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Abstract: This study briefly presents three types of well known and widely used
hierarchical p-clement shape functions: the noninterference condition formulation, the
Lagrange formulation and the Legendre formulation for both quadrilateral and triangular
clements. A comparative study of these three formulations is made through a set of linear
elastic two-dimensional numerical applications. The meshes used are essentially made of
9 node quadrilateral and 7 node triangular elements for imtial comparisons. The results of
these comparisons indicate that even if the Legendre type formulation exhibits the better
condition mumber of stiffness matrix, it is not the best p-element formulation in case of
distorted meshes or for convergence stability of computed values of stress.
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INTRODUCTION

Nowadays, thanks to the development of data processing, the finite element method is used in
all the spheres of activity (Sabonnadiére and Coulomb, 1986; Zienkiewicz and Taylor, 1989).

To increase the quality of finite elements solutions, several methods are recommended. According
to references listed at the end of this study, these methods can be classified into three groups: the
h method, the p method and, a combination of both, the h-p method.

The improvement of the discretization by the /2 method is presented by Zienkiewicz er af. {1983)
and Gupta (1991). It is obtained by refining the grid. The p method or p-version, as for it, improves
the discretization quality by increasing the polynomial order of shape functions without any
modification of initial grid (Babuska ef al., 1989, 1994; Sangaré, 1994; Cugnon, 2000; Bertoti, 2001).

Theuse of the p-version became very effective and attractive thanks toits hierarchical formulation
(Peano, 1975; Zienkiewicz ef af., 1983; Rank ef af., 2001). Its implementation led to the formulation
of several finite elements families known as p-hierarchical elements or, simply, p-clements. These
formulations are classified by the way of obtaining the p-hierarchical shape functions.

Herein, the three basic methods of constructing p-hierarchical elements are considered: the
nominterference condition method, the Lagrange family transformation method and the Legendre
polynomials method.
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The noninterference condition method starts with the standard linear element and generates its
p-hierarchical shape functions by adding to this a series of polynomials (of order p=2) always so
designed as to have zero values at the element corner nodes.

In the Lagrange family transformation method, the classical shape functions of Lagrange family
of any polynomial order g is transformed and rewritten in its hierarchical form.

The Legendre polynomials method generates an optimal form of p-hierarchical shape functions
by integrating the Legendre polynomials. Indeed, due to the orthogonality property of these
polynomials, the element stiffness matrix, which contains derivatives of shape functions, will be close
to a diagonal one.

Indeed, in the bibliography relating to the p version of hierarchical finite elements, advantages and
disadvantages of each formulation compared to the others are only treated through the aspect of the
conditioning and the sparsity of the stiffness matrix or the convergence of computed displacements
(Babuska ef af., 1989, 1994; Carnevali ef af., 1993).

This study is a comparative study of numerical behavior of these formulations through both
condition number and computed displacements but also, through mesh distortion and post-
processed stresses values. This extension to the stress field is justified by the fact that, in solids
mechanics analysis, stress field is generally the most important quantity for designers (Richardson,
2003).

The goal of this study is to undertake a comparative study of these three
p-hierarchical formulations through a series of numerical applications in two-dimensional linear
elasticity.

Presentation of p-Hierarchical Shape Functions

The hierarchic concept in the polynomial order p of an element shape functions comes owing to
the fact that to generate interpolation functions of degree p = i+1, conversely to the standard element,
it is not necessary to rewrite all the functions starting from order zero; it is simply enough to add to
the existing functions of degree p= 1, those relating to order i+1.

The p-hierarchical shape fimetions for the quadrilateral and triangular master elements are given
in the following.

The Quadrilateral p-Hierarchical Element
The quadrilateral master element is the nine-noded square element of Fig. 1. It possesses:

+  Four comer nodes (1, 2, 3, 4) defining the four basic displacement modes of a linear element

+  Fourmid-side nodes (5, 6, 7, 8). These nodes determine displacement modes of the element edges

«  One central node (9) to which are attached the internal displacement modes; they are also known
as bubble modes

If u denotes a scalar variable to approximate on the quadrilateral master element, the hierarchical form
of this polynomial interpolation is written as:

u(am—iNn(an)un+i{iN@(an)uS)}iiNE’”(é’n)uE-” m

n=l n=5 i=2 i=2j=2
Table 1 below gives the expression of shape functions per node according to the polynomial order

p considered. It also provides the mumber of degrees of freedom (dof) or displacement modes present
in the element.
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Fig. 1. The quadrilateral master element
Table 1: The p-hierarchical shape fimctions of the nine-noded quadrilateral element
Node type Node Shape finction No. of dof
Comer nodes 1 N {(Em)= %(l -E)(1-m) 4
2 Ny (En)=(+E-n)
; N(Em =g
N N, (En)=(1-51+n)
Mid-side nodes 5 N(;) (‘E.T]) _ %(l B T])‘P(l) (EZ.) 4 (p-1)
’ N Em =32
7 1 -1y 1
M (em =Ry
8 1 -1y 1
M (e =-0-99" ()
Central node 9 N(;‘j) (Em)=aP(E) ol (n) (p-17°

According to the hierarchical formulation adopted, functions ¢ and w, in Table 1, have different
definitions.

*  Hierarchical formulation of the noninterference condition type. From Babuska ef of. (1989, 1994),
we have:
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o (2)=0(g)=(g-1(g+1)E @

*  Hierarchical formulation of the Lagrange type. For this type of shape finctions, we can write that
{Sangare, 1994):

(i) (1 T (3)
M =alg=q "
£-¢ iodd

*  Hierarchical formulation of the Legendre type. In this case, we have (Peano, 1975):

(o= fr.ma @

and
() =(1-E2 )P, (§) ©)
where, P,(t) is the Legendre polynomial of order i:

B9 [(ttl)'} (6

T2t

The Triangular p-Hierarchical Element
The triangular p-hierarchical element has, as for him, seven nodes (Fig. 2) of which:

*  Three comer nodes (1, 2, 3) for the three basic displacement modes of a linear triangular element
*  Thres mid-side nodes (4, 5, 6) to represent the element edges displacement modes

*  One central node (7) for the bubble displacement modes

The interpolation of a scalar function p on the master clement is written:

u(eng)= Nn(a,n,f;)un+E{iN£ﬂ(an,C)uSq+

n=l
p=2 p-2 p-2 (7)

i=l

where £, 1 and ¢ denote the triangle area coordinates.

Table 2 below gives the expressions of the p-hierarchical shape functions related to each of the
element nodes.

According to the various formulations, functions & and w in Table 2 are written as follow:

*  Hierarchical formulation of the noninterference condition type
o (& m) = 4gn(e-m)~ ®)
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g

Fig. 2: The triangular master element

Table 2: The p-hierarchical shape functions of the seven-noded triangular element

Node type Node Shape function No. of dof
Corner nodes 1 N(En Q=& 3
2 N; (&En.0)=n
3 N;(En0)=C
Mid-side nodes 4 N .8y = o' (n,©) 30-D
’ N (En0) = oL m)
6 N (En. L) =" (50)
Central node 7 NEVE (2 0= @@ (@)l () o) () 16 (p-2) (p-D p

and
ol (z)=¢ @)
. Hierarchical formulation of the Lagrange type

(E-m) - (&+m)

_ = ieven
¢iEm)= . . (10)
(a_n) —(?—Tl)(ﬁﬂl) i odd

i!
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and
w(l)(é):é‘ (11}

. Hierarchical formulation of the Legendre type

— (&)
¢(')(én)=1/21; : ij P, (t)et (12)

—(&4m)

and
of (€)= 8P, (&) a3
NUMERICAL APPLICATIONS

Here, the three formulations of p-hierarchical elements are compared through numerical examples.
The elements used in the discretizations are as well as quadrilateral as triangular. Both elements have
been implemented in a finite elements code devoted to two-dimensional structural analysis in
elastostatic.

Conditioning of the Stiffness Matrix
The aim of this test is to determine which formulation provides a well conditioned stiffness
matrix. It consists in computing the stiffness matrix of both master elements for formulations of the:

*  Noninterference Condition Type (NIC)

*  Lagrange type (LAG)
*  Legendre type (LEG)

and comparing their condition number (ratio of maximum to minimum ¢igenvalue of the stiffness
matnx: T= A, ./ Ay, More this number will be close to 1, better will be the matrix conditioning.

The profile of the stiffness matrix is also analysed by mapping its components values into colors.
Conditioning will be considered to be better if the matrix dominant terms are found gathered around
its diagonal.

Figure 3 and 4 show, for each p-hierarchical formulation, the color-mapped matrix for the
quadrilateral and the triangular element, respectively. These representations were obtained for a
polynomial order p = 3 for the quadrilateral element and p = 4 for the triangular one. In terms of
degrees of freedom, this led to a 32x32 matrix for the quadrilateral element and a 30x30 matrix for the
triangular one.

Analyzing the above results, it appears that in the LEG formulation stiffness matrix (Fig. 3, 4¢),
the dominant terms are located on the diagonal. On the other hand for both NIC and LAG fornmlations,
it is not the case. The NIC formulation (Fig. 3, 4a) gives a matrix in which the values are rather
homogeneous with a light prevalence of the diagonal terms. Lastly, in the matrix of the LAG
formulation (Fig. 3, 4b), large diagonal values as well as low are present.

A comparison of the condition numbers of the computed stiffness matrices is in good agreement
with this report. For both quadrilateral and triangular ¢lements, the best matrix conditioning is given
by the LEG formulation and then comes the NIC formulation and finally, the LAG one.
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Fig. 3: Color map of stiffness matrix values of the p-hierarchical quadrilateral master element (p =3),
(a) NIC formulation, (b) LAG formulation and (¢) LEG formulation
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Fig. 4. Color map of stiffness matrix values of the p-hierarchical triangular master element (p = 4), (a)
NIC formulation, (b) LAG formulation and (¢) LEG formulation

Between the quadrilateral and the triangular elements, it is the first which produces the better
matrix conditioning.

From a theoretical point of view, the results of the LEG formulation can be explained by the fact
that this formulation is derived from the orthogonal polynomials of Legendre family.

Taking into account these remarks, one could say a prion that the LEG formulation will lead to
better convergence of mumerical results as well for displacement ficld as for stress field. In fact, this
is the conclusion of most of comparative studies in the literature.

Results Convergence and Sensitivity to the Mesh Distortion

These second series of numerical experiments were performed in order to compare the three
suggested formulations through their convergence behavior for computed displacements and stresses.
As in practice, it is quite impossible to guarantes a discretization using quadrilateral elements without
any distortion, the effect of distorted meshes on computed values will be studied.
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Fig. 5: A uniform cantilever beam showing geometric characteristics, loading and two-dimensional
finite element models, (a) Geometric characteristics and loading, (b) Non distorted quadrilateral
mesh, (¢) Triangular discretization, (d) Vertex distorted quadrilateral mesh and (e) Edge
distorted quadrilateral mesh

Let us consider the bending problem of a cantilever beam of length L. = 200 mm, with a uniform
rectangular cross section of dimensions bxh = 6x25 mm?, shown in Fig. 5a. The beam is assumed to
be subjected to a concentrated force of intensity F =5 kN at its free end. Ttis also considered to be
made of a homogeneous and isotropic material with a Young’s modulus E = 210 kN mm™
Poisson’s ratio v=0.3.

and

In order to establish the relative performance of these three formulations, two-dimensional finite
clements discretizations on which was assumed a plane stress state were chosen. Figure Sb-¢ show the
discretizations used to analyze the response of the beam.

The tip displacement at point A (200; 0) and the normal stress at point B (100; 12.5) (Fig. 5b)
were normalized with respect to the exact solution from the beam theory. These analvtical solutions
are the following ones:

«  For the deflection of point A, we have v, =-8.226 mm,
+  For the normal stress at point B, o, = 800 MPa. Instead of computing the maximum normal
stress, located at the singular point O, we chose point B where the solution is smooth enough

The discretizations used were respectively made of two and four p-hierarchical quadrilateral and
triangular elements. In the grid of Fig. 5b, the two quadrilateral elements are without distortion while
in both grids of Fig. 5d and 5e, they are distorted. In grid 5d, the quadnlateral elements are vertex
distorted whereas in grid 5e, they are edge distorted.

To compare the three p-hierarchical formulations through the four discretizations of Fig. 5, a total
of twelve finite element models were handled. For each of these models, the shape functions
polynormial order p was taken from 2 up to 9. At each value of the order p, were recorded the mumber
of degrees of freedom (dof), the tip displacement and the normal stress computed at points A and B,
respectively.

Figure 6 exhibits the convergence of tip displacement for the selected discretizations. It appears
that, for all these discretizations, numerical values show a good convergence towards the exact value.
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Fig. 6. Convergence study of tip displacement for various discretizations of a uniform cantilever beam,
(a) Non distorted quadrilateral elements, (b) Triangular elements (¢) Vertex distorted
quadrilateral elements and (d) Edge distorted quadrilateral clements

Increasing the polynomial degree p leads to a better result whatever the p-hierarchical formulation may
be. For polynomial orders greater than 6 the computed values are in good agreement with the analytical
solution. The relative error is less than 1 percentatp =28, 9.

For discretizations using undistorted quadrilateral elements and triangular elements, the LEG
formulation offers a convergence a little faster than both NIC and LAG formulations which remain
identical.

For distorted discretizations, the three p-hierarchical formulations give identical convergence
behavior for displacement field. Results are sensitive to the distortion of the grid. This sensitivity is
all the more important as the polynomial degree of shape functions is weak (p<3). Among both grid
distortions, it is the edge distortion which pollutes the more computed values. When the order
p increases (pz 4), the results sensitivity to distortion attenuates.

The normal stress convergence curves are shown in Fig. 7. Conversely to the displacement field,
the convergence of normal stress towards the exact solution is not stable; it oscillates around the
analytical value. Moreover, for discretization using triangular elements, when the order p
increases, the LEG formulation gives larger values than the two others formulations. Finally, for all
discretizations, the LEG formulation convergence curve of normal stress seems to be the less
stable.

147



Asian J. Applied Sci., 2 (2): 139-149, 2009

1.03,@® 105, ®

Normalized normal stress
Normalized normal stress

T T 1
30 80 130 180 230 280 330 380

Normalized normal stress
Normalized normal stress

30 80 13'0 1;30 2%0 2;30 3%0 38I0 30 80 130 1'80 2;}0 ZéO 3&0 3§0
No. of dof No. of dof

Fig. 7. Convergence study of normal stress at point B for various discretizations of a cantilever beam,
(a) Non distorted quadrilateral elements, (b) Triangular elements (¢) Vertex distorted
quadrilateral elements and (d) Edge distorted quadrilateral elements

CONCLUSION

The numerical applications presented in this study allow to notice that among the three
p-hierarchical formulations considered, the Legendre type is the one which gives a much improved
equation conditioning. This improvement of the condition number could be a serious advantage if an
iterative solution technique were adopted for the processor.

The convergence curves show that the displacement field converges more quickly and in a stable
way towards the reference value. On the other hand, for the stress field, this convergence is unstable,
slower and oscillatory.

The quadrilateral element is rather sensitive to the grids distortion and that whatever the adopted
formulation. Nevertheless, this sensitivity to the distortion disappears when the polynomial order of
the shape functions increases.

Between the three formulations, the behavior of the p-element of Legendre family is appreciably
different from that of both others. If it is better for computed displacements, it is not the case for
stress field. Indeed, for a polynomial order higher than 4, the convergence curve of stress values
computed from the Legendre formulation exhibits oscillations much more marked than stress values
derived from Lagrange or non-interference condition formulation.

These observations lead to advise the p-hierarchical element of Legendre family when the concerns
relate to displacement quantities and the p-hierarchical element of Lagrange family or noninterference
condition when the stresses are to be computed with precision.

148



Asian J. Applied Sci., 2 (2): 139-149, 2009
REFERENCES

Babuska, I., M. Griebel and J. Pitkdranta, 1989. The problem of selecting the shape functions for a
p-type finite element. Int. J. Num. Meth. Eng., 28: 1891-1908.

Babuska, 1. and M. Suri, 1994. The p and %4-p versions of the finite element method, basic principle
and properties. STAM J. Num. Anal., 36: 578-632.

Bertoti, E., 2001. Dual-mixed p and hp finite element for elastic membrane problems. Int. J. Num.
Meth. Eng., 53: 3-29.

Carnevali, P., R.B. Morris, Y. Tsuji and G. Taylor, 1993. New basis functions and computational
procedures for p-version finite element analysis. Int. J. Num. Meth. Eng., 36: 3759-3779.
Cugnon, F., 2000. Automatisation des calculs éléments fimis dans le cadre de la méthode-p
{Automation of finite element analysis within the framework of the p-method). Ph.D Thesis,

University of Liége, Belgium.

Gupta, A K., 1991. Computational efficiency of p-and h-version elements. Commun. Applied Num.
Meth., 7: 87-92.

Peano, A.G., 1975, Hierarchies of conforming finite e¢lements. D.Sc. Thesis, Sever Institute of
Technology, Washington University, St. Louis, MO.

Rank, E., M. Riicker, A. Diister and H. Broker, 2001. The efficiency of the p-version finite element
method in a distributed computing environment. Int. J. Num. Meth. Eng., 52: 589-604.

Richardson, J.D., 2003. Numerical p-version refinement studies for the regularised stress-BEM.
Int. J. Num. Meth. Eng., 58: 2161-2176.

Sabonnadiére, I.C. and J.1.. Coulomb, 1986. Eléments finis et CAO (Finite element and CAD). Editions
HERMES, Paris. ISBN: 2-86601-056-6.

Sangare, M.K., 1994, Amélioration de la qualit¢ des calculs éléments finis par analvse auto-adaptative
(Quality improvement of computed finite element solution by auto-adaptive analysis).
Ph.D Thesis, CNAM of Paris, France.

Zienkiewicz, O.C., J. Gago and D W. Kelly, 1983. The hierarchical concept in finite element analysis.
Comp. Struet., 16: 53-65.

Zienkiewicz, O.C. and R L. Taylor, 1989. The Finite Element Method. Basic Formulation and Linear
Problems. 4th Edn. Vol. 1, McGraw-Hill Book Company, London (England), ISBN: 0-07-
084174-8.

149



	Asian J. of Applied Sciences.pdf
	Page 1


