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Abstract: In this study nonlinear controller, active confroller, umdirectional coupling
controller and active sliding mode controller are designed for synchronizing pairs of unified
fractional chaotic svstems with known parameters different randomly selected imitial
conditions. These methods are compared from wvarious points of views such as
synchromzation time, synchromzation error, average synchronization time, average error
variance, average squared error variance, average minimum control signal, average maxinmim
control signal, mimmum confrol signal variance and maximum control signal variance. As we
know, nobody compares these methods for fractional chaotic systems, until now. Present
results show that the active sliding mode controller is generally better than the others
according to the defined criteria.
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INTRODUCTION

Even though fractional differential equations have 300 years old history, their application in
physics and science has been investigated only in recent years. It is so effective to model some
systems for example dielectric polarization (Sun ef af., 1984) clectrode electrolyte polarization
(Ichise ef af., 1971) electromagnetic waves (Heavisidel, 1971) quantitative finance (Laskin, 2000) and
quantum evolution of complex systems (Kusnezov ef al., 1999) by means of fractional order than
integer order.

Although, the synchronmization of differential systems with integer order is mature and well
understood (Kapitamak, 1994; Boccalett ef af., 2002, Pikovsky and Kurth, 2001) the synchromzation
of fractional differential systems is still an active research field (Deng and Li, 2005a, b; Li ef ol., 2006,
Lu, 2006).

The chaos synchronization means making two systems behave in a synchronized manner.
Consider a fractional chaotic system as master and another one as the slave system those equations
of them are as follows:

dix

dt =t (1
dly

Y =gly,u)

where, %, v, ueR* and f, g: R™ R" are assumed to be analytic functions.
Let x(t, %) and v{t, y,) be solutions to Eq. 1, respectively. The solutions x(t, x) and y{t, y ) are
said to be synchronized if:

lim [ (t.x,) ~y (Ly )| = © @

414



Asian J. Applied Sci., 2 (5): 414-435, 2009

Means that, when the slave system is driven by a control input, we expect that its dynamical
behavior follows that of master systemn after a transient.

There are different methods to synchronize the fractional chaotic systems, such as the coupling
method (Li ef e, 2006), nonlinear control method (Lu, 2006) and active control method (Haeri and
Emadzadeh, 2000). In this study we design four control methods to synchromze two unified fractional
chaotic systems. The methods are the Active Control (AC), the Nonlinear Control (NC),
Unidirectional Coupling (UC) and Active Sliding mode Control (ASMC). Capabilities of these
techniques on the synchronization of unified systems are compared. As we know, nobody compares
these methods for fractional chaotic systems, until now. Before, the AC, NC and ASMC compared
with each other in chaotic systems with integer order (Haeri and Emadzadeh, 2006; Haeri and
Khademeian, 2006).

DEFINITIONS AND SYSTEM RELATIONS

There are several defimtions of a fractional order differentiation. The followings are the most
COITITION ONES:

D*x{ty=I""* (;h()(t), (ax0) 3

where, m is the first integer which is not less than ®” | is the m-order derivative in the usual sense and
TF(P>0) is the P-order Reimamn-Liouvill integral operator with expression;

PR S PR 4
T*y(t) F(B)!(t D y(n)de

Here T stands for Gamma function and the operator D* is generally called e-order Caputo differential
operator (Caputo, 1967).
Lu ef al. (2002) introduced a unified system:

X, =25 +10)x, — %)
X, = (28 - 35a)x, — XX, + (290 —1)x, 5)

X, = XK, - (a+8)x, /3

where, ae[0, 1]. It has been shown that system (Eq. 5) is chaotic for all ee[0, 1]. When « = 0.0,
¢ =0.8 and ¢ = 1 (5) represents Lorenz system, Lu systemn and the Chen system, respectively. An
interesting numerical result is that when «e[0, 0.8) and «e(0.8, 1], the corresponding chaotic attractors
are similar to those of Lorenz and Chen systems, respectively.

The fractional version of the unified systemis as follows:

dx, /fdt? = (25a+10)(x, - %,)
d¥x, / dt® = (28 - 350)%, — X,X; + (29¢ - 1)x, (0)
dx, /dt® =xx, - (0+8)x, /3

where, d¥/dt* = D* The fractional order denoted by q = (q,. ¢,. q;) is subject to 0<q,, q,. g;<land
ee0, 1]. We found that for a set of parameter values «e[0, 1] and g=(0.985, 0.99, 0.99), the fractional
order unified system can display chaotic attractors.
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CHAOS SYNCHRONIZATION USING ACTIVE CONTROL METHOD

Here, we extend the active control theory, to realize synchronization of unified fractional chaotic
systems. In order to observe the synchronization behavior in the master-slave structure, the control
signals are added to the slave system dynamics:

dix

du
szl X)+AX, dt—qy:f2 ¥)+A,¥y+u (7

where, x(D)eR” and y(t)eR? denotes the master and slave system’s 3-dimensional state vector, A,eR¥,
f;: R*-R? represents the linear and nonlinear part of the master system dynamics. A gR¥*xR? and
f;; R*+R? imply the same roles in the slave systemn as A, and f; for the master system.

The synchromzation error is defined as ¢ = y-x. The error dynamics are determined as:

die
F:Azerfz(Y)*Aﬂ*ﬁ(X)Jrus ()

=Be()+F(x,v)+u

where, F(x, y) = f(y)-fi(x)+(A,-A,). To simplify the notations, the linear part of the slave system is
represented by matrix B (B = A,).

The nonlinear part of the Eq. 8 and v(t) that acts as external input in Eq. 8 are two parts of the
control signal (11):

u(ty=Be()—F(xy)+ V(D) o)

Matrix B is known and contains parameters of the linear part of the slave system. The controller
is designed by determuming matrix A such that the error dynamics in (8) becomes stable. In the
following subsections, at first Stability analysis is given and then matrices and relation of them are
given for synchronizing pairs of different chaotic systems.

Stability Analysis
Matignon (1996) the following autonomous system:

oD = Ax, x(0)=x, (10)

where, 0<g<l, xeR" and AeR™, is asymptotically stable if |arg(eig(A)|>qm/2 according to stability
analysis, as long as all eigenvalues of matrix A(A's T=1, 2, 3} satisfy the condition |arg(eig(),)| = qm/2,
the system defined by (8) is asymptotically stable.

Chen and Lorenz Systems
Chen and Lorenz svstems are considered as master and slave systems. Then the error dynamics
is as follows:

die
m =10(e, —e, ) - 25(y, -y, ) +u,(t)
de, (11)
m =28¢ —¢, +35y, -29y, —v,e, — v, — g6+ U, (L)
de,
o =-8¢,/3+v,/3+ve,+ v,6+ e, + u,(t)
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The control signals are determined as:
u,{t) = 25(y; — y )+ v, (t)
u, (1) =-35y, + 29y, + ¥,6, + V1€ + €6, + V, (1) (12)

u, )= —G6 V8 NG — Y3/3+ A Q)

Using the above control signals, the error dynamics Eq. 11 become:

q,
% = Be(t)+ v(b) (13)
Where:
-10 10 0
B={28 -1 ©
0 0 -8/3

Designing the proper feedback control stabilizes the error system so that e(t) converges to zero.
It guarantees that the given chaotic system are synchronmzed. We choose:

v(t) = Ae() (14)

When matrix A is chosen in the following form, all eigenvalues of the closed loop error dynamics will
have negative real part and satisfy the condition |arg(A)|>0.5qm:

-9 10 0
A= 28 0 0
00 -5/3

Chen and Lu Systems
In this case Chen is master and Lu is slave system. The error system is as follows:
The control signals are defined as:

u, () =5¢y, -y, ) + v, (1)
w,(ty=-Ty, + 58y, +y.&,+ V,€ + g6, + v, (1) (15)

u, () =—e¢, - v,6 — 6, — 0.07y, + v, (1)

The error system becomes as follows:

% = Be(t) + vit) (16)

where,
-30 30 0

B=0 222 0
0 0 -293
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Use of the feedback control defined in Eq. 14 with feedback gain given by matrix A as below, the
closed loop error dynarmics will have negative real values for its eigenvalues and satisfy the condition
|arg(A)|>0.5qm. This implies an exponential stability for the proposed synchronization.

-29 30 0
A=) 0 232 0
0 0 -193

Lu and Lorenz Systems
Suppose that Lu is master and Lorenz is slave. The error dynamics in this case are:

de,

T 10(e; — ;) = 20(y; — y; ) +u, (1)

d, (17)
o 28e, —e, + 28y, — v,6,— V.6, — €&, — 232y, + u,{t)

d 8

dt“‘3 = —geg —0.264y, — Y€, + ¥,€,+ €, + U, (D)

The control signal is defined as:
U1(t) = 20(Y2 - }/1)Jr v (t)
u, (£} =—-28y, + yi&, + ¥,6, + €6, +23.2y, + v, (1) (18)
u; (1) = 0.264y; — yi¢;, — 7,8 — €6, + V5 (1)

Therefore, the error system becomes:

de/dt® = Be(t) + v(1) (19)
where,
~10 10 0
B=|28 -1 o0
00 -8/3

And finally matrix A for providing the eigenvalues that satisfy the condition |arg(\)|>0.5qmw is
determined as follows:

-9 10 0
A=[28 0 0 {20
0 0 -5/3

CHAOS SYNCHRONIZATION USING NONLINEAR CONTROL METHOD

The augmented control signal w(t) is chosen based on a Lyapunov function establishment for the
error system. Assume the Lyapunov candidate function as follows:

V=¢"Pe, P>0 21)
The derivative of V is calculated as:

V= 26"Pé = 2"P(g(y)— F(x) + W) (22)
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We choose u(t) such that V becomes negative definite:
P(e(y)-f(x)+ W)=-Qe, Q>0 (23)

According to the Lyapunov stability theorem, this means that lim,__|e(t)|-0 and therefore the
master and slave systemns would be synchronized asymptotically.
The error dynarmics in general is:

d% /dt* = g(y)— f(x)+u 24
The control function is selected as:
Wt = wit) + de{t) / dtr — &qt) (25)

Matrix P is chosen as follows:
1 00
P=0 2 0 (26)
0 0 3

For this selection of P, V is positive definite and V is negative definite functions.

Chen and Lorenz System
In this case V=-e"Qe , where:

20 0 0
Q=0 32/3 0 (27)
0 0 168
Chen and Lu System
In this case Q is:
60 0 0
Q=/0 88 0 (28)
0 0 1758
Lu and Lorenz Systems
Here, Q is obtained as follows:
20 0 0
Q=|0 32/3 0 29)
0 0 168

CHAOS SYNCHRONIZATION VIA UNIDIRECTIONAL COUPLING METHOD

In this case it is assumed that the umfied fractional order system (Eq. 6) is master and slave
systems. We add the control signal to the slave system, so we have:
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d'y,

i ={(25a+ 10y, -y - k(y, —x,)

&Y 0535 290, 1

F’( —35a)y, - ny; + (29— Dy, {30)
*k(%*Xz)

d? o+8

dt? =¥Y; *TY3 —k(y, —x,)

where, k determines the coupling convergence rate. Defining the error variables:
G=%"% &=%"%, &=V %,

The error system is:

de
ﬁ:(ZSUAIO)(e2 —-¢)—ke

q,

dd:f =(28-35a)e, — V6, — X6 + (29 —1-k¢, 2y
die, e, X 7(0:+8
ae 1v2 2% 3

+ ke,

Taking Laplace transform from both sides of Eq. 29 and utilizing L({d%e/dt") = s*(E,(s)-s*-1¢,(0),
one obtains:

$1E, () —s27'¢, (0) = (250 + 10)E, () — E, (8)) —KE, ()

S1E,(5) — 52 7e, (0) = (28 — 35e0)E, (8) — L{y,e; + X6, ) + (29ct— 1 k) E,{(s) (32)
SE,(5) 5% e, (0) = Liy,e, +%,¢,) - (a;r S OE,®
It follows from Eq. 30 that:

E ($)= 527 (0) + (25 +10)E, () (33)

' S 4 (2504104 k)
E, (s - 527, (0) — L(y,e, + X,6) + (28 - 35)E,(8) (34)

s% —(29a,-1-k)

And

E, () - s, (0) Jr(it(ryée2 3,6, as)

ST 4 (;

+k)

By the final value theorem of the Laplace transformation, we have:
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. . 25« +10 .
lim & (t) = lim sE, (8) = ———-"_[im sE (36)
tigel( ) bt ) 250 +10+k bt 2(8)

sL(¥,e, +X8,)

lim e, (t) = lirrl sE,(s) = lirq (37)
o 550 550 (27— 6a-K) -k 28 -35a
250+ 10+ k
. . 3 .
Jim e (1) = lim sE. (5) = ———-lim/(sLx;6 + ¥:6,)) (38)

If we assume that E,(s) or E,(s) is boundedi.e.:

[E(s)|<Nor [E,(s)|<N
Then limet)=0 and lime,{t)=0_ Because of attractiveness of the attractor, there exists some

positive value M such that |x;| <M, |x;| <M, and |%;| <M. From lim;_,..¢, = 0 we can see that v, is also
bounded. Thus, it follows from (36) that:

Jim o= 0
Therefore, under the following assumption:
[E®|<Nor [E,@|<N
We have,
(lir&ci(t):o, i=1,2,3
It shows that the master and slave system are synchronized.
CHAOS SYNCHRONIZATION VIA ACTIVE SLIDING MODE CONTROL

The error dynamics in Eq. 8 is rewritten as follows:

%:Ae+F(X,y)+u(t) (39)

where, A represents the linear part of slave system. And we have:
u(t)=H(t)-F(x.y) (40)

where, H(t) = Kw(t). The defined control signal wt is determined through the sliding mode
approach:

w(t){w+(t)’ S©20 (a1)
wo(t), s(e)<0
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s(e) 1s the switching surface and is considered as:
s(e)=Ce {42)

The reaching law assumned to be $=-qsgn(s)—rs . This design results in the following control
signal:

w(t) = —(CKY(C@T + Ade + gsgni{Ce)) (43)
It can be shown that the closed loop system will be stable for positive r and q parameters.

Chen and Lorenz Systems
Matrix A and nonlinear function Fix, y) are given as follows:

-10 10 0
A=|28 -1 0 (44)
0 0 -2.66
_25(}/2 - Y1)
F(x.y)=| 35y, 29y, - ¥,¥, — XX, (43)

033y, + vy, + XX,

We set the gain vector K = [1 2 2], the shiding surface vectors C=[-1.5 5 -3] and reaching
law parameters as r = 1.5 and g = 0.35. The sliding mode control input would be:

wi(t) = [-61.1 5 -1.4Te(t) - 0.14sgn{s) (46)

Chen and Lu Systems
The following matrix and vector are obtained for this pair of systems:

30 30 0
A=| 0 232 0 (47)
0 0 293

The same vectors and parameters of the previous case results in the following control

signal:
W{t)=[-17.1- 294 —1.7160]e(t) — 0.14sen(s) (48)

Lu and Lorenz Systems
Matrix A and vector function F (x, z) in this case are:

1010 0
A=|28 1 0 (49)
0 0 266
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-20(z, - z,)
F(x,z)= |28z - 23.2z, +z,z, — XX, (50)
0.263z, + XX, - 7,2,

With the same vectors and parameters as in the previous cases, the control signal would be as
follows:

Ww(t) = [-61.1 5 —1.4Je(t) — 0.14sgn(s) (51)
SIMULATION RESULTS

Here, we consider two different unified fractional order chaotic systems and compare the
performance of the synchronization methods discussed in the previous sections. It is assumed that the
systermns have known parameters while simulations were performed with randomly selected imtial
conditions. The following criteria were studied:

+  Average synchronization time (Mean (ST))

*  Average error variance (Var (mE)

¢+ Mean squared error varance (Var (mseE))

+  Average minimum of the control signal (Mean (miU})
+  Average maximum of the control signal (Mean (maU))
+  Mimmum of the control signal variance (Var (miU))

e Maximum of the control signal variance (Var (malJ}))

The minimum value of mean (ST) implies faster convergence. For smaller Var (mE) and Var
{mseE) we have better synchromzation. On the other hand, we need to expend less control effort (Var
{mil), Var (maU)) and have lower magnitude of the control signal (miU, mall) in real time control
application. Our results are derived from the computer simulation of the master and slave systems with
100 randomly selected inmitial conditions. The given results here show the average of the 100 times
simulations.

Results obtained from different synchromzation methods are given in Table 1-10. We calculated
the percent of how many times each methods is better than the others and results are presented in
Table 10.

As it is revealed from the above tables especially Table 10, the ASMC approach performs better
than the other controllers in the most cases.

Results which obtained from comparing different methods, for synchromzation time and
synchronization Error are shown in Fig. 1 to 18.

Table 1: Result for the Chen and Lorenz systems (the first states)

%Y NC AC uC ASMC
Mean (ST) 32.7800 285 21.0100 6.1800

Var (mE) 0.0017 0.1435 0.0126 3.8410x107
Var (msek) 2.0636 1243053 1.7410 0.0218
Mean (miU) -414.5623 -300.6975 -570.9264 -296.8696
Mean (mall) 381.2508 387.3164 672.3864 1.1540%10°
Var (miU) 5.7885%1 0P 5.6637x10 2.8520%10° 2.3782x10°
Var (mal)) 5.7840x1 0 5.0152x1¢F 3.8010x1 (P 1.7867x10°
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Xz, V2 NC AC ucC ASMC
Mean (ST) 7.2000 276.5500 24,0300 7.8300

Var (mE) 1.4641%10% 0.1725 0.0190 5.8574%107
Var (mseE) 0.1378 142.2790 162116 0.0480
Mean (miU) -559.2651 -536.3912 -966.7130 -394.9017
Mean (mall) 510.7598 517.9485 906.6440 1.0618%10°
Var (mill) 1.4043x10¢ 1.3452=10¢ 1.4494=10¢ 3.4575x10°
Var (mall) 13024104 1.1558=1¢¢ 1.3304x10¢ 5.4645x10%
Table 3: Result for the Chen and Lorenz systems (the third states)

X3, V3 NC AC ucC ASMC
Mean (ST) 16.5900 662.8000 35.1200 5.5200

Var (mE) 5.9497x10* 259.0344 0.0061 4.1787%107°
Var (mseE) 0.1243 8.5105%10¢7 12,7215 0.0215
Mean (miU) -151.7842 -148.9618 -213.9924 -13.3921
Mean (mall) 434.6395 423.1586 793.6392 1.2775x107
Var (miU) 384.9011 339.7483 2.7714x1 (¢ 0.7648

Var (mall) 6.3736x1¢F 5.6360x1¢° 1.1193=1¢¢ 2.5428x10*
Table 4: Result for the Chen and T.u systems (the first states)

X, V1 NC AC ucC ASMC
Mean (ST) 10.2600 281.6200 20.0500 5.6700

Var (mE) 1.8606x10* 0.1699 0.0041 2.4083%107
Var (mseE) 0.1963 138.4494 1.3191 0.0100
Mean (mill) -404.3922 -401.6999 -816.3668 -53.5310
Mean (mall) 382.1720 387.0414 830.6898 1.3498x107
Var (mill) 6.0347<1(¢ 6.3458x1(F 6.7192x1 (¢ 96.3053
Var (mall) 4.6621=10° 4.8034x10° 9.0337x1¢F 2.0778x10*
Table 5: Result for the Chen and Lu systems (the second states)

%, Vs NC AC uc ASMC
Mean (ST) 14.2300 140.8200 23.2100 4.7700

Var (mE) 2.0515x10* 0.0641 0.0096 3.0838%107°
Var (mseE) 0.2975 38.4328 13.4923 0.0205
Mean (miU) -543.7833 -539.2463 -1.3275%10° -70.4225
Mean (mall) 512.2878 519.4171 1.1810x1¢° 1. 4116%10°
Var (mil) 1.4152%1¢¢ 1.5326%10° 2.9396x10¢ 167.1300
Var (maU) 1.0473%1¢¢ 1.0965%1¢ 2.9850x1¢° 5.3620%10°
Table 6: Result for the Chen and Lu systems (the third states)

X3, V3 NC AC ucC ASMC
Mean (ST) 8.0900 287.5500 31.3400 2.4083%107°
Var (mE) 0.0033x10* 0.1665 0.0051 3.0753x1077
Var (mseE) 0.1488 132.5687 9.9930 0.0108
Mean (miU) -149.0445 -148.5172 -223.1033 -2.5251
Mean (mall) 424.8602 422.5993 844.2793 1. 5020%10°
Var (miU) 344.6371 364.9148 2.4842%1¢° 0.0424

Var (maU) 5.7945x10° 5.9202x10° 1.8153%1¢¢ 3.7117%10°
Table 7: Result for the Lu and Lorenz systerns (the first states)

X, V1 NC AC ucC ASMC
Mean (ST) 9.0600 283.7000 181700 5.8500

Var (mE) 3.1573x10* 0.1606 0.0093 3.2683x107°
Var (mseE) 0.3929 133.9588 1.3381 0.0192
Mean (miU) -372.7433 -356.6724 -519.0529 -243.4540
Mean (mall) 340.5146 346.4703 620.0136 1.1619%10°
Var (mil) 4.1546x10° 3.9913x10° 3.6867x10° 2.0190%10°
Var (mall) 3.6209x1(F 4.9420x 107 4.6555x10° 1.7116x10%
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According to Fig. 1, synchronization time for the Chen-Lorenz systems (first states) via NC, UC,
AC and ASMC is 50, 50, 457 and 10. According to Fig. 2 for the Chen-Lorenz systems
(second states), synchronization time via NC, UC, AC and ASMC is 27, 47, 437 and 12. And finally
according to Fig. 3 for the Chen-Lorenz systems (third states), synchromzation time via NC, UC, AC
and ASMCis 72,62, 961 and 9.

As the Fig. 1 to 3 show for the Chen-Lorenz systems (the first states, the second states and the
third states), the ASMC performance is better than the other controllers. Results show that the

Table 8: Result for the Lu and Lorenz systerns (the second states)

X2, V2 NC AC uc ASMC
Mean (ST) 102.5800 277.6500 22.3900 5.7800
Var (mE) 0.0203 0.1683 0.0148 4.7898x107°
Var (mseE) 14.5781 141.5259 15.3505 0.0306
Mean (mil) -527.0711 -500.4120 -893.4372 -493.4428
Mean (mall) 476.8107 485.2144 859.0388 1.2350x107
Var (miU) 1.1575x10¢ 1.0705x10* 1.9800x10* 2.3897x10°
Var (mall) 9.7430x1(° 1.3310=10* 1.6022x10° 5.7219=10*
Table 9: Result for the Lu and Torenz systerns (the third states)
X3, V3 NC AC uc ASMC
Mean (ST) 11.2700 289.8000 32.7100 4.8200
Var (mE) 1.6337x10 0.1661 0.0054 2.5246%107°
Var (mseE) 0.1036 138.2898 10.7082 0.0091
Mean (mil) -154.9163 -154.5531 -206.9067 -234.6659
Mean (mall) 431.0052 427.9804 768.4237 1. 4837x10°
Var (miU) 400.4440 441.4389 2.6811x1C° 2.2786x10°
Var (malJ) 6.0724x1 (¢ 6.6122x1(F 1.3195x1¢¢ 3.4643x10%
Table 10: Result for describing the percent of performance of each method
Xy NC(®0 AC (%) UC (%) ASMC (%)
Mean (ST) 11.11 0.00 0 88.88
Var (mE) 0.00 0.00 0 100.00
Var (mseE) 0.00 0.00 0 100.00
Mean (miU) 0.00 0.00 100 0.00
Mean (mall) 66.66 33.33 0 0.00
Var (miU) 0.00 11.11 0 88.88
Var (malJ) 66.66 33.33 0 0.00
50 T T
ST = e —
oz 0 _____-_____--__.--—--""“""- m—
' 2 3
10 10
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Fig. 1: Synchronization of Chen-Lorenz systems via NC, UC, AC and ASMC methods (the first

states)
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Fig. 2: Synchronmization of Chen-Lorenz systems via NC, UC, AC and ASMC methods (the second
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Fig. 3: Synchronization of Chen-Lorenz systems via NC, UC, AC and ASMC methods (the third
states)

slave svstern follows faster the master systemn via ASMC. And according to Fig. 4 to 6 we have smaller
synchronization Error via ASMC.

As the Fig. 7 shows, synchronization time for the Chen-Lu systems (first states) via NC, UC,
AC and ASMC is 15, 37, 458 and 8. Figure 8 for the Chen-Lu systems (second states) shows that,
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Fig. 5: Synchronization Error for Chen-Lorenz systems for all of the methods (the second states)

the Chen-Lu systems (third states), synchronization time via NC.

synchronization time via NC, UC, AC and ASMC is 19
and 7.
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Fig. 7. Synchronization of Chen-Lu systems via NC, UC, AC and ASMC methods (the first states)

Figure 7 to 9 show for the Chen-Lu systemns (the first states, the second states and the third states),
the ASMC performance is better than the other controllers. Figures show that the slave system
follows faster the master system via ASMC. And according to Fig. 10 to 12 we have smaller
synchronization Error via ASMC.
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Fig. 8: Synchronization of Chen-Lu systems via NC, UC, AC and ASMC methods (the second

states)
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Fig. 9: Synchronization of Chen-Lu systems via NC, UC, AC and ASMC methods (the third
states)

Figure 13 shows synchronization time for the Lu-Lorenz systems (first states) via NC, UC, AC
and ASMC is 10, 24, 457 and 9. Figure 14 for the Lu-Lorenz systems (second states) shows that,
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Fig. 11: Synchronization Error for Chen-Lu systems for all of the methods (the second states)

synchronization time via NC, UC, AC and ASMC is 164, 49, 437 and 9. And according to Fig. 15 for
the Lu-Lorenz systems (third states), synchronization time via NC, UC, AC and ASMC is 15, 58, 475
and 7. follows faster the master system via ASMC. And according to Fig. 10 to 12 we have smaller
synchromzation Error via ASMC.

430



Asian J. Applied Sci., 2 (5): 414-435, 2009

-]
z
[0
O
=]
L NP L PRI | NP
505 1 2 3
10 10 10 10
50 T——T—rTT y r—————T r ———— y
U oF w
S .Y
IR WSS R
P | i " PR ar e | i i Pl PR
5055 1 2 3
10 10 10 10
20 - e -—-1. ’
o] o
5 0 f" W
<
Ll L P T S A u | i PR S R S A
20 1 2 3
10 10 10 10

t-log

Fig. 12: Synchromization Error for Chen-Lu systems for all of the methods (the third

states)
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Figure 13 to 15 show for the Lu-Lorenz systems (the first states, the second states and the third
states), the ASMC performance is better than the other controllers. Results show that the slave system
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Fig. 14: Synchronization of Lu-Lorenz systems via NC, UC, AC and ASMC methods (the second

states)
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Fig. 15: Synchronization of Lu-Lorenz systems via NC, UC, AC and ASMC methods (the third
states)

follows faster the master system via ASMC. And according to Fig. 16 to 18 we have smaller
synchromzation Error via ASMC.
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CONCLUSION

In this study we described four control schemes on the synchronization of pairs of the umfied
fractional order chaotic svstems. As we know, nobody compares these methods for fractional chaotic
systems, until now. Parameters of the systems are assumed to be known while their initial conditions
are selected randomly. Based on the defined criteria, the performances of the controllers are compared
with each other. We show that the performance of the Active Sliding Mode Controller is better than
the others in the most cases. Results given here is derived from the average of the 100 times simulations
with different initial conditions. If we consider that the parameters of the chaotic systems are not

known, in this case also, we reach to this result that, the performance of the active sliding mode
confroller is better than the others in the most cases
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