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Abstract: Macro-elements are one of the powerful means in reducing number of
equations to be solved m finite element analysis. In the proposed method several
finite elements will be transformed into a single element called the macro-element.
This is done by equating the potential energy of the macro-element to the potential
energy of the equivalent finite elements. If the order of the macro-element fimetion
corresponds to the order of the structural behavior it models, an exact solution is
achieved. Tn this study a beam-macro element and plate bending-macro element are
developed. The developed macro-elements were tested and the results were
compared with the results of conventional fimite element solutions and with closed
form solutions 1if available. Excellent results were achieved with substantial
reduction in number of equations and computer time.
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INTRODUCTION

The analysis of large structural systems using the conventional finite element method
1s impractical. This 1s because of the necessity to use relatively fine mesh to obtain an
accurate model. This will lead to a large number of equations to be solved. Therefore, it 1s
advantageous to seek for approaches that reduce the total number of degrees of freedom
(dof) needed to successfully model large systems. One of these methods is to use
macro-elements.

In this study two types of macro-elements were developed.

The first is for beam element to demonstrate the idea of the macro elements and the
second is for plate bending elements.

These macro-elements are based on transformation of many structural finite elements
into single equivalent macro-element. This is done by preserving the same potential
energies of the structure modeled by finite elements and the same structure modeled by
macro-elements (Alani, 1983).

FORMULATIONS OF MACRO-ELEMENTS

In this study formulations of beam macro-elements and plate bending macro elements
are developed.

In this modeling, several basic finite elements are combined to form a macro-element. The
original structure that consists of many small finite elements will be replaced by an equivalent
model containing one or more macro-elements.

The macro-elements are assembled and analysis continued in a manner analogous to
that used m the fimite element method.
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BASIC ASSUMPTIONS FOR MACRO-ELEMENT FORMULATION
The formulation is based on the following assumption:

¢+ The potential and kinetic energies of the original finite element and the equivalent
macro-element models are equal

*  All the elements that are composing the macro-element must be of the same type such
as beam elements, plane stress elements, plate bending elements etc.

¢ The order of the assumed displacement field of the macro-element is at least of the same
order as that of the original finite elements

*  The macro-element behavior follows the theory controls the behavior of the structural
elements that compose the macro-element

¢ The compatibility requirements for the macro-elements are the same those of the original
finite element

NECESSARY STEPS NEEDED FOR DEVELOPMENT OF A MACRO-ELEMENT
The necessary steps of the development of macro-elements are as follows:

Step 1: Divide the original structure that consists of many fimte elements mto macro-
elements

Step 2: Select the order of the macro-element displacement function. This step depends on
the order and mumber of the fimte-elements composing the macro-element. Accuracy
of the results depends greatly on thus step

Step 3: Set-up the stiffness matrices of the finite-elements forming the macro-element

Step 4: Calculate the local coordinates (S, T) for the nodal points of the finite elements with
the respect to the macro-element nodes so as to formulate the transformation matrix
(T) required in the next step

Step 5: Formulate the transformation matrix (T), which relates the nodal degrees of freedom
of the macro-element to the nodal degrees of freedom of the original structure
modeled by fimte elements

The stiffness matrix of each finite element is multiplied by its corresponding
transformation matrix to produce the participation of this element in establishing the
macro-element stiffness matrix, as it will be seen later.

The stiffness matrix of the macro-element is formulated by equating the strain energy
of the original structure modeled by finite-elements and that of the equivalent model as
follows:

Where:
: The stramn energy of the original structure modeled by many finite elements that

constitutes one macro-element
. The strain energy of the macro-element

Y, [8k,] {a.} =" . [Ko] {qn} (2)
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Where:

q, . Displacement vector of the structure modeled by many finite elements that constitute
one macro-element

q. : Displacement vector of one macro-element

(Sk,) : The assembled stiffness matrix of all stiffness matrices of the finite elements
constituting one macro-element

(K,) : The stiffness matrix of the macro-element

TLet the displacement vector of the original structure, (which constitutes one
macro-element) {q o} be related to that of the macro-element, {qm?} as:

{ay = [T] {q.; (3)

where, T 1s the transformation matrix for the macro-element.
Substituting Eq. 3 into Eq. 2 gives:

[ [T [SKCT [T] {0} = [ ] (K] {0}
[TI7[SK,] [T] =K.l ()

In this solution, matrix (SK,) is not needed, only (K,), the stiffness matrix of a finite
element bounded by the macro-element is needed. To explain this let.

n  : The No. of fimite elements comprising the macro-element
(T,) : The finite element transformation matrix

Every time (T,) carnies a partition of the transformation matrix (T') that corresponds to the
degrees of freedom of the finite element under consideration. The transformation for each
finite element is placed in its proper place in the structural stiffness matrix of the equivalent
model, which is the place of (K,,) and:

YITT [K,]IT,]=[K,] (5)

The transformation matrix (T) is simply the evaluation of the shape functions of
macro-element at the nodes of the finite element. This evaluation is based on local
coordinates for the nodal points of the finite elements with respect to the macro-element
nodes .

To form a general transformation matrix T1 corresponding to an arbitrary nodal point I
of the original structure within a certamn macro- element, consider the notation Nki which
means the shape function K of node T of this macro-element is evaluated at point T using its
local coordinates within the macro-element, then the transformation matrix will depend on the
macro-element type as will be seen latter.

Step 6: Construct the Macro-Element Nodal Load Vector

The external loading are applied at nodes of the finite element model. However, these
nodes may not necessarily comcide with the macro-elements nodes. It is required to calculate
the equivalent nodal load vector of each macro-element.
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In general, all forms of loading other than concentrated loads subjected to the original
structure nodes must be first reduced to equivalent nodal forces acting on the original
structure, as with the conventional fimte element method. The nodal load vector of the
original structure can then be transformed to equivalent macro-element structural load vector
by equating the external work done on the original structure modeled by finite elements and
that of the macro-element model as following:

W=W, )

Where:
W, : The external work done on the original structure that constitutes one macro-element

W_ : The external work done on the macro-element

m

(o] {Fo} =[] {Fu} 7

Where:

{F.} : The assembled nodal load vector of the finite elements constituting one
macro-element

{F.} : The equivalent nodal load vector of the macro-element

Substituting Eq. 3 into 7 gives:
LG [TT7 {F,} = (A {Fon}
[T]" {F.} = {F.} (8)
Where, T 1s the same transformation matrix used in deriving km.

Step 7:  Assemble all the macro-element stiffness matrices into a structural stiffness matrix
and also construct the macro-element structural load vector

Step 8: Apply the boundary conditions which will be at the macro-elements nodes. Other
boundary conditions corresponding to the elimmated nodes of the finite- elements
of the original structure will be ignored

Step 9:  Solve for the equivalent model nodal displacements in a straight forward manner

Step 10: Using results obtained in step 9 the displacements at any point inside the
macro-elements may be calculated making use of the macro-elements shape
function

Step 11: After the structure is analyzed for nodal displacements, the stresses at selected
points in each macro-element may be obtamed in the usual manner

FORMULATION OF MACRO-ELEMENTS FOR
ONE-DIMENSIONAL BEAM ELEMENTS

This simple element 1s used to demonstrate clearly the idea behind this new modeling.
This element has 2 dof per node of type (W) and (8) (Cook, 1981).

Using the aforementioned steps, the formulations of the macro-element for one
dimensional beam problems, will be considered below. For other types of structures, the
formulations are straightforward.
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Fig. 1: Case a: Original beam structure modeled by four structural finite elements
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Fig. 2: Case b: The beam structure modeled by two macro elements

X B
»

Fig. 3: Beam element in local coordmate

To clearly demonstrate the formulation of the macro element for one-dimensional beam
problems, consider first a simple problem, then generalize the idea to more complicated
systems.

Step 1: Consider a beam divided into four subdivision, each of length (/) and consider only
two degrees of freedom per node, W, 6, as shown in Fig. 1 let this system be
denoted as case a
Let this system be modeled by another system, calling it case b, composed of two
macro-elements, as shown in Fig. 2.

Step 2: It 1s known that the displacement behavior of a beam problem is cubic. If the
macro-element is modeled by a cubic displacement function an exact solution is
expected. This is effectively achieved, as will be shown later

Step 3: Required formulation of the stiffness matrix of the structural element, which is here
a beamn element as shown m Fig. 3

Let the local x-ax1s be defined as that which passes from node 1 to node 2 leta
non-dimensional s-axis be defined whose origin is located at node 1, as shown in Fig. 3.

Now:

X—X,

=5 )]

The beam element 1s a cubic with a displacement function as:

w=N,w, + N,0, +N,w, +N,0, (10)
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Where:

N, =1-38" + 28’
— 2
szlS (1-28 +8%) (11)
N, =8 (3-28)
N, =I8%(8-1)

- a2)
ox*

But:

_Llow (13)
19s

Also,

dw 19 (aw)_l azw.as)
ot lox st oy ox
dw 1 d'w
x oS

To find 3*w/35°, use Eq. 10 and differentiate twice with respect to 3.

Wl
o'w 0 14
Y~ [(-6+129), 1(~4+ 6S), (6-125), I(65-2)] (14)
ds W,
a

2

The total potential energy of the element is:
2 Midx w
=1 J:?f{Pwdxfz{F‘wj

where, P 1s the distributed load per unit length and F, 1s the concentrated load applied at
point i in the direction of w,

But:
M =-EIw”
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1 1 m
M= A ! (—EIw™)? (1dS) —z! Pwds — ZIFW
Substitute for w and w” from Eq. 9 and 14, respectively.
1 1 m
1= V)< E[ [ {a)" [BI [B]{q}ds— [ [N]'P{q) " ds — Y F, () [N]']
0 1} i<l

Minimize the total potential energy with respect to {q}™:

a_,
20,

TEI[[BT [Blds(q} = [[NT Pds + S INTE

Where:

1
K, = .lEI_f[B]T [B]ds = The clement stiffhess-Matrix in local
1]

L n
F, =F, +F,= lf [N]"Pds + E{F}N1 =The element load vector in local
1}

i=l

To evaluate the stiffness matrix then:

-6+128

—4+ 618
) ;S liz[(—s +128)(—4] + 6ISH6 — 12S) (61— 20)]ds

6iS— 21

[Ke]:tEIJ.[iz

After integration K, will be:

12 6 -12 el

2 2
[KE]: EBI Af of 2A (1 5)
F | Symmetry 12 —6f
4%
For load vectors:
1-38% 4 28°
8(1-28+8*
F1=1[p (A-28787 y (16)
$(3-128)
IS8 -1
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Fig. 4: Two finite elements from system a, Fig. 1
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Fig. 5: One Macro-element from system b, Fig. 2
After integration:
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The shape functions must be evaluated at the pomt of application of F, for each load
and sum.

Step 4: Requires establishing the local coordinate of nodes 1, 2, 3 of system a with respect
to the nodes 1 and 2 of system b as shown in Fig. 4 and 5

In line elements, it is relatively easy to establish the local coordinates. Because we are
working with the macro-element its length will be taken as one unit.
The coordinate transformation 1s simply:

An application for the coordinate transformation is presented here. Let:
%, =10, x3=15, x;=20
x =10, x5 =20
The local coordinates of points 1, 2 and 3 of system are calculated as:

Node 1

10-10
§= =
10

0.0
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Node 2

S:15—10:0.5
10

Node 3

20-10
§= =
10

1.0

Step 5: Ts important because it constructs the transformation matrix (T). To find the
relations between {q,} and {q,}, where the subscripts 0 and m refer to original and
macro-element, respectively, relations between W*, and 0%, and the macro-element
displacements are needed. This can be found from the displacement function of the
two cases:

WE = N,W + N,O + N,W! + N,6! (18)
And:
W= NW + N0 + N,W; + N, (19)
Substitution of Eq. 11 into Eq. 19 yields:
W(S)=(1-35" +28)W" + LS(1-25+5%)8" + S (3- 29W, + LS’ (S- 16

But:

(20)

Tt was shown that the local coordinate of point 2 in system a is equivalent to ¥ in
system b.

LW = Whs= 1) =1-30) + 2000 W - LOMou g - el + @1
(VB2 + LV (V) -Desws = (Mpwe + Lger + Lows - Lier
IW"(s) _ oW (s) os

x—=6f,
ox os oxX

But:

9s _ 1
o L
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Then:
W) 1 aW(S)
ox L oS
= %{(—68 +6SW + L[S* — 28+ 1+ 287 - 28]8" + [65— 487 — 28° [WP + L[28* - 28 +§7 ]85}
o = %[—GS+ 657 WS + 387 — 48+ 167 + %[68 - 657 W2 + [357 - 25]88
Also,
6 =6"Gs= 1)
1
0= [—6f L 1742 b 142 _ 1 b
0=l 61+ 6(VO TW! + 314 41 + 108} +
1
il PSR PR TR A PR 15 152 _ ¢l b
1609~ 6007 ws k) — 200006,
e 3 b 3 1/ 22
0 =- W, —Ael+iw2 - Lo (22)
Also,
We=W' WE=W! er=6r, 6t =g (23)

All the ingredients of the transformation matrix (T) are available from Eq. 21-23.
Regarding this information in matrix form, one obtamns

wl 1 o 0 0

o o 1 0 o

wll o % %lw

8 7%2L) B/ %2L) Ty lle (24)
o 0 1

W 0

o ] o 0 0 1|
{a.} [T] {qm}
6X1 634 431

The above example shows clearly that to find the relations between systems (a) and (b)
for the displacements W; and rotations B, the global coordinates of the points in system (a)
must be transformed to local coordinates of system (b) the displacements and rotation
relation W, and 6; will be achieved through the evaluation of the shape function N,, N; and
IN,/Ox, IN,/Ox, respectively, evaluated at the local coordinate values of point 1, 2, 3 system
(a).

To form a general transformation matrix (T), let the notation Ni|; mean that the
shape-function K 1s evaluated at node 1 of system j. Then the transformation matrix will take
the form shown in Eq. 25.
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N Nl N NI
Wi 1 N, 1 oN 1 oN 1 8N
LN LoN; o 1Ny 1ol
o; L[le] L[as '] L[as y L[Bs ']
we|| Nk N3 NG NE | [we
1 0N, 1 oN 1 oN. 1 _oN b
ot __1|a __2|a __3‘3 __4|a 0
P LT os :] L™ s 1 L 8s i1 L™ s 4 -
. . . . W2 (25)
eb
L ] L ] L ] L ] 2
w? a a a .
" Nl‘n Nz‘n N3‘n N4|n
9. | 1.9N 1 4N 10N 10N
e e e [ Rt I e |
| L o8 L os s o |
{q.} [T] {qm}
nxl nXd 4X1

The structural beam-element stiffness matrix after transformation to global coordinates
has size 4x4, but the transformation matrix (T) 1s of size nx4. Therefore, it 1s necessary to
extract from matrix (T) that the part corresponding to the degrees of freedom of matrix (K,).
Let (T,) be required part and its size be 4x4.

Then:

i [Te ];rxd[KEl ]4x4 [Ta ]4x4 = [Km ]4x4 (26)

The stiftness matrix of the macro-elements is constructed.

Next, the consistent load vector acting on the macro-element and nodes is calculated.
This is done using Eq. 16 and 17.

If the distributed load is not constant, then (P) will be P(s) and the integration will
be carried out. If the distributed load is discontinuous, then the limits will be taken
over the parts where loading are present. For concentrated loading conditions, the
consistent load wvector is calculated as the distribution of each concentrated load
summed over each node using the shape functions of the macro-element. At this stage, the
macro-elements and the load vectors are assembled to construct the linear systems over the
whole structure.

After assembling and reflecting the boundary conditions, the system equations are
ready for solution. Upon solving for the nodal values at the macro-element nodal points, it
is easy to find the required values at any point inside the structure using Eq. 18 which is:

NHODS
W= E Nogionpn X W+ Ny %6,

i=l

oW1 MEPN,

3
== W, +
w2 s W

€}

N2(1-1)+2 %]
as !

PLATE BENDING FINITE ELEMENTS USED IN THE
FORMULATIONS OF THE MACRO-ELEMENTS

What follows are brief information about the plate bending finite elements studied and
used in the formulations of the macro-elements.

The (Q8) Quadratic Serendipity Finite Element (Fig. 6).

This element has eight nodes with three dof per node (Rock and Hinton, 1976). Tt is
Mindlen type plate bending finite element (Fig 7).
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q, iz
i ¢!
Nodal y
displacements
Fig. 6: General quadrilateral 1soparametric fimte element
Y T
4
L1} (L)
7 1
6
5 X — s
1
¢L-D (11

Fig. 7: The quadratic serendipity (Qf) quadrilateral isoparametric finite element

The displacement vector is

LaiJ=[Wi Wiy  -Wix]
where,1=1,2, ...... 8

The (Q9) Quadratic Langrangian Finite Element

This element is a Mindlen type plate bending element with nine nodes and three dof per
node (Pugh et al., 1978) as shown in (Fig. 8).

The displacement vector 1s:

i |=(Wi Wiy -Wix)
where,1=1,2, .....9
FORMULATION OF PLATE BENDING MACRO-ELEMENTS:

The stiffness matrix of a macro-element 1s formulated by equating the stramn energy of
the origmal structure modeled by finite-elements and that of the equivalent macro-element
model as follows (Alani, 2002):

(27)
Where:
U, : The strain energy of the original structure modeled by many finite elements that

constitute one macro-element (Fig. 9)
U, : The stramn energy of the macro-element

0
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Fig. 8: The quadratic lagrangian ((Q9) quadrilateral 1soparametric finite element
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Fig. 9: General macro-element discretization

17219, ] [8K,] {du} =172 [, [ [K)] {du} (28)
Where:
q, : Displacement vector of the structure modeled by many finite elements that constitute
one macro-element
Q. : Displacement vector of one macro-element

(8k,) : The assembled stiffness matrix of all stiffness matrices of the fimte elements
constituting one macro-element
(K, : The stiffness matrix of the macro-element

Let the displacement vector of the origmal structure, (which constitute one
macro-element) {q,} be related to that of the macro-element {q,} as:

{a,} =(T) {q..} (29)

where, T is the transformation matrix for the macro-element. Substituting Eq. 29 into Eq. 28
gives:

[ [TTT [SK] T {9} = [ 9] [Ko] {0}
[TIT [SK,] [T] = [K,] (30)

Tn the solution, matrix (SK,) is not needed, only (K,), the stiffness matrix of a single finite
element bounded by the macro-element 1s needed. To explain this let.
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n  : The No. of finite elements comprising the macro-element
(T.) : The fimte-element transformation matrix

Every time [T,] carnes a partition of the transformation matrix [T] that corresponds to the
degrees of freedom of the finite-element under consideration. The transformed stiffness
matrix for each finite-element 1s placed 1 its proper place in the structural stiffness matrix of
the equivalent model, which 1s the place of [K ], as:

n

> ITITIKIIT]=[K,] (31)

e=l

The transformation matrix [T] 1s sumply the evaluation of the shape functions of the
macro-element at the nodes of the finite-element. This evaluation is based on local
coordinates for the nodal points of the finite-elements with respect to the macro-element
nodes (Fig. 10).

To form a general transformation matrix [T1] corresponding to an arbitrary nodal pomnt
1 of a certain finite element within a certain macro-element, consider the notation NkI which
means that shape function k of node T of this macro-element is evaluated at point i using its
local coordinates within the macro-element. The transformation matrix will depend on the
macro-element type as follows:

The (Q8) Quadratic Serendipity Finite-Element
The displacement functions over this finite element are expressed as follow
(Armanios and Negm, 1983).

W=3NW, 8 =>N6, and ey:iNiep

i=1 i=1 i=1

where, the shape functions (N1) are the same 1n the above equations.

To construct [T,] of a certain finite element consider (Fig. 11). The transformation matrix
[T.] of the finite element [k, L, m, n, o, p, q, r] which 1s inside the macro-element (1, 2, 3, 4, 5,
6, 7, 8) will be as follows:

Fig. 10: A general description of the local coordinates (3,T) within AME
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4 7 3

8=

1 5 2

Fig. 11: The correspondence between the finite element dof and the macro element dof

TK1 TK2 TK3 TK4 TK5 TK6 TK7 TKS8

Tml Tm2 Tm3 Tm4 TmS5 Tmé Tm?7 Tm8
Tnl Tn2 Tn3 Tn4 Tns Tné Tn7 Tn8
Tol To2 To3 To4 To5 To6 To7 To8
Tpl Tp2 Tp3 Tp4 Tps Tpe Tp7 Tp8
Tql Tq2 Tq3 Tq4 Tqgs Tqg6 Tq7 Tg8

[Te]=

Trl Tr2 Tr3 Tr4 Trs Tré Tr7 Tr8
Where:
N1 0 0
[TK1]=| 0 N1 0
0 0 N1

i.e., the participation of node (k) of the finite element that corresponds to node (1) of the
macro-element under consideration.

In general:
Ni 0 0
o |0 Nj 0
[Tij]= ! )
0 0 Ni
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Where

i=k,L,m,.........q, 1 the nodes of the finite element
1=1,2,3,...... 7, 8 the nodes of the macro element
Then

SILITK. ] [T1= K]

The (Q9) Quadratic Lagragian Finite Element

Here, there are nine nodes with three dof of type w, Ox and By.
Then:

[T.]is 27%27 and

Nj 0 0
[Tijl=| 0 Nj 0
0 0 Nj

Where:
i=k,L,m,no.pq,rs
1=1,2,3,4,5,6,7,8,9

And:
PILIT K1 1=1K,]

MACRO-ELEMENT LOAD VECTOR

The externals loading are applied at known nodes of the finite-element model. However,
these nodes may not necessarily coincide with the macro-elements nodes. Tt is required to
calculate the equivalent consistent nodal load vector of each macro-element.

In general, all forms of loading other than concentrated loads subjected to the original
structure nodes must be first reduced to equivalent nodal forces acting on the original
structure, as with the conventional finite element method. The nodal load vector of the
original structure can then be transformed to equivalent macro-element structural load vector
by equating the external work done on the original structure modeled by finite-elements and
that of the macro-element model as follows:

W, =W, (32)

Where:
W, : The external work done on the original structure that constitute one macro-element

W_ : The external work done on the macro-element

m

lq: ] {Fo} = aa] {Fa} (33)
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Where:

{F.} : The assembled nodal load vector of the finite-elements constituting one
macro-element

{F.}  The equivalent nodal load vector of the macro-element

Substituting Eq. 29 into Eq. 33 gives:

[ [TIT {Fo) = 4| (Fr}
[TIT {F.} = {F.} (34)

where, T is the same transformation matrix used in deriving (k).

The assembly of all the macro-element stiffness matrices into a structural stiffness
matrix and also the construction of the macro-element structural load vector and solution of
the structure equation are the same as that of conventional finite element method.

NUMERICAL APPLICATIONS

One Dimensional Beam Problems
Two problems have been selective and solve using both the finite element method and
the equivalent energy method.

¢+ Problem No. 1: A cantilever beam with two concentrated loads as shown in Fig. 12 was
modeled by Fig. 13 and 14. The results are shown in Table 1.

10000 100060

NONNNNNN

Fig. 12: Cantilever beam with constant cross-section: problem No. 1

W, 6, W, 0, W, 0,
§ . }
1 2 3

Fig. 13: Fmite element method modeling of the beam mn problem no. 1

Table 1: Results of the beam in problem No. 1

Displaces FEM ME Error (%)
W, 0.0 0.0 0.0
A 0.0 0.0 0.0
W, -2.82x10% -2.72x10 35
A -4.838x10° -4.838x10° 0.0
Ws -8.466x10 -8.466x10% 0.0
) -6.047%10° -6.047x10° 0.0
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W, 0 W, 0,

2

Fig. 14: Macro element modeling of the beam in problem no. 1

1000 1000 1000 1000 1000

L=180 |L=120 |L=90 |[L=60
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Fig. 15: Cantilever beam with many concentrated loads problem No. 2

W, 8, W, 6, %e, W, 0, “{%385 W, 8,
¥ - * - ] |
1 2 3 4 5 6

Fig. 16: Fmite element method modeling of beam problem No. 2
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Fig. 17: Macro element modeling of beam problem No. 2

Table 2: Results of beam problem No. 2

Displaces FEM ME Error (%)
W, 0.0 0.0 0.0
A 0.0 0.0 0.0
W, -5.160%102 -5.073x107% 1.6
0, -4.838x10* -4.904x10% 0.0
A -1.903x102 -1.894x107? 0.4
0 -8.708x10* -8.790x10% 0.0
W, -3.967%107? -3.956x107? 0.2
B4 -1.161%10° -1.166%10% 0.0
Ws -6.515%102 -6.490x10? 0.3
95 -1.355%103 -1.351x10° 0.37
Wi -9.353x102 -9.293x10? 0.6
A -1.451%103 -1.435x10° 0.0

s+  Problem No. 2: A cantilever beam with five concentrated loads and with variable
cross-sections as shown in Fig. 15 was modeled by Fig. 16 and 17 the results are
tabulated in Table 2.
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APPLICATIONS FOR PLATE BENDING ELEMENTS

Various problems of plate bending analysis are solved and presented below n order to
demonstrate the efficiency of the macro-elements developed.

The accuracy of the equivalent energy macro-elements are checked by using the
conventional finite elements method and if available, the exact solution.

The moments and stresses are generally calculated at the Gauss pomts of the
macro-elements in the problems presented below unless it 1s stated differently.

Problem No. 1

The analysis of thin, square simply supported 1sotropic plate under a umformly
distributed load, as shown in Fig. 18.

The following data are given for this problem:

¢ L =10 (inunits of length)

« T=01 (mumnts of length)

¢ E=10092 %10 (in units of force/area)

e Gxy=Gxz=Gyz=42 =10 (in units of force/area)
+ Nu=03

¢ (Qz=1.0(Inumts of force/area)

The results may be expressed in a normalized form as follows:

e Deflection =CxQzxL*=x107%D
¢ Rotations (inxory) =CxQzxL>=x107/D
e Mx, My or Mxy = C xQz xL**107" (forNu=0.3)

where, C » 107 represents the value of the function for the data given above.

Due to symmetry only one quarter of plate is analyzed. The analysis is done using the
(Q8) elements, as shown in Fig. 18.

The origmal fimite element mesh has (65) nodes and (195) dof. The equivalent energy
model has (21) nodes and (63) dof. The total reduction in dof 15 67.7%.

Fig. 18: Quartar of plate for problem No. 1 analyzed with the (Q8) elements
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Fig. 19: X-axis deflection for problem

Y

Fig. 20: Quarter of plate for problem No. 2 analyzed with (Q9) elements

The results for deflections and rotations are shown in Fig. 19 and 20. The maximum
errors are (7.9 and 4.2%), respectively.

Table 3 shows a comparative study for the execution time (CPUJ), the band width
solution operation count (Ne x HBW?2), central deflections and their corresponding errors.
The analysis is done using (Q8) conventional FE and (Q8) equivalent ME meshes. The
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Table 3: A comparative study of different (O8) meshes for problem No. 1
Conventional FE analysis

Original ME ME size C =central def*  Error (%)
FE mesh Mesh (FE<FE)  CPU (sec) NexHBW2 Dx10%Q,xL* in defl.
858.5 1443%1232 =21831147 0.4064452 -
6x6 (864 dof) 2x2 492.1 399x692 = 1899639 0.4057476 0.17
12x12 Q8 Ax4 (384 dat) 3x%3 438.7 195x512 = 507195 0.4043378 0.52
(3456 dat) 3%3 (216 dof) 4x4 4283 120x422 = 211680 0.40099%96 1.34
22 (96 dof) 6x6 421.7 63x332 = 68607 0.3731404 8.19
206.9 675%872 = 5109075 0.4064444 -
8x8-08 4x4 (384 dof) 2x2 203.7 507195 0.4043634 0.51
(1536 dof) 2x2 (96 dof) 4x4 189.7 68607 0.3732003 818

Table 4: Details for problem No. 2

Mesh No. of nodes Tatal dof
44 conventional FE 81 243
22 equivalent ME 25 75

bandwidth-solutions operation count (Armanios and Negm, 1983) is a useful measure of the
computer time required to solve banded equations. The errors in central deflections are
measured from those of the original FE meshes.

Problem No. (2)

The analysis of thin and thick, square, simply supported orthotropic plate under a
uniformly distributed load. The following data are given for this problem:

L=72m.
Thickness t

¢  Case A:t=0.114m (/I =0.02, i.e., thin plate)
¢  CaseB:t=1.080m (t/I. = 0.15, i.e., thick plate)

« Dx =20x106 kN m™

« LDy =30x106kNm™

«  Oxy =15x106 kN m™

¢ (Oxz = Gyz : Variable and as defined on graphs
¢ Nuxy =015

¢ Nuyx =Nuxy» Ey /Ex = 0.225

Loading Qz

e Case A: Qz=2875kN m~ (for thin plate)
e CaseB: Qz=1212.807 kN m~ (for thick plate)

Due to symmetry, only on quarter of plate is analyzed. The analysis 1s done using the
(Q9) 1soparametric elements.

The plate 1s first considered as a thin plate, 1.e., case A, then considered as thick plate,
i.e., case B. The same discretizations are used for both cases, which are shown mn Table 4.
Table 4 shows that the total mumber of dof is reduced by 69.1% with the equivalent models.

The analysis is done using the technique of reduced integration when the plate is thin
and using full numerical mtegration when the plate 1s thick.

The results for deflections for both cases along x-axis are shown in Fig. 21 and 22. Also,
the results for moments (Mx, My and Mxy) and shears (Vx and Vy) for the thick plate along
sec. A-A are shown in Fig. 23-25.
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Fig. 22: X-axis deflection for thick plate of problem No. 2 (t/1. = 0.15)
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Fig. 23: Moments M, and M, aleng sec. A-A for the thick plate of problem Ne.2 (/L = 0.15)
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Fig. 24: Moments M, , along sec. A-A for the thick plate of problem No.2 (t/L. = 0.15)
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Fig. 25: Shears V, and V| Along Sec. A-A for the thick plate of problem No.2 (/L. = 0.15)

Table 5: A comparative study for different (Q9) meshes for the thin plate of problem No. 2

Mesh 8x8 Conventional FE 4 % 4 equivalent ME 2x2 equivalent ME
ME size (FE<FE) - 2 %2 4 x4

CPUI (sec) 414.6 201.1 261.8

NexHBW2 867 x 1112 = 10682307 243 x 63 = 964467 75 x 392 =114075
Central deflection (imim) 4.160454 4.148805 4.099109

Error (%) in central deflection - 0.28 1.47

Central moment Mx (kN.mm™")  4.5046936 4.5382051 4.6681530

Error in Mx - -0.74 -3.63

Central moment My (kN.mm™) 64825045 6.5213435 6.6506472

Error (90) in My - -0.60 -2.59

Table 5 shows a comparative study for the execution time (CPU), the band
width-solution operation count (NexHBW?2), central deflections, central moments (Mx and
My) and their corresponding errors. The analysis is done on the thin plate using (8 x 8 Q9)

original FE mesh and:

Gxz= Gyz = Gxz The errors in central deflection and moments are measured from the

(8x8) original FE mesh analysis.
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Table 6: Comparative study of cpu time between original FE model and ME model of plate bending for problems 1 and

2
Original FE mesh ME mesh CPU ratio of (FE'ME)
12x12 Q8 problem 1 6%6 1.75
12x12 Q8 problem 1 44 1.96
12x12 Q8 problem 1 3x3 2.00
12x12 Q8 problem 1 4= 2.04
88 Q8 problem 1 4= 1.02
88 Q8 problem 1 2x2 1.10
88 Q9 problem 2 4= 1.43
8x8 Q9 problem 2 2x2 1.60

The central moment values in Table 5 are obtained by extrapolating the moment values
at the Gauss points using a technique known as local stress smoothing, which is simply a
bilinear extrapolation of the (2x2) Gauss pomt stress values within an element (Cook, 1981).

DISCUSSION

The solved problems showed that using the macro-elements in the analysis reduced
the number of equations to be solved. When the size of the macro-element used 1s of
moderate, excellent results are achieved with good amount of reduction in dof and computer
time.

But when the size of the macro-element 1s large still acceptable results are achieved with
substantial reductions in dof and computer time as shown in Table 3 and 5. Comparative
study of cpu time between original FE model and ME moedel of plate bending for problem 1
and 2 is shown in Table 6.

CONCLUSION AND RECOMMENDATIONS

New modeling of beam and plate bending macro-elements based on beam and plate
bending types of finite elements were developed. The solved examples demonstrated that
using these macro-elements in the analysis largely reduced the total number of dof required
to model a certain structure. This in turn reduced the total number of equations to be solved.
Reduction in total number of equations reduced computer time and memory space for
storage. This will allow personal computers to analyze relatively large structures. At the same
time these ME provided accurate results. In addition, finite elements of different sizes,
thicknesses and material properties can easily be used inside the macro-elements if required
in the analysis. This developed macro-element theory was applied to different kinds of
structural elements like beams, trusses, thin plates and thick plates and good results were
achieved m accuracy and time of execution. This theory can be applied to any kind of
structures as long as the basic assumptions for macro-element formulations of section-4 are
satisfied. It is recommended to apply this theory m the field of shell problems, non-linear
problems and cracked structures to reduce the large number of dof required to model crack
tips.
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NOTATIONS

The following symbols are used in this study

c
dof

D

Ex, By
Fr

FE

iF}

Gxy, Gxzand Gyz
: Half band width of the structural stiffness matrix
. The stiffness matrix

: Side length of a square plate

A subscript refers to the macro-element structure

HBW
(K)

L

m
ME
M}
Ne
Nu, Nuxy, Nuyx
N}

o

Pz
Pz
iq}
Qz

R
5. T

>

Si, Ti
SS
(T)

XY, Z
x'and y'

: Clamped edge of plate

. Degrees of freedom

. Flexural nigidity

: Moduli of elasticity along x and y direction of the plate, respectively
. Free adge of plate

: Fimite element

: Element nodal load vector

Shear moduli in the Z, Y, and X planes, respectively

: Macro-element

. The vector of generalized stresses at a point

. Total number of equations to be solved 1 a problem

: Poisson’s rations

: Vector of shape functions

. A subscript refers to the original (finite element) structure

. Concentrated force applied on the plate in the z direction

. Concentrated force at node 1 of an element, n the z direction

. Element nodal displacement vector

: Uniformly distributed load applied on the plate in the z direction (force

per umite area)

: Radius of annular plate
. Local coordinates of a point in the x and y directions, respectively
: Local coordinates of node i of an element, in the x and y directions,

respectively

: Simply supported edge of plate

: Thickness of plate

. The transformation matrix needed in macro-element construction

. Vertical displacement at node i of an element, in the z direction

: Global coordmates

. First derivatives of certain function with respect to x and y, respectively
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