figure 8-10 shows that curves of Nu,, calculated by different methods, are approximately equal
for all three prentdl numbers.

From Fig. 11-13, it is concluded that Nu, curves of present study is only decreasing but by
Kays’s ef af. (2004) data, at first it decreases and then begins to increase.
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60

Thesis data for r* = 0.5 and q" 0/q"i = 1

—o— Pr0.01,NUS, Work
—0— Pr0.70, NUS,, Work
—— Pr 10.0, NUS,, Work

40

60
X

T
20

Fig. 7: Local Nu, versus x* for different Pr from the present study data

1804
160

140
{

o

120+

NUS

100

801

Comparison of data for r* = 0.5 and q" 0/q"i =1
—o— Pr 10.0, NUS,, Kays
—o— Pr 10.0, NUS,, Fluent
—— Pr 10.0, NUS,, Thesis

60

Fig. 8: Nu, comparison among thr
180
160
1404

1204

NUS,

1004

80

ee method at Pr =10

Comparison of data for r* = 0.5 and q" 0/q"i =1
—o— Pr0.70,NUS,, Kays
—— Pr0.70, NUS,, Fluent
—— Pr0.70, NUS,, P. Work

60

Fig. 9: Nu, comparison among three method at Pr =0.70

Kays’s er af. (2004) metho

d has no results for Pr = 0.01 and x<0.02, because he has used

Langhaar’s (1951) approximation so truncated series, in addition neglected longitudinal heat conduction

that led to considerable error.

Remember that these differences between present study and Kay's e# af. (2004) method are

limited to:
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180

160

140

o

120

100

804

60

Comparison of data for r* = 0.5 and q" o/q"i =1
—o— Pr0.01, NUS, Kays
—— Pr0.01, NUS, Fluent
—— Pr0.01,NUS, P. Work

Fig. 10: Nu, comparison among three method at Pr= 0.01

180+

160+

140+

1204

NUS,

1004

80+

60

Comparison of data for r* = 0.5 and q" o/q"i=1
—o— Pr 10.0, NUS,, Kays
—o— Pr 10.0, NUS,, Fluent
—— Pr 10.0, NUS,, P. Work

Fig. 11: Nu, comparison among three method at Pr= 10

180~
160

;
140

1204

NUS,

1004

804

60

Comparison data for r* = 0.5 and q" 0/q"i = 1

—o— Pr0.70, NUS, Kays
—0— Pr0.70, NUS, Fluent
—— Pr0.70, NUS, P. Work

in other cases the results are the same.
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180 Comparison of data for r* = 0.5 and q" 0/q"i = 1
—o— Pr0.01, NUS, Kays
160 —o— Pr0.01, NUS, Fluent
140 —— Pr0.01, NUS,, P. Work
-
= 1204
Z
1004
80
60 T T T U T T

Fig. 13: Nu, comparison among three method at Pr= 0.01

Two basic assumptions of Kays's ef al. (2004) method is considering the viscosity constant and
using specified heat fluxes but this study assumes viscosity as a function of temperature and is
applicable for all symmetric boundary conditions.

CONCLUSION
Present study has more accurate results in comparison with Kays’s ef al. (2004) data, because:

. Viscosity is assumed as a function of temperature

. Longitudinal heat conduction is considered

. Elliptic differential conservation equations are solved in coupled form.

. It is suitable for all types of boundary conditions, at last it is applicable for varying boundary
conditions along the tube

. In spite of Kays’s ef af. (2004) method this study is full numeric and more simple

NOMENCLATURE
Cp = BSpecific heat at constant pressure
D, = Hydraulic diameter
Ec¢ = Eckert number
k = Thermal conductivity
L; = Hydrodynamic entry length
Nu,, = Nusselt number when outer wall is isolated
Nu; = Nusselt number when inner wall is isolated
Nu, = Nusselt number at outer wall
Nu, = Nusselt number at inner wall
Pe = Pecklet number
Pe, = Cell Pecklet number
Pr = Prantd]l number
1, = Hydraulicradius

Re = Reynolds No.
Re, = Cell Reynolds No.
T = Outer radius
T = Inner radius
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T = Bulk temperature
T, = Wall temperature
T, = Inlet bulk temperature
xr——* = GratzNo.
r,RePr
Z.,7, = Influence cocfficient for annulus heat transfer
GREEK SYMBOLS
Y = Stream function
w = Vorticity
¢, = Dissipation function
p = Density
o« = Thermal diffusivity
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