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ABSTRACT

Wavelets are regarded by many as primarily a new subject in pure and applied mathematics.
Perhaps one of the most common applications of wavelet 15 in signal processing. In this study we
obtain an algorithm to analyze and synthesize a signal or two-dimensional function s = f(t) by

using two-dimensional wavelet method. We consider a sample point .5 ) includes a value

1ir51
sy; = fit;,) at height s;; and abscissa (time or location) t;;, We propose, obtaining an algorithm of
two-dimensional wavelet decomposition to estimate a function by using MATLAB software for

computing wavelet coefficients. Some relationships between wavelet coefficients are investigated.

Key words: Haar wavelets, two-dimensional, signal, fast wavelets, estimation function, discreet
wavelet, multiresclution analysis

INTRODUCTION

Wavelets are regarded by many as primarily a new subject in pure and applied math-ematics.
Indeed, many papers published on wavelets contain esoteric-looking theorems with complicated
proofs. Wavelet analysis was led by Daubechies (1988). Many colleagues contributed in different
ways: Meyer (1990), Walter (1993), Vidakovic (1999), Cohen ef al. (1993), Doosti ef al. 2008,
Afshari (2008), Antoniadis ef al. (1994) and Clyed et al. (1998). Perhaps one of the most common
applications of wavelets is in signal processing. A signal 1s a sequence of numerical measurements,
typically obtained electronically.

To analyze and synthesize a signal- which can be any array of data- in terms of simple
wavelets, we employ shifts and dilation of mathematical function, but deo not involve either caleulus
or linear algebra.

The first step in applying wavelets to any signal consists in representing the signal under
consideration by a mathematical function f. For example, a sound, the values s =f(t) measure the
sound at each time t at a fixed location.

The first step in the analysis of a one-dimensional signal with wavelets consists in
approximating its function by means of sample alone. One of the simplest methods of approximation
uses a horizontal stair step extended through each sample point. The resulting steps form a new
function denotes by f and called a step function, which approximates the sampled function s =f{it).
The analysis of the approximating function fin terms of wavelets requires a precise labeling of each
step. By means of shifts and dilations of the basic unit step function, denoted by @(0.1).

If a sample point (t;,s,) includes a value s; = f(t,) at height s; and abscissa (time or location) t,,
then the sample point corresponds to the step function-5{@®; | which approximates f at height s,
on the interval [t;tg, ], where 8;® 4 jdenotes the indicator function of set [t t.;].
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Adding all step functions approximating corresponding to all the points in the sample yields the
simple step function below:

- n-1
F= 35,0y 00 (1)
i=0

To analyze a signal or function in term of wavelets, the fast Haar wavelet transform begins
with initialization of an array with 2" entries, and then proceeds with n iterations of the basic
transform explained in KEq. 1.

For each index je{l,2,....,n}, before iteration number j, the array will consist of 27797V coefficients
of 270"V step function @y, defined below. After iteration number j, the array will consist of half

as many 2" coefficient of 2" step function ¢, , ; and 27 coefficient 1,  ;, such as:

(pk,n—j(t) =Py (2" [t-k27) (2)

lmuk,n—_](t) =WYoo (2 [t =k27) (3)

MAIN RESULTS
Two dimensional wavelets algorithm: For any function felL*R) we can write a formal

expansion (Daubechies, 1992):

£= 2 P + 2, 2.0 Wi )

j=m kez

Here ¢(x) and i(x) are the scale function and the orthogonal wavelet, respectively as the

following:
P (X)=27(p(2“‘x—k), W (X):ZEqJ(ZJX—k) (5)

Constitute an (inhomoegeneous) orthonormal basis of L*(R). It is clear that for Haar wavelet.:

L L _ L L (6)
@(x) Ay ®)+ g ¢ 00w - ¢ x) N P x)
So, we can write:
_ P00 @i ) _ P2 00 P (0 (N
@, (x)= JE > Wy (x)= JE

Not that eV, therefore eV, , because Vo V.
Sinee {g,,,(x), keZ is an orthonorml basis for V,, there exists a sequence b, such that:
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Px)= Zbk(pl,k(x) (8)

keZ

Know we consider a two-dimensicnal funetion {(x,y)eL3R%. For approximating this function
we using two dimensional of wavelets and obtaining an algorithm for estimation of function f with
computation of wavelet coefficients. For two dimensional wavelets, encodings can consist of
matrices, indexed by rows and columns. To expand this argument, we need some definition as the
following:

*+  Definition 1: Let {(x,v)el?(R% denote the two dimensional signal. We said Ui ioeg =
Wi () g, (%) 1s orthogonal wavelet basis

+ Definition 2: For each pair functions f and g, the tensor product of f and g 1s the function
denoted by feg as follows:

(fog)xy) = fx).gkx) (9)

* Definition 3: Suppose that function space, V, ez to be {V, = [ geLARY[,g are piecewise constant
on [k27,(k+1)27] kez} = V.oV,

If this sequence of subspaces possesses has the following properties:

s -V ooV eV oV, V..,

© NV =0T -L(R)

«  flxyeV, =f(2x,2y)eV,,

o flxyleV =fx-k,v-kye V vk, ke

¢« There exists a function Qlx,v)=p(x).ply eV, such that the set

{0,002 7)=20(@x-k |, 2y-k,) j k, kyez} constitutes an orthonormal basis for V,, then we said
(V). to be form a multiresolution analysis (MRA) of L*R?).

Remark 1: Suppose that function space, w;jez to be
Wj:{f:gevjﬂE:gLVj} =V,

]ﬂﬂjT, then we can write as the following:

* Vi= SpaIl{¢]'kl:k2 (X=y)}= W= SpaIl{w]:klwk2 (X’ y)}
* V=V, eV, =(VaW)e(V,eW)
=V, eV) e (V, eW)e (W aV)e (W, eW)=(V, aW)

Theorem 1: In Definition 1, The wavelet space {W,, je/} and scale space {(V,, jeZ} are mutually
orthogonal.

Proof: First we prove that the scaling function and mother wavelet are orthogonal.

<y == peptads = [ (1 b, @, (e
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=31, [, R =D 1, b, =0

The last step follows since the summand for k 1s the opposite of the summand for k-1-21, so each
term is negated.

It can be seen similarly that each integer translation of the mother wavelet 1 is also orthogonal
to ¢ as the following:

< @2 = [ - DG = [(C Db, @y, (5 DpGxdx

= D CD b, [ @ e = 221D by k=0
k k

The last. step follows, since the summand for k 1s the opposite of the summand k-1-2/, so each
term is negated, because of the square sumability of the sequence b,

Straightforward extension of this argument will show that 1, 1¢,, for all k,leZ and complete the
proof.

Remark 2: Each basic square-step function has value 1 in a selected square and O everywhere as
the following:

Pn = By @Ry (57) = Ry () 0 (¥) ={

1, 0£x<1,0=5y <1 (10)

0, otherwise

Similarly we can write:

o) =0 (2525). ol y)= (225 1) “”
o (xy) =gy (2x L2y -1}, ¢lh(xy)=0lh(2x-12y) (12)
Lemmal:
(% y) =0, — 0 — ol + ')
Proof: It is easy to see that |
(J 1 (13)

1 1 1
(Po,% :(Pg,)o Jr(Pg,)1 + (Pl(,% ey

By substituting ¢, and J,,, instead of f and g in Eq. 9 and changing the place of them, we can

write the tensor product of whix,y), wii(xy), win(x,y) as follows:
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1 0<x«<1,0<y<«1

1
‘ng (X: Y) = Prop ®W[0_1) (X, Y) = (P[UJ)(X)-W[U_D (Y) =q-1 0<x<],—= ¥y< 1

2
0 otherwise
= @hp + Pt — Py — P (14)
1 1
1 D<x<—, 0=y <—
2 2
v,0 1
Yoo (x,¥)= lI"[o,l)®(P[0,1)(X= ¥)= Yo (X)-(P[o,n(}’) =41 —=<x<],0=y<«l
2
0 otherwise
)95 ol a5
1 1
1 O=x<—,0fy<—
2 2
1 1
1 —=zx<l,—<y<
0 2 2
LP[]:U(X: Y) Wi ®W[0_1)(Xa Y) = Won (X)-W[oj)(y) = 1 1
-1 —<=x<1,0<y<—
2 2
-1 0£x<1—,0£y<l
2 2
0, otherwise
= PLh — P — Py TPy (16)

Remark 3: The subscript h and v and d indicates the correspondence of such wavelets with
horizontal and vertical, and diagonal changes in the data, since the detail spaces W™, W™ w'®
tend to emphasize coefficient-cliques describing horizontal and vertical and diagonal futures the
image. The spaces W™ W™ W are spanned by translation of:

(3 —
P =

o’ @y = ¢ Oy’ a7
W= 04 =y o as)

418



Asian J. Applied Sei., 4 (4): 414-422, 2011

For nonnegative integers j which 1s denoting the frequency and k,/ which are denoting the

location.

1 1 1 1
Algorithm: We consider a function f with sample wvalues f(O,O),f(O,E),f(E,O),f(EO,E)

approximated by a square-function f and denote by a matrix:

1

. £(0,0) f{o,z} {sg_oso_o}

(OREH

S0 %1

We can write as follows:
F_ m ( m (1 19
f _SO,O¢0,O + SO,l 01 + Sl,O 10 + Sl,l¢1,l ( )

Algorithm begins with one dimensional wavelet transform as described in algorithm, for each
row as follows:

2 2
(So,o JrSo,l) + (Sl,o +51,1) (So,o 750,1) + (51,0 751,1)
4 4
(So,o +So,1)7 (51,0 Jr51,1) (So,o +So,1)7 (51,0 Jr51,1)
4 4

We can repeat this algorithm and estimate function f.

EXAMPLE

Example 1: let for approxdmating f we chose sample values:

£0,0)=9, f[o,l]ﬂ, f{l,ojzs, f[l, 1]: 3
2 2 22

The square-step approximation f is:

(20)

— (1) &) &) D _ g pD (1) (1) &)
f= So.0Poo T81%P01 T8 oo T8¢ = 9 o T 7¢0,1 + Sq)l,o Jr3(1)1,1
Consider again the above data. By the algorithm, we can write:
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9+7 9-7 8+4  1+1
9 7 g 1 BN
| 2 2 | 2 2 |6 1
5 3]77[5+43 5-3( 4 1) [8-4 1-1 [2 0
2 2 2 2

The one-dimensional Fast wavelet transform extends to two- dimensional fast wavelet transform
with tensor products, through alternating applications of the one-dimensional transform to each
row and then to each new column.

So by the tensor product wavelet,

£=600,, @ 10, W 1y + 206, @@y + 00, D) (21)

Example 2: supposed that a function f sampled at 4x4 matrix values

3548
1 344
2642
62 60

f=

On a square grid, and we consider approximating f, by square-step function as following:

[3+5 3-5 4+8 4-38 |
2 2 2 2
3548 1+3 1-3 4+4  4-4| |4 -1 6 -2
1344 2 2 2 2 2 -1 4 0
26 42| |6+6  6-6 442 42|76 0 3 1
6260 2 2 2 2 4 2 3 3
6+2  6-2  6+0 6-0
L 2 2 2 2|
[4+2 ~1+(-1 644 240
2 2 2 2
4-2 —1-(-1) 6-4  —2-0| |3 -15-1
:>2 ) 2 2 310171
6+2 0+2 343 1+3 513 2
2 2 2 2 1 -1 0-1
62 0-2  3-3 1-3
L 2 2 2 2

The intermediate result just obtained corresponds to one basic two dimensional wavelet

transform on each of the four adjacent 2x2 square matrixes.
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RESULTS

« All of the sums from the upper left hand corners of the four 2x2 blocks go inte the upper left
hand corner of the larger grade, corresponding to wavelets of the form ¢, . @ ..

«  All of the difference from the upper right-hand corners of the four 2x2 blocks go into the upper
right-hand corner of the larger grade, corresponding to wavelets of the form @, @ ..

*  All of the difference from the lower right-hand corners of the four 2x2 blocks go into the lower
right-hand corner of the larger grade, corresponding to wavelets of the form ¢, @ ¢,,.

¢ All of the difference from the lower left-hand corners of the four 2x2 blocks go into the lower
left-hand corner of the larger grade, corresponding to wavelets of the form ¢, @ ..

Proposition: We can complete the two dimensional transform by the following method:

3 -15 -1 35 -1 -1
01 -1 5 31 -1
=
51 3 2 1 1 0 2
-1 0-1 1 -1 0-1

[

[

Finally, perform a two dimensional wavelet transform only the four entries iv the upper left.-
hand corner as follows:

3+5 3-5 4+ 4 —-1+1
I e I 40
| 2 2| | 2 2 =
5 3 543 5-3 4 1 4-4 -1-1 0 -1
2 2 2
Thus the matrix:
4 0 -1 -1
0-1 1-1 Completed the two dimensional wavelet transform.
1 1 0 2
1 -1 0-1
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