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Abstract: The artificial intelligence modeling of nonstationary rainfall-runoff has some
restriction in accuracy of simulation base on complexity and nonlinearity of training
patterns. Statistical preprocessing of trainings could determine homogeneity of rainfall-
runoff patterns before modeling in artificial intelligence. In this study, the new hybrid model
of artificial intelligence in conjunction with statistical clustering is infroduced. Statistical pre-
processing effects of 360 rainfall-runoff patterns considered before modeling using Radial
Basis Function Neural Networks (RBFNNs). In the first step all 360 monthly rainfall-runoff
patterns classify by cluster analysis in 4 groups and each class modeled by different
RBFNNs topology. Results of 4 cluster base-RBFNNs compare with no action one and the
optimized structure of Hybrid Cluster base-RBFNN models of Nazloochaei river flow
present. Results show that clustering of rainfall-runoff patterns and modeling of each dataset
by different REFNNs has higher accuracy than no preprocessing of patterns in prediction
and modeling of river flow.

Key words: Rainfall-runoff modeling, cluster analysis, training patterns, radial base
function networks, Nazloochaei river basin

INTRODUCTION

The Bases of risk management is modeling and Prediction of Natural Hazard. Intelligence models
are distributed parallel processors that learn relationship between input and output signals and present
the optimized topology for simulation of systems. In practice, many of the real-world dynamical
system signals exhibit two distinct characteristics: nonlinearity and non-stationary in the sense that
statistical characteristics change over time due to either internal or external nonlinear dynamics
(Coulibaly and Baldwin, 2005). The rainfall-runoff modeling has nonlinzarity process according to the
temporal and spatial distribution of Precipitation and other parameters. A major concern in prediction
of hydrological events is whether a given process should be modeled as linear or as nonlinear. the
evidence of nonstationarity of some existing long hydrological records has raised a number of questions
to adequacy of the conventional statistical methods. There is a different kind of hydrological models
to simulate discharge of river basin but complexity of rainfall runoff processing leads some restriction
and problems in river flow modeling (Nouri and Abghari, 2007). According to this complexity that
caused nonlinear relation between flow and rainfall, researchers try to found better methodology to
develop more accurate modeling. Artificial Neural Networks (ANNs), which are found more suited to
nonlinear input-output mapping. Recent reviews reveal that more than 90% of the applications of
Artificial Neural Networks (ANNSs) for water resources variables modeling is the standard feedforward
Neural Networks (Coulibaly and Baldwin, 2005) but, also Radial basis Function Neural Networks
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(RBFNNs) has high capability to modeling of hydrological Process (Mason et al., 1996; Dibik
and Solomatine, 2001; Nouri and Abghari, 2007). Preprocessing of dataset before training in
artificial intelligence has better effect on training time and modeling accuracy (Nowri and Abghari,
2007).

Hu et af. (2001) developed Range-Dependent Hybrid Neural Networks (RDNN), which are
virtually threshold ANNs, to forecast annual and daily streamflows. Pal et «f. (2003) proposed a
hybrid ANN model that combines the Self-Organizing Feature Map (SOFM) and the MLP network
for temperature prediction, where the SOFM serves to partition the training data. Implementation of
feedforward NNs (Hsu ef of., 1995; Lorrai and Sechi, 1995), Recurrent NNs (Gao and Joo, 2005),
Cluster Base Multi layer Perceptron (Wang et af., 2006), RBFNNs (Mason ef af., 1996), Fuzzy NNs
(Jang, 1993; Jang ef al., 1997) fuzzy-logic based hybrid modeling (Sec and Openshaw, 1999) and
SOM-cluster based hybrid modeling (Abrahart and See, 2000) Bayesian-concept based modular ANN
(Zhang and Govindaraju, 2000; Nayak ef al., 2004; Dogan, 2005; Kisi, 2005, 2006), models to
Prediction of Time Series also proposed in Cigizoglu (2004), Baratti ef af. (2003), Yurekli ef al. (2004),
Nilsson et af. (2005), Dulkashi et al. (2006), Chen ef of. (2006), Bhattacharaya and Solomatine (2006)
and Jain and Stimvasulu (2006). Wang et af. (2000) develop the hybrid Threshold base Multi layer
perceptron and Cluster Base-MLP to prediction of daily streamflow. Mason ef al. (1996) and Dibik
and Solomatine (2001) show that accuracy of niver flow prediction using REFNNs is better than MLP
and deterministic model, Hec-HMS. Samani ef «f. (2007) demonstrate that using principal Component
analysis as a preprocessing of dataset and reduction of data dimension, MLP has more ability to
modeling of Pump test in well. Also, Ceylan and Ozbay (2007) demonstrate that classification of ECG
using some preprocessing of data like FCM, Wavelet Transformation and Principle component
analysis Comparison with ANN is better than MLP modeling without preprocessing. In this study
Cluster analysis consider for determine the homogeneity of training patterns and each class of rainfall-
runoff patterns train and test in different RBF networks. Investigation of monthly homogeny training
patterns to niver flow modeling and comparison of result with no preprocess RBF modeling of
nonstationary time series is main aim of this study.

MATERIALS AND METHODS

Study Area

One of the major tributary of Nazloochaei River Basin in North West of Iran selected for the
current study (Fig. 1). The basin’s area is 2014 km? and main river drainage to Urrmia Lake. Stream flow
processes always influenced severely by irregular rainfall event. Three hundred and sixty monthly
data records of 5 precipitation gauge and hydrometric station from 1976-2006 considered for RBF and
Hybrid RBF modeling.

Radial Base Function Neural Networks

Activation function of hidden layer in the RBF Neural Networks defined as radial symmetric
basis functions such as the Gaussian function and output Layer is lincar Function (Wasserman,
1993). RBFNNs recommended by researcher Because of fast training time and generalization of
RBF in hydrological process (Mason ef af., 1996; Dibik and Solomatine, 2001). Figure 2 show the
structure of RBFNNs model. Learning process in the RBFNs is updating of the matrix weight in
each iteration base on model output and comparison of estimated discharge with observant one
to determine error. The output of neurons in hidden layer of REFNNs (3) is radial difference
finction (2) of Precipitation gauge data Matrix as an inputs p, = (py, Pas---» D) and weight vectors
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Nazloochaei river basin

Fig. 1: Nazloochaei River basin in the North West of Iran

Y out

Fig. 2: The basic structure of radial base function neural networks

W, = (Wy;, Wy, W) to minimize the error of estimate discharge by model (Mason et al.. 1996).

The RBFNNs topology programming was computed using the MATLAB R2008a software

package.
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Fig. 3. Effect of different spread coefficient in Gaussian function shape

8 = ’zli:p1 - W, )

There is different choice to Y, = f{&,) but usual one is Eq. 3:
&
Y., =16) = e /) @

Which & is radial difference between Precipitation p, and weights w; and o define as Spread
Coefficient.

Neurons are added to the RBF network until the sum-squared error falls beneath an error goal.
These types of networks tend to take more neurons than feedforward NNs with tansig or logsig
neurons in the hidden layer. Because sigmoid neurons can have outputs over a large region of the input
space, while RBF neurons only respond to relatively small regions of the input space. In addition to
optimization parameter of networks like number of neurons, training algornithm, improvement of
weights, there is extra parameter for optimization and flexibility of Gaussian activation function of
RBFNs named as spread coefficient. Spread Coefficient (o in Eq. 3) determines the selectivity of
neurons. Using different among of Spread the Gaussian activation function could contract and
expansion (Fig. 3). Therefore if spread is small the radial basis function is very steep and the neuron
with the weight vector closest to the input will have a much larger output than other neurons. As
spread becomes larger the radial basis function's slope becomes smoother and several neurons
can respond to an input vector. Thus the training process of RBFNNs is performed by deciding on
how many hidden neuron there should be for modeling and the sharpness of the Gaussians using
spread parameter. While the optirmized weights are estimated using Simple Back propagation
algorithm like for Multi Layer Perceptron approximation are kept fixed for RBF Networks
modeling.

Models Performance Measures

There 1s an extensive literature on model forecasting evaluation indices (Wang ef @f., 2006). The
R squared and equivalently Root Mean Squared Error (RMSE) is popular model measure because they
are very sensitive to even small errors, which is good for comparing small differences of estimated and
observed discharge on models.
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RMSE = ii(Q,—Q) (4
o, Bled) )
22

Which n the numbers of observations, & average discharge of river, Q the observed discharge of
hydrometric station and @, is the estimated discharge of RBF model.

Cluster Analysis of Monthly Rainfall-Runoff Patterns

Seasonality in the water year period leads to some incongruous in dataset for training process of
Neural Networks. Most of the hydrological models problems are overcoming seasonality on
simulation. The objective of cluster analysis is the classification of objects according to similarities
among them and organizing of data into groups. Different classifications can be related to the
algorithmic approach of the clustering techmques. Variables that have high pairwise correlations are
assigned to the same cluster, whereas those having low pairwise correlations are assigned to different
clusters (Kamel and Selim, 1994). Generally, cluster analysis is based on two ingredients: Distance
measure and Cluster algorithm. Distance can be measured among the data vectors themselves, or as a
distance form a data vector to some prototypical object of the cluster.

One of the recommended distance measures for quantification of (dis-) similarity of objects is
Euclidean method (Eq. 6). For cluster algorithm, K-means (Eq. 7) can be seen as an optimization
problem which could minimize the sum of squared within-cluster distances. Each cluster in the
partition is defined by its member objects and by its centroid. The centroid for each cluster is the point
to which the sum of distances from all objects in that cluster is mimimized. In the presented hybrid
model K-means uses an iterative algorithm that minimizes the sum of distances from each rainfall-
runoff training patterns to its cluster centroid, over all clusters. This algorithm moves training patterns
between clusters until the sum cannot be decreased further. The result is a set of clusters that are as
compact and well-separated as possible.

dE(i,j):1’2(p,k_pjk)2 (6)

> 3 dpp) 9!

k=1 e(i=c(j=k

W(C)=

b | =

Which, d, (i, j) is Euclidean distance between precipitation p; and py, W{C) Minimize the sum of
squared within-cluster distances.

Using this method 360 dataset of rainfall-runoff separated in 4 clusters, 124 training set in cluster
one, 116 in cluster two, 52 in cluster three and 68 in cluster 4. Each cluster's rainfall-runoff patterns
divided in two sections for training and validation process of hybrid models. 70% percent of each class
pattern used for training and other residual used for models validation. Four hybrid models, C1 1-
RBFNNs, Cl1 2-RBFNNs, Cl 3-RBFNNs and Cl 4-RBFNNs, developed. Figure 4 show the structure
of Hybrid Cluster Base-RBFNNs.
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Fig. 4: The structure of hybrid model (cluster base-RBFNNs)
Table 1: Rainfall-runoff RBFINN optimized topology without any preprocessing of patterns
Training Validation
Spread
coefTicient R? RMSE R? RMSE
0.01 0.5193 2.0209 0.4682 2.8982
0.1 0.6221 1.0818 0.5839 2.0076
0.2 0.6682 1.2004 0.6033 1.7040
0.3 0.7009 0.9998 0.6765 1.3688
0.4 0.7621 0.8802 0.6894 0.9808
0.5 0.7438 0.7307 0.6408 1.0955
0.7 0.7069 1.1493 0.6044 1.3438
1 0.6678 1.2231 0.5814 1.5990
5 0.6095 1.2991 0.5299 1.7830
20 0.5675 1.5592 0.4938 2.5605
50 0.5479 1.6622 0.3703 3.0705
100 0.5460 2.0929 0.3459 3.2026
1000 0.5429 2.5085 0.3455 3.7760
RESULTS AND DISCUSSION

The rainfall-rnunoff processes usually have pronounced seasonal means, variances and dependence
structures and the under-lying mechanisms of streamflow are likely to be quite different during low,
medium and high flow periods, especially when extreme events occur. Result of REFNNs modeling
of all 360 training rainfall-runoff patterns without any preprocessing show in Table 1. The optimized
topology of training and testing obtain by spread coefficient 0.4. Considering the Table 1 show that
model accuracy using R? for training and validation phaseis 76.21, 68.94% and RMSE for training and
validation phase 0.8802 and 0.9808. this result show the seasonality modeling problem for time series
that even RBFNN has a restriction in traiming of relation between precipitation input vector and
discharge output.

After clustering of all datasets in 4 classes, each classes train and test in different Radial Base
Function Newural Networks (Fig. 5) and Cluster Base-RBFNNS developed. Because of homogenous
in training cluster and reduction of seasonality in the hybrid model, accuracy of each class improved
to some extend in comparison to no action on dataset. Result of each hybrid models C1 1-RBFNNs,
Cl 2-RBFNNs, Cl 3-RBFNNs, Cl 4-RBFNNs show in Table 2-5. The optimized topology of the
Cl 1-RBFNNs in training and testing obtain by spread 0.3. The Table 2 show that model accuracy
using R? for training section is 90.95%, 82.37% and RMSE is 0.0058 and 0.0987.
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Fig. 5: Dendrogram of cluster analysis of training dataset

Table 2: Optimized topology of model 1 (cluster 1-RBFNN)

Training Validation

Spread

coefficient R? RMSE R? RMSE
0.01 0.784 1.4312 0.6573 2.1984
0.1 0.8369 0.0935 0.7158 0.4935
0.2 0.8843 0.0130 0.7803 0.1834
0.3 0.9095 0.0058 0.8237 0.0987
0.4 0.8976 0.0283 0.7972 0.0903
0.5 0.8572 0.0297 0.7345 0.1993
0.7 0.8398 0.0298 0.6578 0.2332
1 0.7523 0.4520 0.6372 0.7358
5 0.7126 0.5660 0.5843 1.3458
20 0.6283 0.9391 0.5683 1.9391
50 0.5473 1.0632 0.5167 2.0632
100 0.4835 1.0632 0.4998 2.0992
1000 0.481%2 1.1732 0.4979 2.1732
Table 3: Optimized topology of model 2 (cluster 2-RBFNN)

Training Validation

Spread

coefficient R? RMSE R? RMSE
0.01 0.6922 2.0292 0.6082 2.7934
0.1 0.7821 1.0975 0.6839 1.9035
0.2 0.8402 0.0570 0.7333 0.6854
0.3 0.8853 0.028 0.7965 0.2887
0.4 0.8678 0.0109 0.8123 0.1023
0.5 0.8438 0.0227 0.7308 0.1453
0.7 0.8069 0.0269 0.6944 0.2692
1 0.7678 0.4532 0.6114 0.7245
5 0.6895 0.8336 0.5599 1.6958
20 0.6475 0.9391 0.4938 1.9391
50 0.5679 1.0632 0.3803 2.0940
100 0.5460 2.0228 0.3759 2.2329
1000 0.5129 2.2139 0.3755 2.7560

It is recognized that data preprocessing can have a significant effect on model performance (Maier
and Dandy, 2000). Results show that Clustering of Rainfall-Runoff patterns and modeling of each
dataset by different RBFNNs has higher accuracy than no preprocessing of Patterns in prediction and
modeling of river flow. Considering Table 6 show the capability of preprocessing of rainfall-runoff
modeling using Cluster base-RBFNNs that could demonstrate other preprocessing methods like data
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Table 4: Optimized topology of model 3 (cluster 3-RBFNN)

Training Validation

Spread

coefficient R? RMSE R? RMSE
0.01 0.6382 1.8944 0.5632 2.8934
0.1 0.7324 1.4497 0.6139 1.7033
0.2 0.7968 0.7693 0.7093 0.6355
0.3 0.8793 0.4498 0.7495 0.2934
0.4 0.9278 0.0809 0.8123 0.1643
0.5 0.9547 0.0027 0.8808 0.0793
0.7 0.8769 0.0975 0.7984 0.2893
1 0.7678 0.7562 0.6741 0.6240
5 0.6695 0.9039 0.6190 1.6854
20 0.6085 1.0391 0.5738 1.9795
50 0.5679 1.3632 0.5353 2.0985
100 0.4960 2.0328 0.5109 2.2776
1000 0.4629 2.8083 0.5115 2.9060

Table 5: Optimized topology of model 4 (cluster 4-RBFNN)

Training Validation

Spread

coefficient R? RMSE R? RMSE
0.01 0.6287 1.8023 0.5367 2.3993
0.1 0.6829 1.1127 0.6079 1.8074
0.2 0.7470 0.9409 0.6933 0.6024
0.3 0.7953 0.4498 0.7589 0.4687
0.4 0.8678 0.0909 0.8183 0.1862
0.5 0.9232 0.0106 0.8698 0.0965
0.7 0.8069 0.2895 0.6944 0.4447
1 0.7678 0.8532 0.6274 0.8924
5 0.6895 0.9931 0.5719 1.4853
20 0.6475 1.0592 0.5408 1.9206
50 0.5679 1.4698 0.5193 2.0808
100 0.5460 2.0929 0.4839 2.2023
1000 0.5129 2.5023 0.4825 2.7762

—a— Cluster 1 train —m—Cluster 2 train  —o— Cluster 3 train
—#— Cluster 4 train -~ No cluster train —e— Cluster 1 test
1.0 —0— Cluster 2 test —=— Chuster 3 test -m— Cluster 4 test —o— No cluster test

0.3 T T 1

001 01 02 03 04 05 07 10 5 20 50 100
Spread coefficient

Fig. 6: Monitoring of models accuracy in Training and testing process using different spread
coefficients
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Table 6: Topology of all 5 models RBFNN and Cluster base-RBFNNg
Optimized result of 5 models

Training Validation
Networks topology R? RMSE R? RMSE
RBFNN 0.7621 0.8802 0.6894 0.9808
Cluster base-RBFNNg Cluster 1 0.9095 0.0058 0.8237 0.0987
Cluster 2 0.8678 0.0109 0.8123 0.1023
Cluster 3 0.9547 0.0027 0.8802 0.0693
Cluster 4 0.9232 0.0106 0.8408 0.0954

reduction using PCA by Samani (2007). Figure 6 show the Monitoring of spread coefficient of
Gaussian Function in 5 developed models. This result demonstrates that R square of each cluster base
models in selective spread has better accuracy than No preprocessing in traiming and testing procedure.

CONCLUSION

There is a big difference between extreme data in the seasonal hydrological time series that
clustering could separate homogenous data. Using homogenous training rainfall-munoff patterns
modeling is much easier than no action. Cluster base-RBFNNs could use as a hybrid model to
overcoming of nonlinearity modeling of river flow modeling. This comparison shows that
preprocessing of training dataset as the hybrid RBFNNs model has better optimization than RBFNNs
for simulating of the rainfall-runoff process in Nazloochaei river basin. RBFNN has efficient trainming
algorithm (vs. multi-layer NN) but large training set is a problem. Cluster base-RBFNN hybrid modsl
show high capability for prediction. It would be interesting to further compare the hybrid Cluster-
based RBFNN approach with other hybrid techniques, such as Bayesian-concept based MLP, fuzzy-
logic NNs modeling and SOM-cluster based hybrid modeling.
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