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Blood Flow in Uniform Planar Channel
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Abstract: In this research, we investigate the peristaltic flow of blood through a planar
channel of uniform thickness. Blood is represented by a micropolar fluid (a fluid can support
coupled stresses, body couples and exhibit microrotational and microinertial effects). The
problem is formulated and solved without any restrictions on the wave ratio and the
Reynolds number. Perturbation method in terms of wave number (&) as a parameter is used
to obtain analytic form for the axial velocity, the microrotation velocity and the pressure
gradient to the first order. Moreover, the pressure rise and friction force have been computed
numerically and the results are studied for various parameters of interest.
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INTRODUCTION

The flow of non-Newtonion fluids has been of an increasing importance. This is due to their
applications in polvmer processing industrics and biofluid dynamics. There are many models of
constitutive equations that describe the motion of non-Newtonion fluids. These models are proposed
in such a way that they are suitable to describe the fluids flow according to its rheological
characteristics.

The analysis of peristaltic flow has great practical importance in many biological and biomedical
systems. Such systems include the flow of urine through the ureter, the swallowing process through
the oesophagus, the movement of spermatozoa in the ductus efferentes of the male reproductive tract,
transport of lymph in the lymphatic vessels and in the vasomotion of small blood vessels such as
arterioles, venules and capillaries. The literature on perstalsis of viscous fluid is by now quite
extensive. Some investigations dealing with the peristaltic flow of Newtoman and non-Newtonian
fluids have been presented. Such recent investigations include the studies of Elshehawey et al. (2000),
Elshehawey and Sobh (2001), Misra and Pandey (2001), El Misery ef al. (2003), Mishra and
Ramachandra (2003), Abd El Naby e &/. (2004), Mekheimer (2005) and Sobh and Mady {2008).

Recently, some mathematical studies have been done to understand the blood flow in arteries and
small blood vessels. Stud et al. (1977) studied the effect of moving magnetic field on blood flow. They
observed that the effect of suitable moving magnetic field accelerates the speed of blood. A two-fluid
model of non-Newtonian blood flow induced by peristaltic waves has been studied by Srivastava and
Saxena (1995). Agrawal and Anwaruddin (1984) also studied the effect of magnetic field on blood flow
through an equally branched channel with flexible walls executing peristaltic waves using long
wavelength approximation. They observed, for the blood in arteries with arterial disease like arterial
stenosis or arteriosclerosis, that the influence of magnetic field may be utilized as a blood pump in
carrying out cardiac operations.

Most of the theoretical investigations on the blood have been carried out by assuming the blood
to behave like a Newtomian fluid, though it has been accepted that most of the physiological fluids
behave like a non-Newtonian fluids. However a few recent studies considered the blood as a non-
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Newtonian fluid. Some of these studies were done by Charm and Kurland (1974), Valanis and Sun
(1969), Popel er al. (1974), Srivastava (1985) and Mekheimer (2004).

The study of peristaltic flow of micropolar fluids is of increasing interest. The micropolar fluids
are usually defined as isotropic, polar fluids in which deformation of molecules is neglected.
Physically, a micropolar model can represent fluids whose molecules can rotate independently of the
fluid stream flow and its local vorticity. Such a fluid can support coupled stresses, body couples and
exhibit microrotational and micronertial effects (Eringen, 1966). The theory of micropolar fluids is a
special case of the theory of simple microfluids introduced by Erigen. This theory includes the effects
of local rotary inertia and couple stresses and is expected to provide a mathematical model for the
rheological behavior in certain man-made liquids such as polymers and also liquids such as blood which
contains red cells, white cells and platelets.

In their research, Muthu ef af. (2003) studied the influence of viscoplastic wall properties in the
peristalic motion of micropolar fluid, using the same technique used by Fung and Yih (1968). Peristaltic
pumping of a micropolar fluid in a tube was studied by Srinivasacharya ef a/. (2003). That study was
done under the assumption of low Reynolds mumber and long wave length approximation.

Keeping the above facts in mind, we intend to study the peristaltic flow of blood, as a micropolar
fluid, in a planer channel without any restrictions on Reynolds number and amplitude ratio. For this
purpose, the perturbation method in terms of wave number is used to obtain explicit form for the fluid
velocity and the pressure gradient. This analytic solution takes into account all physical parameters
of the problem and gives the solutions for each point within the domain of interest, unlike the
numerical solution, which is available only for a set of discrete points in the domain. Moreover, the
pressure rise and friction force are computed numerically and are explained graphically.

FORMULATION AND ANALYSIS

Consider the peristaltic flow of unsteady incompressible micropolar fluid through an infinite
channel of umiform thickness 2H (Fig. 1). We assume an infinite wave train traveling with velocity ¢
along the walls. Taking (3, Y) as rectangular coordinates, the equation of the wall surface is:

ﬁ(i,i):wbsinz—;(i-c{), (0

where, a is the channel width, b the is the wave amplitude, A is the wavelength, ¢ is propagation
velocity of the wave, T is the time.

In the moving coordinates (X, ¥) which travel in the x direction with the same speed as the wave,
the flow can be treated as steady (Shapiro ef al., 1969). The coordinate frames are related through:

Xx=X-ct, F=Y @
u=U-g, v=V, 3
w=W C))

where, (U,v,W) and (u,v,w) are the velocity components in the fixed and the moving frames
respectively, U is the axial velocity, V is the perpendicular velocity and W is the microrotation
velocity.
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u=-1, w=0, at y=H
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Fig. 1. Geometry of the problem
Using the following non-dimensional parameters
- = _ _ B
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where, |1, k and o are material constants, & is the wave number, Re is the Reynolds number and ¢ is
the amplitude ratio, the non-dimensional equations of motion in the absence of body forces and body
couple are (Srinivasacharya ef al., 2003)

%Jr%:o, (6)
2 2
Res|u 2|, 1 828—3+8—3 +[ i J% (N
x o ay) ox l-nl ox o) \l-njay
2 2 2
Res [ud v, ? 826—‘54—6—‘; —%SEE, (8)
x oy, & Lol o oy, 1-n o
_ _ 2. 2
ReBJ—1 1 ﬂ+vﬂ :—2W+2 2n Szavzv+a—v: +52ﬁ,@, &)
no\ oox oy m |\ e dy ax ay

where, n 1s the coupling mumber (0<n<1), m is the micropolar parameter and I is the microgyration
parameter.

The nom-dimensional boundary conditions are

@:0, v=0 for y=0, (10a)
&y
u=-1, V=—E for y=H. (10b)
dx
w=0 for y=+H (10¢)



Asian J. Applied Sci., 1 (1): 46-38, 2008
RATE OF VOLUME FLOW
The instantaneous volume flow rate in the fixed frame is given by:
31 —

Q= ju TWERT,Dd

where, H is a functionof X and T.
The rate of volume flow in the moving frame (wave frame) is given by:

— ﬁ7 — — —
q- | ux.y)dy

where, T is a function of X.
Using Eq. 12, one finds that the two rates of volume flow are related by:

Q-+ o

The time-mean flow over a period T = Ac at a fixed position X is defined as:

which can be written, using 1 and 13, as:

Q=q+ac

(1)

(12)

(13)

(14)

(15)

Defining the dimensionless time-mean flows @ and F in the fixed and the wave frame respectively as:

o-2 g -9
ac ac
then making use of 16, Eq. 15 can be rewritten as:
®=F+1
where,
S
PERTURBATION SOLUTION

We expand the following quantities in a power series of the small parameter & as follows:

u =1, +6u + S,
v = v, +0v, + 08,

w=w, + 8w, + O(5)
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9P _ 9Py | 39P:, oany
ox 00X ax

F=F, +3F +0(8") (19)

Substituting the expansions 19 into Eq. 6-10 and equating the coefficients of like powers of 6 on both
sides, we obtain the following systems.

Zero Order System
My Fo g (20)
& oy
1 &y n ow, _on (21)
I-nay 1-n &y &
M _ (22)
e
2
—2wu+(2_2n]awgﬂ—%:0. 23)
m° ) &y 9y

E”:O, v, =0 at y=0, 24
u, =-1, vy 7—%, at y=H, (25)
w,=0 at y=+H. (26)

On solving the system 20-23, with the boundary conditions 24-26, the zero order solution can be
obtained in the form:

u, = ¢, (v ~H*)-ng, %(coshmy— coshmIH)—1, (27

v, = —ch( y Hy- %HB) LB (¢ H +¢,H") [i (sinh my — sinhmH) — (y— H)cosh mH]
m m

S
—¢,HH'{nsinhmH - 2)(y - H) - H', (28)
W, = ¢, (sinhmy - 1), (29)

where,
¢, =3m? (F, + H)/[ ~2m’ ¥ sinhmH — 3nH(sinhmH — H coshmH) | 30)
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P dye dmm e 2.l _ 31
FDf_[U u,dy = (Z—H)[de[SH +m2(1 chothmH)} H €Y
First Order System
wy M (32)
& oy
2
Re[uuiuﬂ,D%J A, L Pu, o0 oW (33)
ay & 1-na&® l-n ay
Py, (34)
ay
2
RCJ[I_—HJ UD%+VD% =—2W1+[2_2nJa“;1—%. (35)
n & ay oyt oy
with the boundary conditions
a, =0, v, =0 at y=0, (36)
ay
u, =0, v, =0 at y=H, (37
w, =0 at y==H. (38)

On substituting the zero-order solution into equations 32-35 and using corresponding boundary
conditions 36-38, the first-order components of the axial and the microrotation velocities, respectively,
can be obtained in the form:

u, = D,y coshmy + D, ysinhmy + D, cosh my + %ycosh my — (% + %)Sil’lh my
+ (E - %)f sinhmy + 5s ginh 2my + &y‘1 coshmy + Bo com 2my + Buo ginh? my
m m 2m m 2m 2

B, (39)

2

dp, (1-n P nH J
5 il —-H*)- ————(coshmy — coshmH) |,
dx[Z—n]((y ) rnsinhmH( Y )

+ yh—%f +%y4+%yﬁ+B15y—T—l

W, =(L, + L,y + L,y +L,y* Jsinhmy + (L, +L,y+ L,y Jcoshmy + L, sinh 2my (40)

+Lycosh 2my + L,y + L, ¥ + L,¥ + L.y +L,,

where,
m m m m’ m m m m m’ m m m
Bl:—Ran—flcuc'UJer2 1-n LAQ—A—SE—LAi +{1-m £+£—LA92
n 2-mi4m* 4m* 4m m 4  4m
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n-1 P | f ‘ ‘ "
B, =ReJ—| ¢, cfH* ——¢; cgHeoshmH + ¢ + ney (cgH + ¢, HY) [-ng
n m

m 2rn3 m*  4m?

1-n A4 TA, 3A;, 394, A, A 3A
+— +(1- ) = E 3
2-n 4m
B, = Relf—nJ[EcU ¢ H+ ¢, ¢;mH* —ne,(cfH+ ¢, H coshmH —me, HH'(nsinh mH — 2)]
n \m

kn[Ad TA, 34, 39Aj - )[A A A 9A9J

“om' 2m 4m’ 2 4m*  4m  8m’

B4=Rf:J—n_1m(:Dc’D—l_rl Ay _3A +(1-n) A 34 .B; =7(H_I)Aﬁ +7(1_H)A'S
in 2-mi 3 4m 6 8m 12(2-n) [

B, =Re I_HJ[ imcu ¢ H* + nc,HeoshmH + ¢, HH® (nsinh mH - 2) — mH"
n

—ECD(C'UHJr ¢, H)sinhmH |+ Lon A,  d-mA, B, = n-D4,  A-mA,
m 2 (2-n) 2

-1 m 2m
_nobA, 0omA, b (DA, (WA bl sy
4m(2-n) 8m 6m{2—n) Im nm

3

B, = Rel— J[ cp+ —czH’cosh mH + ¢, HH'(nsinhmH — 2) + 2((21 n)) A”J
n
L 40 4A LA 8AN 1o 24, + 24A B _(-mA,
(2 ) 2w Y o-m ]
BIEZREJZ(H—I)CDC,D+2(1—n)[i+415;1J_4(1—r21)A1,BM:l(l—n)Al’
in (2-n) m m 5(2—-n)

B, = Rel = J[ 2 oA Gl (c,; H+¢, H’)isinh mH — H coshmH) + H' — ¢,H*H'(n sinh mH — 2)}
n

2
+H A, +
3 om? m’ m*

+ 2¢, sinhmH —

a- n)[ HA, + MA, | UTA, SHEA, +4HA2+48HA,}
1

2

Y- A, {H3 coshmH — 3H3
4m

sinh mH

2m 1-n)( A H . AH A, H _ sinhmH
(2-n) am?  4m? m
. 7HeoshmH  7sinhmH | A;cosh2mH A sinhmH _ coshmH
i 4’ 24m’ T m? 2m’
H*sinh mH sH*coshmH 9H’ sinh mH 39HcoshmH 39HsinhmH
- A, 3 + H + &
8m’ 8m 4 Sm Sm

4m

4m? 4m® 4m* 12m° m*
T=(DH* +D, + D,H+ D,H*}coshmH + (D,H + D; + D;H’ + D, sinhmH)sinhmH
+D, sinh 2mH + D, cosh 2mH + D, 1* + D, H* + D, H* + D H° + D H

Recyc 1 I
30 " A, —Rf:[lcoc'DH2 ——¢{2¢,H + ¢;H Y coshmH - = ¢jc, + 2¢5¢,H’
m n

A { H? 3HcoshmH+ 3sinhmH} AmsinhlmH] 1-n)A,
-A, - - -

Al
n , , PR Je,cl
——¢,cgH+ ¢;H Y coshmH — 2¢;HH (nsinh mH — 2)+ ——(2—m)
m n

A= Re[—%cucgﬁ - 2—2(5(ch+ ¢,H)sinh mH + 2¢2H*H' (nsinh mH - 2)
m

+ 26,0t (ciH + ¢H"ycosh mH - 2cDH’J LA, = —Regcu (2 H+ ¢ 1D
m m

n 20t w3 2 n ., 3 2n’ ‘
A, =Re| —c H' (cfH + ¢H') - —cpe,H'm + — ¢, H' ——-c, H(gH+ ¢ H)
m n m m

——CDH H'{nsinhmH - 2) + Jc CDH(—+coshmH)+—(c,]H+ ¢ H' )—fc,] j
m
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+Rei{c0ch2m —ng{cH + ¢;H"YcoshmH + L) — cmHH (nsinhmH - 2)]
n mn
2 2
A= Re[“_2 ¢, H{c;H + ¢ 1) + céJH'}, A= %cocg [nH + Jl) + cgJH’]
m n
2 .
A, = Rf:[—(:ocgnH3 + lcD (cpH + ¢;H") (= + Hn cosh mH) + c;nH*H'(n sinh mH — 2)
mn m
) ‘ , I oo oo, . LU
- —¢,com"H” — Jme, (c;H + ¢ H') coshmH — chm HH'(nsinh mH - 2)+E(2cucU +nH)
n
2
A, = Re[%cDC'UHH4 + L H(CH+ ¢ HY) (l sinh mH — H coshmH) + c;nH*H'(nsinh mH - 2)
m m

- ¢nHH' + ?c cym*H” — Jg, (g H + ¢,H"){(sinh mH — mcosh mH)
n

+ icgmszH'(nsinh mH - 2)—£mchH’]
n n
n2
Ay = Rc[cD (epH + cHN(JI - —H) - cuc'UnH]
m
. I
Ay = Re((:oc'DH4 - i(:UHE(Z(:'UH + ¢;HycoshmH — ¢;HH'(nsinhmH — 2){c,H’ - lcDH g+
m m n

+ £((:'UH + cDH’)(i ¢, H coshmH + icD —1)cosh mH—ich’DH coshmH + c'UHz]
m m m m

B 5 3
_omlom  (2AH AH 7(8AH3+4A H)+48A1H
2(2 —n)sinh mH 5 3
Um0 CothmE - A, + A 12 1ZHCOMMEL s ot + 6
2(2 n 6 lm? m

_i[w_i_m}%;“hml{ ?[6HcOthmH_£_2mH2]
m

36HCothmH
2 2 T3

18H* 36 SAQ[ZHCOLhmH 2]
m m

—2mH* - —-— |+
8

m m
12HCothmI . 12 3A 4HCothmH H* 4
t—————6mil" —— —_—

2H*Coth mH + -
m m 8

2 3

[ 6H CothmH +
[ m m m

A, [% + m3HCosechmHH

Lo A-mf W dp A TA 3A; 39A) A (-w)
1Tt (2-n)\sinhmH dx 2m 4m’ 4m’ 8m* 22—y
o n)( +Ag+18Ag}L=ﬁ(lfn)L:_5
U o2-ml 4m® 4m® osm® ) YT 82— 7T m’
e n)[ L TA3A 739A9J L’ (kn)[ijfsiAz]
{2-n) 2-m\ém’ Sm

2m 4m* 4m® 8m’
_ A Qo) A dem (1—n)[%+7241:‘1 +2A2+A6+A10+A11J,

Pgm(z-n) Y o2402-my " (2-m)

A, (I-m) Lo_ (1—n)[£+9A
2¢2-m " (2-m :

1=

1],]_'13:7&(1*1])_
m 5 (2-n)

(41)

Using zero order and first order solutions, the complete solution for the velocity field to the first order
can be written in the following analvtical form
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u=c,(y —Hz)—ncD%(coshmy—coshmH)—HB[[Dz +%y+D,y2 +%y“}coshmy

+ —&—B—; +Dy+ (E—Zl—Bf)y3 + ﬁsinhmy sinh my+5c05h 2my
m m m m 2 2m (42)
B, . B B B B
+sinh2my+ —Byd 4 T8y CligF L 2 LB oy T—1+
o Y=Y Y Y Sy By
B [%J[ .nH {coshmy— coshmH) — (y* - Hz)]
(2-n)\ dx /\ msinhmH
H 3 Ay o i}
w =g (sinhmy -1+ 8[(Ll +Lyv+ Ly +L,¥ )smh my + (LS +L;vy+ L,y )cosh my (43)
+Lgsinh2my + L, cosh 2my+ L,y + L, ¥° + L,y + L.y + Lm]
PRESSURE GRADIENT
An explicit form for dp,/sx can be obtained from Eq. 31 in the form
Py _ o ixyE, + 1) (44)
dx =8 o
where
~3(2 - n)m* sinthmH
809~ S e (43)
(1- n)[Zm H’ sinhmH + 3nH({sinhmH —mHcosh mH)]
The first order instantaneous volume flow rate F, is given by:
H H 2 D 6 30’ H
E = Iﬂ udy = [E+ FJDI - m—§+ EE+ [F—FJE + FB7
12H? H* 12H? . 2H H B, 2B H* 6H
+[ " +F+ - ]BX};mhmH-{—?D1 -¢—E 3 —m—Z— rn; +[?+F]B4
3
- 8113 +ﬁ B, |coshmH+ By inh 2mr + B52 + Bio ) cosnamm +EB10 (46)
m 2m 4m*  8m 4
o’ u H’ H’ H
—?B“ +EB” +EB” +HB14 +TB” +(T-1)H
(-m [%] 3nH(sinh mH — H coshmH) + 2m*IT° sinh mH
2-ml dx 3m?sinhmH
On solving Eq. 46 for dp,/dx, one finds
d " 2 D, D 6 30’ H
%:g(x)(F1 +H)-g(x) {[;+FJDI —m—§+;3+[F—FJB4 +FB7
2 4 2 3
+[g+H—2+ 1213 JBg}sinhmH+ {—ng +ED2 —B—Z—zB‘; +[H—2+gJB4
m’  m’ m m m m’  m m’° m
(47
3
- g + 4851 B, ;coshmH+ 5sinh 2mH + [B—z + %] cosh2mH + EB10
I m 2m 4m* 8m 4
12§ H* v H’

HZ
—?BH +EB12 EBB +EBM+TB” +HT}
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Substituting the zero-order and the first order pressure gradient into the expansion 19 we obtain an
explicit form for the pressure gradient, to the first order, as:

H' 2 D 6 3H? H
{[—+—3]Dl——§+—3+[—5— 4JB4+—2B7
m m m m m m

B

2 4 2 3
+[12H +H—+12H ]Bx}sinhmH+{—2}21D1 +ED2 _B 2B, +[H—+@JB4
m m

P gR(E+ H) 5005

mS m2 m4 m2 3 2 4

3
- [SHE + ﬁ}BS }coshmH + B inhomm + { sz + ij cosh 2mH + EB10
m m 2m 4m°  8m 4
H’ H* H’ H’ H’
—?B“ +EB12 + EB” + EBM + TB” +(T- l)H}
Accordingly, the pressure rise Ap, and friction force F, can be computed mumerically,
where
_pde 49
Ap, = U&dx (49)
and
—femd 50
E = L(—H)&dx (50)
RESULTS AND DISCUSSION

In this research, we have obtained an explicit form for the fluid velocity, the microrotation
velocity and the pressure gradient. The only restriction we have used that the wave number & is small
so that <1. When Re = 0, we obtain the special case of Sninivasacharya ef /. (2003), which was done
for cylindrical case. Moreover when n =0, we obtain the results for Newtonian fluid.

To discuss present results quantitatively, the integrals 49 and 50 are computed mumerically using
MATHEMATICA package and then the pressure rise and friction force are explained graphically.

Figure 2 shows the effect of coupling number non Ap, atd=0.02, Re=10,m=3,J=1,p=038
and (n = 0.5, 0.7, 0.9). As shown the relation between pressure rise and flow rate is linear for
micropolar fluid and pressure rise does not depend on coupling number n at a certain value of flow rate.
Also, it is noted that the pumping increases with an increase in n. This means that pumping of
micropolar fluid is greater than for Newtonian at the same values of physical parameters.

In Fig. 3, the pressure rise is plotted versus flow rate at $=0.02,n =05 m=3,1=1,¢p=0.8
and (Re = 0, 5, 10). We note that the pressure rise decreases with increasing Reynolds number Re.

The effect of microrotation parameter m on Ap, is shownin Fig. 4at$=0.02, Re=1,n=10.5,
I=1,9p=006and (m=3, 4, 5). The figure reveals that the pressure rise decreases as m increases.
Again, for Newtonian fluid (when m tends to infinity), the pressure rise is smaller than for
micropolar fluid.

Figure 5 shows the variation of friction force F; with amplitude ratio p at$ =0.02, Re =1,
m=3,J=1and (n=0.5, 0.7, 0.9). Here we observe that the friction force decreases with increasing
¢ and increases by increasing coupling number n.

Figure 6 shows the effect of Reynolds number Re on fiiction force Fy at & = 0.02, n=20.5,
m=3,J=1and (Re=0,5, 10). It is clear that the friction force increases with increasing Reynolds
number.
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5 m=4

Fig. 4: Pressure rise versus flow rate at §=0.02, Re =1,J=1,n=0.5, p=0.6 and(m =3, 4, 5)
Finally, in Fig. 7 the friction force is graphed versus the amplitude ratio at & = 0.02, n=10.5,

Re=1,J=1and(m=3, 4, 5). Itis noted that the friction force increases as the micropolar parameter
m inecreases.
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Fig. 6: Friction force versus p at $=0.02,n=0.5,J=1, m=3and (Re =0, 5, 10)
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Fig. 7: Friction force versus g at $=0.02, Re=1,T=1,n=0.5and (m= 3, 4, 5)
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