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Abstract: An effective algorithm, which combined an adaptive centrifugal force
algorithm with accelerated random search method, is proposed to update numerical
models for dynamics problems. The objective is to minimize the difference between
measured and simulated vibration data. The related problem is formulated as an
optimization problem by considering multi-objective function defined in modal
domain. A simulated beam structure is examined to test the applicability of the new
approach for FE model updating applying multi-objective criteria. A real beam-like
struchure model is updated, making use of experimental modal data. The application
of the centrifugal force algorithm enables us to obtain results well correlated with
experiments in reduced time.

Key words: Centrifugal force, accelerated random search, model updating, finite
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INTRODUCTION

The development of an accurate analytical model for a structural system is a
fundamental requirement of engineering analysis. The modelling of dynamic problems often
does not generate the dynamic parameters (frequencies, mode shapes, etc.) that adequately
go with experimental results and, therefore, the updating of initial Finite element models by
an iterative procedure becomes necessary to adjust them with measured results. This
situation concerns also the dynamic models obtained by Finite Element Method - a standard
tool of engineering analysis.

The FE model updating is becoming a standard methodology applied to enhance the
correlation between finite element results and measured data. Several approaches have been
proposed to tackle with this problem (Friswell and Mottershead, 1995). On the other hand,
a large part of recent methods congider the Finite Element updating as an optimization
process and use powerful new updating methods. For instance, Kwon and Lin (2005) applied
the Taguchi method to model updating by optimizing a carefully defined objective function
in presence of random errors in measured data and systematic errors in the analytical model.
Taishi and Ren (2007) presented a new updating procedure based on eigenfrequency residual
and modal strain energy residual and used as two objective functions of the multiobjective
optimization.
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In recent years, several novel computational intelligence approaches (Neural network
and genetic algorithm) have proposed and applied for several problems (Kumarci et l., 2010;
Hasangholipour and Khodayar, 2010). Other approaches have also been tried and applied
to the practice of model updating. Neural networks (Atalla and Tnman, 1998) can quickly
achieve accurate updated model once they have been trained. However, updated results are
dependent on the training cases used. Other procedures using stochastic search methods,
including simulated annealing (Levin and Lieven, 1998) and genetic algorithms (Touat, 2008)
have been applied for different model updating optimization problems. The stochastic
methods are efficient in finding a global solution of difficult multimodal optimisation
problems however they remain slow and time-consuming.

Tn an attempt to apply stochastic search methods in model updating, Touat et al. (2007)
has developed a new updating procedure using a novel algorithm inspiring its theory from
the functioning principle of a centrifugal device. The preliminary version of the centrifugal
force algorithm CFA has been applied for mathematical hard optimization functions and has
shown an acceptable aptitude to optimize these functions. For moedel updating, the method
was efficient but slow and time-consuming,.

However, the lack of hill-climbing ability, an inherent shortage of CFA, has not been
tackled by Touat (2008). Recently, a new variant of stochastic search algorithm called the
Accelerated Random Search (ARS) algorithm (Appel et al., 2004) has been developed to
accelerate the stochastic search process for mathematical optimisation problems. The
algorithm has shown a very good ability at hill climbing for optimum solutions and its
convergence speed is very fast (Appel et al., 2004; Touat et al., 2007).

To improve the inherent shortage of CFA and to adopt the advantage of ARS for model
updating, this study proposes a novel hybrid algorithm. This algorithm is based on a
Centrifugal Force Algorithm (CFA) with novel parametering and accelerating optimization
process by ARS algorithm. Tt is coded with MATLAB and using the performance of
MATLAB sparse matrices algorithms.

THE PROPOSED ALGORITHM

The accelerated random search, the standard centrifugal force algorithm and the hybrid
algorithm are presented. They can be applied to solve general unconstrained optimization
problem. In this study, we considered just the hybrid algorithm and it can be easily adapted
to model updating problems. The effectiveness of hybrid approach is tested on two standard
functions, difficult to optimize. Tt will enable us to select the best parameters of the algorithm
for model updating.

ARS Algorithm
Let us consider the general unconstrained optimization problem:
Find xeD
Such that f{x)—max (1

where, x is the vector of n design variables x;, f(x) is the objective function and D is the search
space.

This problem can be solved using the Pure Random Search (PRS) algorithm (which is
the Monte Carlo classical optimization technique) in the following way:

Generate a random vector x¥, with uniform distribution on D
Compute M, = max {f(X)i1=1 ...n}
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The convergence of this algorithm depends on several parameters (e.g., the type of
problem to be optimized, its dimension, the size of the space search ... ) but it is very slow in
most cases of optimization.

The Accelerated Random Search (ARS) algorithm 1s a stochastic search methodology
(Appel et al., 2004), presented to improve the convergence of the PRS algorithm and to
accelerate the random search to obtain the global optimum in a reduced time.

In order to solve (1), Appel et al. (2004) assumed that D 1s the d-dimensional umt hyper-
cube [0,171". Moreover, the closed ball of radius 1 centered at x, {yeD,}:|x-y||<r, is dencted by
B(x,r), where || . || is the sup-norm in D. Let a contraction factor ¢ > 1 and a precision threshold
p = Obe given. The ARS algorithm is formulated in the following way:

Step 0: Setn=1andr, = 1. Generate X, from a umform distribution on D
Step 1: Given X, €D and r,e(0,1], generate, Y, from a uniform distribution on B(3, r,)
Step 2: If (Y )13, thenlet X, = Y, and r,,, = 1

Else if f{Y )<f(X ), thenlet X,, =Y, andr,, =r/c
If 1., <p, then r+1 = 1.
Increment n = n+1 and go to step 1

This version of the algorithm can be referred as finite descent ARS, {X} as the
sequence of record generators and the sequence {M, = f(X)} as the record sequence. The
ARS algorithm may be readily applied to problems defined over a general metric space, for
example, to combinatorial optimization problems and to optimization problems whose
domaims involve complicated constraints (e.g., the case of Finite Element model updating).

Centrifugal Force Algorithm (CFA)

The Centrifugal Force Algorithm (CFA) has been developed by Touat (2008). It can be
used to find a global solution of difficult multimodal optimisation problems. In this section,
we give the theoretical outset of the standard CFA algorithm.

The Centrifugal Force Algorithm (CFA) is a stochastic search algorithm derived from an
analogy with the fimctiomng principle of sunple mechanical machine, presented in Fig. 1. The
device 1s composed of an electrical motor, a rotational axis, a conical tube (with variable angle
&) and a set of balls of different masses. After setting the angle ¢ and putting a number of

Circular path
of aball
Rotational axis
Centrifugal
B force
The best ball
Inserted balls Conical tube

Electrical motor

Fig. 1: Centrifugal force machine
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Fig. 2: Representation of forces applied on a ball, R,,; Maximum radius, w: Rotational
speed, N: Normal force, Fe: Centripetal force, Fg: Centrifugal force, mg: Weight of ball,
¢: Comnical tube angle, R: Radius of curvature and Ly Length

different balls into the conical tube, the motor 18 turned with the angular velocity . Under
the effect of the angular velocity w, a centrifugal force (I,) of each ball is developed and a
part of balls tend to go out of the tube. We are looking for the balls that remain in the tube,
i.e., those of minimal value of the centrifugal force. This search process is repeated several
times, for increasing values of angle & and velocity w at each iteration. The balls remaining
n the cone influence the choice of new balls mserted for further tests. While arriving at the
maximal speed of the motor and the maximal angle, a set of balls remain in the tube. The ball
corresponding to the mimmal value of the centrifugal force 13 the solution of our search
procedure.

The mechanical model of this search process involves a conical tube, characterized by
the opening angle «, rotating linearly around the rotational axis with the angular velocity w,
with a set of balls of different masses m;, put mside. The mward force necessary to maintain
uniform circular motion 1s defined as the centripetal force. Assuming that there 1s no friction
and the balls take the same speed w, for a ball of mass m, the centripetal force can be
expressed as the sum of the weight m€ and the normal force N (Fig. 2):

F=N+mg (2)
According to Newton’s third lows of motion, the ball exercises an equal and opposite

reaction force called the centrifugal force (F,), equals to the product of mass and normal
acceleration:

|1:“g| =ma, = mo’R (3)

where, R is the radius of trajectory.
From Hq. 2 and 3, the radius R can be expressed as:

R= %ﬂ)z * tan{cr)) )

Two parameters have a great effect on the radius of trajectory (Eq. 4): The rotational
velocity w and the angle of the conical tube «. The ball of minimal trajectory radius R, is
searched for varied values of parameters @ and ¢. This value corresponds to the minimal
centrifugal force Fg_ that 1s influenced by thie variation of @ and «. When the trajectory
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radius of a ball exceeds the maximal radius R, corresponding to the maximal centrifugal
force Fg,,.., the ball leaves the conical tube.

The application of the functioning principle of the machine to construct an optimization
algorithm can be based on the following analogy. The ball masses play the role of
optimization parameters, the centrifugal force becomes the objective function to minimize
and the rotational speed and the angle of the conical tube become control parameters of
the algorithm. The goal is to find the ball corresponding to the lowest centrifugal force
(that corresponds to the lowest trajectory radius) after checking different cases of cone tube
geometry and rotation speed.

The exploration of the optimization space is realized by changing the control parameters
w and ¢ of the algorithm in an iterative manner and by examining the behavior of balls which
masses are generated randomly for each configuration. One can see that the variation of w
affects the radius and the force in an inverse way (Eq. 3, 4) and the variation of « affects
directly the radius and the force. Different modification strategies of w and ¢ can be applied.
The exploitation of promising solutions will use random procedures. It takes place at the
moment of selection of new propositions (balls) to be inserted into the cone. New balls are
chosen in the vicinity of already found good solutions, depending on values of the
centrifugal force of balls remaining in the tube after the previous iteration. A neighborhood
function is used to generate in a random way the next state from the previous one (Levin and
Lieven, 1998). Since random number functions are implied to create problem solutions, the
proposed Centrifugal Force algorithm has stochastic character.

The CFA algorithm is given by the following steps:

Let wg, @, ¢ and ¢, the characteristics of the machine be given.
Step 0: Seto,n=1landm=1;

¢ Calculate the extra parameter Awao

¢ Tnsert M balls into the conical tube

+ Evaluate and classify the centrifugal force of each ball
¢ Choose the best N ones

Step 1: Vary o, by Ac to Awota,
Insert a new M balls

Step 2: Evaluate and classify and choose the best N balls
Increment m = m +1 and go to step 1

Step 3: Vary w, by Aw to w,,;
Increment n = n+1 and go to step 1

Select the best solution from remained balls.

Hybrid ARS-CF Algorithm

A novel hybrid algorithm that combines CFA with ARS is proposed in this section and
called the centrifugal force accelerated random search algorithm (ARS-CF). This novel hybrid
algorithm maintains the merit of CFA by using its optimization parametering as well as
parameter variation process and merges the merit of ARS by exploiting its accelerated
process and its hill-climbing ability to improve the searching capability for optimum
solutions.

Several strategies for the standard CFA, concerning the variation of rotational speeds,
the variation of conical tube angles and the manner of generating balls (choice of
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neighborhood and insertion functions), have been investigated by Touat (2008). These
strategies are implemented in the pseudo-code of the hybrid algorithm proposed to solve the
model updating problem:

The parameter » characterizes the variation of the angle for each rotational speed. M
15 the number of balls mserted at each step, N 15 the number of selected solutions. The values
of M and N, as well as the parameters «,, .. A, @, ©_,. Aw have to be chosen
individually for each problem.

The value of w,,, and ¢, depend both on the particular function to be optimized, the
neighbourhood function used in the algorithm and the size of optimization problem.
Generally, there 1s no intuitive way of deciding what values of v, and «_, (¢,,.<90°) should
be applied. Therefcre, the approximate initial values w,., = 500 rad sec™ and «,,, = 80°,
proposed by Touat (2008), can be used.

The accuracy of optimization solution depends also on Aw and Ag. Usually, smaller
values of Aw and Ax give more detailed sampling of the research space (and more chances
to reach the global optimum) but at the expense of the number of iterations and the
processing time. In an analogous way, the choice of w,,, and .. has to be adapted for each
optimization problem.

Using the accelerated process of the ARS, the masses of balls mserted into the conical
tube are generated in the following way. The initial set of balls is created randomly within a
given search interval (or proposed in the function of the problem). The balls for further
search are generated randomly by using the neighborhood function applied to the best
solution from the previous set. If a new proposition 1s better than a previous one (1.e., its
objective function is smaller), then it 13 inserted m the cone and the same mass search
mterval will be applied at the next iteration. If a new proposition 1s worse, then the previous
solution is inserted but the search interval will be diminished using a contraction factor at
the next iteration (Appel et al., 2004). This part of algorithm is inserted in the standard CFA
to obtain the new hybrid algorithm (Algorithm 1).

Algorithm 1: Pseudo-code of ARSCF algorithm
For a set of chosen parameters: oy, Char AW, ©n, Wyar AW,
and the additional step value Ao
Ao or{pmax -6y W go, og/Ac)
Set o =y
o =0ty
The search interval equal to 1
A predefined threshold
While co<co,,,, then
AN, AWiNALS
While o<ty then
Generate randomty M balls (neighborhood finction) and insert thern into the conical
tube
Evaluate and classify the centrifugal force of each ball,
Keep the N best balls
If there is convergence then
Maintain the search interval

else
Reduce the search interval by a contraction factor
End if
Tf (search interval < predefined threshold)
Reinitialize the search interval
oA
End if
End while
Cln=Uryax
w = oA
End while
Select the best solution firom remained balls
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Mathematical Validation of ARS-CF Algorithm

Two standard mathematical test functions have been performed to investigate the
behaviour of the presented algorithm. The results of the two benchmark examples are
summarized below to illustrate the efficiency and the quality of solution of standard CFA and
the hybrid ARS-CF algorithm applied for different search space dimension and various
number of variables.

Rosenbrock’s Banana Function Test
£x,,%,) =100(x, — %, Y + (1 - x,)° (5)

This standard test function was designed specifically to be hard to optimize. It has only
one minimum X, = (1,1), fix,J= 0, located in a steep flat-bottomed parabolic valley. The
generalization to n dimensions 1s given by:

f(xl,xz,...,xn)=if(X,_,,X,) ©)
i=2

The global minimum of the generalized functionis atx,, = (1, 1, ...,1) with f{x, = 0. Inthe
test examples, a four-dimensional version is applied. The starting position used for all
functions is given either by choosing the opening point (2, 2, 2, 2) or by introducing a point
randomly. Each variable is bounded between -2 and 2. A result is said to be acceptable for
this fimetion if all optimization variables are within 0.1 of the global minimum and the value
of the objective function 1s within 0.05 of the mimmum. The two values 0.1 and 0.05 represent
predefined convergence thresholds. They are fixed to calculate the number of iterations
required for each algorithm to reach these two limits simultaneously and to test in this way
the efficiency of each method. The same considerations are applied also to the following

benchmark.

Hemmelblau’s Function Test
£0x,%,) = 10005, + %, — 110 + (x, + 52 = 7Y} (7

The Hemmelblau’s function takes its minimum value of 0 at four points:
P(3.5844, -1.8481), P2(3,2), P{(-2.8052,3.1313), P,(-3.7793,-3.2832), given by the intersection
of the two conic sections x; = x; +11 and %, =—x; +7. In this test, the variables are allowed to
vary within the range x,y € [-10, 10]. The result is said to be acceptable if all variables are
within 0.001 of the global minimum and the values of the objective function are within 107°
of the mimmum.

Each of two investigated algorithms has been run mdependently several times. The CFA
and the ARS-CTF have applied the contraction factor ¢ = 2'%, the precision threshold p =107,

For the parameters of the centrifugal force device, we consider the following:

W, AW, 0., ¢Ac, . are selected at the begimning of the optimization process. They
have been set, respectively to 0, 10, 500 (rad/s), 15°, Ax = Awae/10, 80° (Touat, 2008).

The first set of tests investigates the number of obtained optima. The threshold for each
function is given directly in the table of the results. The starting point has been generated
randomly for all algorithms.
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Table 1: No. of successful results found in 50 independent runs

Function/interval CFA ARS-CF
Rosenbrock4/-2,2] 26 50
Himmelblau2/[-10,10] 15 50

Table 2: Average number of iterations needed for satisfactory result (in 20 runs)

Function/interval/threshold CFA ARSCF
Rosenbrockd/[-2,2]/< 0.1 75000 20
Himmelblau2/[-10,10]/< 10~ 5501 95

Table 1 gives the number of successful results found in 50 independent runs of the
standard CFA and the hybrid ARSCE algorithm, it may be seen from this Table 1 that the
ARS-CF outperforms the CFA algorithm. The ARS-CF algorithm combines the strength of
the ARS algorithm and the force of parametering process given by CFA algorithm. The
dimension of the search interval has a great effect on the convergence of the algorithms, but
ARS-CF remains very robust and shrinks the space search very fast and ultimately sample
only mneighbourhoods of the global optima. The time-consuming of the ARS-CF algorithm
is very short compared to CFA algorithm.

In Table 2 we compare the average number of iterations needed to reach a threshold
previously fixed for each function.

For the CFA algorithm, the number of iterations required to reach the threshold of each
function is extremely high compared to the ARS-CF algorithm results. On the other hand, the
ARS-CF algorithm gives good results, with a number of iterations very small. Tn conclusion,
the ARS-CF algorithm outperforms the CFA approach and it 1s expected to work well also for
model updating, where the parameters tend to be lughly coupled.

UPDATING PROBLEM FORMULATION

FEM updating can be formulated as an optimisation problem and the minimization of
differences between simulated and experimental data. Different optimization criteria, defined
in modal or frequency domain and parameters can be considered. Good quality results can
be obtained by taking into account simultaneously several cost fimctions and solving
corresponding multi-objective problem.

Two different objective functions will be considered in the present study. The natural
frequency criteron T, is inspired from the study of Kwon and Lin (2003), by considering the
second order formulation:

] m
k=1 Wy

; z[u%m ®

where, w, are natural frequencies, superscripts m and a represent measured and analytical
data and 1 1s the number of first modes used.

The Modal Assurance Criterion (MAC) 18 verified by the following expression given n
(Kim and Park, 2004).

Thase: = g‘F(I)—F(MAC(q)k’“,q);))‘—)min (9)

where, I'(I) 15 the trace of the identity matrix and, the MAC 1s defined as:
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e
@ T o™)(@) 0°)

(10)

¢™ and ¢ * are measured and analytical mode shape vectors, T stands for the transpose of
a vector.

The weighting objectives method 1s applied to transform the problem mto a scalar
optimization formulation. The objective function P to be minimized takes the form:

T=W, I +W,I, (1)

where, W, and W, are weighting coefficients, representing the relative importance of the
criteria I, and T,,.. The selection of the weighting factors is difficult since the relative
immportance among the objective terms is not obvious. An appropriate choice of these
parameters can improve results significantly. Therefore, relative weights of natural
frequencies and mode shapes should be chosen carefully (Kwon and Lin, 2005). In this
study, the weighting coefficients have been selected after several tests and several runs of
the updating process, starting with weighting proposition given m (Kwon and Lin, 2005) and
adjusting 1t n order to obtain the best value of the objective function.

The optimization parameters of the updating problem are model correction factors
(p-values), affecting the simulation results w,* and ¢

NUMERICAL EXAMPLES

Simulated System of Beam Model

In order to judge the efficiency of employing the hybrid CFA-ARS algorithm for
dynamic FE model updating, a simulated FE model 1s mvestigated. The model 15 an undamped
ten element free-free beam of one meter length (Fig. 3); it is used to illustrate the performance
of the CFA algorithm to update FE models. This model is characterized by 20 p-values to be
updated because each of 10 elements has the stiffness and the mass to update. The beam has
a square section of 4*10* m’ and its material is characterized by the Young’s medulus of
70*10° N m~ and the density of 2700 kg m ™.

For this example, the simulated (target) experimental data consists of six natural
frequencies and six mode shapes. The first six natural frequencies of the analytical (mnitial)
and real (target) models and the diagonal values of the MAC are shown in Table 3.

The mass and stiffness matrices are used to determine the system eigendynamics. The
updating centrifugal force algorithm tends to determine the values of the target system.

In thus example, the mass (Eq. 3) corresponds directly to objective function ¥ evaluated
for the set of updating parameters (p-values) that are grouped m the updating parameters
vector of 20 elements. Tn order to create a neighborhood proposition of solution, the initial
p-values are set to 1 and the p-values of the updated vector are multiplied by random

100 em

Noeuds @

Fig. 3: Beam model for updating tests
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Table 3: Modal properties of simulated beam model

Target frequencies (Hz) Anatytical frequencies (Hz) Diagonal of MAC Frequency error (%)
105.0 101.6 1.0722 3.2955
283.6 274.4 1.0537 3.2528
541.8 527.8 0.9828 2.5793
884.7 856.9 0.9687 3.1387
1281.8 1257.6 0.9149 1.8863
1710.1 1721.8 0.9177 0.6841

Table 4: Target p-values for simulated beamn model

Stiffness Mass
0.8 0.8
14 14
1.0 1.0
1.0 1.0
1.0 1.0
1.0 1.0
1.3 1.3
1.0 1.0
1.0 1.0
1.0 1.0

numbers generated between 0 and 2, where the value equals to 1 corresponds to no change
of the parameter. New propositions of solution are evaluated using the objective function
(Eq. 11). The target p-values (factors) to be obtamed are given in Table 4. These factors are
fixed at the beginning of the updating process. To validate the accuracy of obtained results,
the updated p-values must match very well the target p-values.

The updating process starts by evaluating the objective function of initial FE model.
The values of weighting factors W, and W, have been selected and set after several runs
to 50 and 1, respectively; depending on the effect of each part of the objective function
on the convergence of updating process. The contraction factor has been set to v2
(Appel et al., 2004).

The values of CFA parameters ¢, ¢, Ad, w;, ... Aw are selected at the beginmng
of the optimization precess. They have been set respectively to 0, 10, 500 (rad sec™),
15°°, Aa = Awa/10, 80P, The centrifugal force corresponds to the product of objective
function (Eq. 11) and the control parameters w and « (Eq. 3 and 4). The start value of the
objective function ¥ is equal to 15.65. Tlis value must be reduced to small value by
applying the minimizing problem procedure.

The illustration of MAC matrix elements before updating 1s given on Fig. 4 and 5.

The MAC values and the relative error given in Table 3 and Fig. 5 show that the mnitial
FE model needs updating and requires to correct its initial p-values to match the target ones.
Therefore and by considering the stochastic process, the CFA algorithm has been run
20 times independently. The best results of model updating are presented in Table 5, Fig. 5
and 6.

The illustration of MAC matrix elements after updating 1s given on Fig. 6.

It can be seen from Table 5 that the CFA algorithm has improved sigmficantly the start
analytical model and the imtial errors of eigenvalues and eigenvectors are reduced to very
acceptable levels. As seen in Table 4 and Fig. 5, the diagonal values of updated MACs are
more close to 1 than those of mitial MACs. The MAC value close to 1 means eigenvector of
an analytical model is close to that of reference (experimental) model at a specific mode.

For example, 4th and 6th updated MACS, which represent correlation between updated
and reference eigenvectors, become 0.9989 and 1.000, respectively as seen in Table 5. Also,
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MAC values

Fig. 4: MAC values before updating for s mulated example

MAC values

Fig. 5: MAC values after updating for simulated example

Table 5: Results of CFA updating for simulated beam structure

Initial modal
ARSCF

Target Anatytical Diagonal Frequency
Mode frequencies (Hz) frequencies (Hz) of MAC error (%) Frequencies (Hz) Frror (%)  MAC
1 105.0 101.6 1.0722 3.2955 0.1051 0.1098 0.9983
2 283.6 274.4 1.0537 3.2528 0.2828 0.2698 0.9995
3 541.8 527.8 0.9828 2.5793 0.5421 0.0713 0.9999
4 884.7 856.9 0.9687 3.1387 0.8817 0.3399 0.9989
5 1281.8 1257.6 0.9149 1.8863 1.2817 0.0067 1.0000
6 1710.1 1721.8 0.9177 0.6841 1.7096 0.0292 0.9984

the maximal value of relative error has been reduced from 3.2955 before updating to 0.3399
after updating.

In the other hand, the target p-values are used as mathematical constraint to test the
degree of correlation between the analytical model and experiment. Figure 6 shows that the
p-values of updating model matches very well the target p-values reducing thus the objective
function from 15.65 (initial model) to 0.33 (updating model) for an elapsed time of 54.7650
second. The updating results confirm that the ARSCT procedure is efficient and faster than
the original CFA and other stochastic algorithms (Levin and Lieven, 1998) and can be a
useful tool for dynamic FE model updating and can be applied for updating real structure
with experimental references.
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Fig. 6: Updated and target p-values using the ARSCF

Fig. 7: Experimental setup

Real Overlaid Beam Structure

In thus part, a real physical structure composed of two interconnected beams, 1s updated
using experimental data. Figure 7 represents the experimental setup to obtain experimental
results; the modal test was performed on two overlaid beams of 26.5 mm width and 8 mm
thickness, connected with bolts. The total structural length 13 471 mm and the material 1s
characterized by the Young’s modulus of 71*10° N m™ and the density of 2660 kg m—. The
modeled structure is divided into 23 equidistant elements of 20 mm length and the 24th
element of 11 mm (ie., 25 nodes). The beam assembly 13 complex enough to provide a
practical test for the updating algorithm. Figure 8 represents the real bolted beam structure
and FE meshing.
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Fig. 8: Real bolted beam structure and FE meshing
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Fig. 9: Experimental and analytical mode shapes

The roving hammer test was performed. In the experiment, the accelerometer was fixed
at the 23 st point in the x-direction (Fig. 8) and the beam was impacted at 25 points to define
the mode shapes of the structure. Using a 4-channel FFT analyzer, 25 Frequency Response
Functions (FRFs) were computed one at a time, corresponding to each impact Degree of
Freedom (DOF). The structural response was measured within the frequency range of 0 to
6 kHz. The first six modal shapes and the first seven frequencies were extracted. Each data
set consisted of 25 FRFs. Post-processing modal software enabled us to extract mode shapes
and natural frequencies (Fig. 9, 10).

Figure 9 gives a comparison between experimental and analytical mode shapes and
Fig. 10 represents the experimental Frequency Response Function and phase.

The FE model of the real structure was created by taking 24 two-dimensional beam
elements with an inter-node of 20 mm. The model will is characterized by 48 updating
parameters: two p-values for each element, corresponding to its mass and stiffness matrix.
Similarly to the previous example, the ball mass corresponds the objective function P,
p-values are allowed to vary between O and 2, with 1 indicating no change of the parameter.

Table 6 gives the experimental natural frequencies and those calculated using the FE
model after updating. The illustration of MAC matrix elements before updating is given on
Fig. 11 and the mode shapes of the FE analysis and experimental results are compared using
the MAC values. The relative error between experimental and analytical frequencies and the
diagonal MAC values are given as well.
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Fig. 10: Experimental frequency response function and phase

Table 6: Results of ARSCF updating for overlaid beam structure

Initial modal ARSCF

Experimental Analytical Relative Frequencies
Mode frequencies (Hz)  frequencies (Hz) error (%) MAC (Hz) Error (%) MAC
1 174.6 173.65 0.5457 0.9976 174.6 0.0221 0.9947
2 480.7 477.03 0.7640 1.0494 480.3 0.0881 0.9987
3 927.8 932.24 0.4789 0.9239 927.9 0.0116 0.9997
4 1564.3 1536.55 1.7740 0.8689 1564.3 0.0004 0.9365
5 2344.5 2289.12 2.3622 0.8214 2346.8 0.0966 0.9547
6 3110.5 3189.13 2.5279 0.9511 3105.2 0.1706 0.9816
7 4280.0 4235.81 1.0325 - 4294.5 0.3399 -

The CFA updating procedure has been carried out for the same set of parameters «,,
Oaes AL, @y, ., AW, as in the previous numerical example. The values of weighting
factors W, and Wy, have been set to 50 and 1, respectively and have been selected after
several test runs of the CFA procedure.

Table 6 gives the diagonal of MAC matrix and frequency errors for each mode applying
the ARSCF updating for the overlaid beam structure. The illustration of updating MAC matrix
elements is given on Fig. 12.

We can see clearly that the CFA algorithm has enhanced significantly the modal
properties of the initial model. The diagonal terms of the MAC are greater than 0.93 (0.82
before) and the relative error has been reduced considerably (the maximal values has been
decreased from 2.52 to 0.297). Satisfactory results have been obtained for reduced processing
time compared to the original CFA and other stochastic algorithms (Levin and Lieven, 1998).
The CFA algorithm has successfully updated 48 parameters of the initial model and can be
an efficient and a useful tool for model updating.

The extraction of modal parameters from measured FRFs can cause possible errors that
affect measured mode shapes first and then the MAC part of the objective function. To
improve the accuracy of the procedure (MAC values), one can consider an objective
function based on frequency data.

The evaluation of the modal objective function for each iteration involves the
determination of eigendynamic solutions (corresponding to the variation of & and w).
Inevitably, in the case of large systems, the processing time increases considerably. The
application of sparse matrice algorithms (MathWorks Inc., 2007) may be used to reduce the
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MAC values

Fig. 11: MAC values before updating for 1. al example

MAC values

Fig. 12: MAC values after updating for rval example

CPU time needed by model updating methodology. They have been applied m the last
example and the ARSCTF algorithm required less than 3 min processing on a PC computer (for
the proposed set of parameters).

CONCLUSION

The dynamic FE model updating formulated as optimization problem has been solved
by the random search methodology. The hybrid accelerated random search centrifugal force
algorithm has been applied. The numerically sumulated test example has confirmed a good
capacity of the ARSCF algorithm to deal with this kind of problems. The ARSCF algorithm
has successfully updated the beam structure model (characterized by 20 p-values) and
significantly improved the correlation between the analytical parameters and the simulated
experimental data.

The ARSCF algorithm is not very sensitive to the initial model parameters and in
addition to that, no modal sensitivities have to be calculated. On the other hand, the use of
the accelerating technicue and the generation of steps decreasing the search interval at each
iteration permit to reduce considerably the number of iterations needed to reach acceptable
results. Also, the algorithm has improved the inherent shortage of CFA and has shown a
very good ability at hull climbing for optimum solutions and its convergence speed 1s very
fast.
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The results of the ARSCF algorithm have shown its high aptitude to update large
models in reduced execution time and to converge to satisfactory results. Tt enables us to
control the number of iterations and can be certainly a useful tool for more complex
engineering applications of a moderate size. Further studies, devoted to the application of
this procedure for the dynamics model updating of more complex 2D and 3D structures and
the consideration of objective function based on frequency data, are intended in the
continuation of this study. The proposed algorithm 1s very simple and can be easily adapted
to solve other mathematical and physical optimization problems.
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