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ABSTRACT

Pavement management encompasses a wide range of tasks from data collection and data
processing to maintenance management and life cycle cost analysis. This study concentrates on
maintenance management at a project level and a network level. A decision support system
provides optimum maintenance actions over time to enhance the performance of a pavement
network and prolong its life span. A heuristic methed i.e., Genetic Algorithm is apphed to tackle this
optimization problem. Due to complexity of the problem, applying an optimum Genetic Algorithm
structure results in significant enhancements in the Genetic Algorithm procedure and saves
computation time which has not been received encugh attention to date by researchers. An
experimental design 1s conducted to investigate the optimum Genetic Algorithm structure for
solving a pavement maintenance problem. Since the current Genetic Algorithm software is not
suitable to run the experiment, an accurate spreadsheet program has been developed for this
purpose to conduct the experiment. Two types of objective functions have been applied: single
objective functions (minimizing cost) vs. multiple objective functions (minimizing cost and
maximizing benefit).
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INTRODUCTION

Infrastructure management consists of systematic planning and programming of rescurce
allocation or expenditure, design, construction, maintenance, operation and in-service evaluation
of physical faclities. It 1s a wide range of activities involving in providing and maintaining
infrastructure at the level of service satisfying public or owners. These activities encompass data
acquisition, planning, pregramming, execution of new construction, maintenance, rehabilitation
and renovation (Hudson et @l., 1997).

Several researchers have been working on  various methods to tackle pavement
management optimization problems (Flintsch and Chen, 2004; Shekharan, 2000; Fwa et al.,
1998a; Pilson ef al., 1999; Bandara and Gunaratne, 2001). Genetic Algorithm (Chan et al., 1994;
Fwaet al., 1994; Chan et al., 2001; Ferreira et al., 2002; Fwa et al., 1996, 1998b; Hegazy, 2006;
Maji and Jha, 2007), Markov Chain (Carnahan, 1988; Dekker, 1998), artificial neural network
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{(Fwa and Chan, 1993), Regression Analysis (Fwa and Sinha, 1986), Integer Programming
(Fwa et al., 1988) and Fuzzy Logic (Golroo and Tighe, 2009) have been widely employed to
overcome the pavement management problems. Several researchers applied hybrid approaches
to solve these problems. Bosurgi and Trifire (2005a, b) used Genetic Algorithm and Artificial
Neural Network totackle road pavement maintenance. Genetic Algorithm and simulation have
been applied for pavement maintenance scheduling by Cheu et al. (2004) and Chootinan et al.
(2006). Loia et «al. (2000) incorporated fuzzy logic, artificial neural networks and genetic
algorithm for managing pavement maintenance activities. Recently, apphication of iPad terminal
with GIS has been used for management and service platform for pavement {(Jiao ef al., 2012).

Engineers have faced with a major challenge to overcome the complexity of pavement
management problems. For instance, S™ solutions are feasible for IN pavement sections with
S maintenance actions over a planning horizon of T years. It 1s time consuming to obtain a global
optimum sclution for a moderate real problem even by using the most powerful supercomputers
and the latest techniques. Consequently, it is believed that the problem should be tackled by
employing heuristic methods to probe a “good/near optimal” solution without necessarily
guaranteeing to obtain the “best/global optimum” sclution. Yedjour et al. (2011) attempted to
combine the exact analytical optimrmzation and Genetic Algorithm ((GA) to overcome ineffectiveness
of GA when it comes to find the exact solution of the optimum in the space. GA is one of the
most efficient tools to deal with the computationally complex problems. Therefore, (GA has been
widely acknowledged in various fields to reduce complexity of computational problems
(Asfaw and Saiedi, 2011; Mosavi, 2011; Samimi and Golkar, 2012; Seyvedzade and Attar, 2009;
Al-Husainy, 2007).

Although  several research studies have been conducted to solve the infrastructure
management problem (Hegazy ef al., 2004; Wang ef al., 2007; Elbeltag ef al., 2005) using GA, a
practical study which probes optimum GA parameters {(e.g.,, mating process) in a
simplified/educational way totackle pavement management problems is still lacking. For instance,
Fwa et al. (1996) introduced nine objective functions for pavement maintenance planning and
discussed multi-objective assessment of functions. However, the mating process (not assessed) was
restricted to the one point crossover and uniform flipping mutation by the authors. Ferreira et al.
(2002) tested a complete list of GA parameters and operators to solve a pavement management,
problem. But, they only applied two crossover methods and one mutation operator (while more
operators would be applicable and applied herein). A summary of relevant literature which
focuses on solving pavement management problems by incorporating soft computing methods
is shown in Table 1. The GA parameters (crossover technique, mutation technique,
crossover probability, mutation probability and population size) are also presentedin Table 1.

The objective of this study was to investigate an optimum GA structure to be applied for
developing a maintenance scheme. The scope of this study was to execute sensitivity analysis on
the cutcome of the problem with respect to the GA structure. It also provided an optimum technique
by searching among various combinations of crossover and mutation operators with different
probabihities to reach the near optimum sclution by performing a lower number of iterations which
would lead to timefcost saving. A spreadsheet program was, furthermore, developed herein by
authors to handle various types of mating processes of GA (for educational purposes) which has

more detailed/useful specifications than similar existing software.
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Table 1: Summary of pavement management. literature incorporating soft computing methods

Mating technique
Crossover Mutation Population
Author Description Method used (%) (%) size
Bosurgi and Trifiro (20065a)  road pavement,
maintenance management. GA-NN --- (90%) - (0. 1%) -
Bosurgi and Trifiro (2005h) Pavement
maintenance management GA-NN OP (90%) UF (0.1%) ---
Chan ef al. (1994) Road maintenance
planning (formulation) GA oP UF-8G (10%) 10-80
Carnahan (1988) Pavement maintenance scheduling MC - - -
Chan et al. (2001) Congtraint handling methods in GA TP ur 100
pavement maintenance programming
Cheu et al. (2004 Pavement maintenance scheduling for GA-S TP (80%) UF (5%) 4
road closure
Chootinan ef al. (2006) multi-year pavement maintenance GA-S U (50%) UF (1%) 32
programming
Dekker (1996) applications of
maintenance optimization MC - - -
models (review)
Ferreira et al. (2002) Pavement Management Optimmization GA OP-U (85%)  UF (5%) 1000
Model
Fwa and Chan (1993) priority assessment
of highway pavement NN - - -
maintenance needs
Fwaet al. (1996) Road maintenance
planning (analysis) GA - - ---
Fwa and Sinha (1986) relationship between pavement RA - - ---
performance and routine maintenance
Fwaet al. (1996) Road maintenance and rehabilitation GA (80%) (20%) 60
programimng
Fwaet al. (1998) Pavement Management Activities GA oP UF ---
Programming
Fwaet al. (1998) Scheduling of pavement maintenance GA oP UF-8G 50
Fwaet al. (1988) Mathematical programming for 1P - - -
routine maintenance
Hegazy (2006) Efficient delivery of infrastructure GA - - -
Maintenance/repair prograins
Loiaet al. (2000) managing pavement maintenance FL-NN-GA - - ---
activities
Maji and Jha (2007) Highway infrastructure maintenance GA QP (70%) UF (30%) -
Schedule
Pilson et al. (1999) Multi-objective optiimization in GA QP (60%) UF (1%) 60

Pavement management

GA: Genetic

NN: Neural mnetwork,

Algorithm, MC: Markov chain, 8: Simulation, RA: Regression analysis, IP: Integer
programming FL: Fuzzy logic, OP: One point crossover, TP: Two point crossover, U: Umform crossover, UF: Uwmiform flipping and SG:
Switching genes
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AN OVERVIEW OF GENETIC ALGORITHM

Genetic Algorithm has been widely acknowledged in infrastructure management although the
optimum GA structure to obtain the near optimum sclution faster and more accurate has not
received enough attention. In light of scarcity of analyzing GA structure to achieve appropriate
solutions, 1t 1s reasonable to explain fundamental concepts of GA here. Presentations of GA
principles can be found in Mitchell (1996) in depth.

In GA, a population of strings (called chromosome), which encode candidate solutions te an
optimization problem, evolves toward better solutions. Finally, the algorithm terminates once either
a maximum number of generations has been produced, or a satisfactory fitness level has been
reached for the population.

Initialization and selection: The first step is to generate an initial population of
solutions/chromosomes randomly. An important step in solving any problems using GGA is to use an
adequate methodology to evaluate the “fitness” of initial sclution/string (called a parent). During
each successive generation, a proportion of the current population is selected to create a new
generation (called an offspring). Selection can be carried out arbitrary or through a fitness-based
process, where fitter solutions are more likely to be selected.

Reproduction: Having selected parents, a processing technique 1s required to mate parents and
produce two offsprings. There are two major techniques: crossover and mutation.

Crossover is the most common operator through which two parents are selected and the genes
{each parent consists of a number of genes) are shifted. This shifting process can be executed using
various methods: two points, one point and uniform. These methods are illustrated in Fig. 1a. Two
random numbers are generated in the two-point crossover to specify a range (i.e., 2 and 4 in
Fig. 1a) to be shifted between two parents to produce two offsprings which have different genes as
compared to parents. In the cne-point crossover, a random number (i.e., 2 in Fig. la) is generated
and the genes before and after the crossover point. are shifted to create two new offsprings. Finally,
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Fig. 1(a-b): Mating process; (a) Crossover techniques and (b) Mutation techniques
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every other gene 1s shifted from one parent to the other parent in the uniform crossover to provide
two offsprings. The crossover operator does not change the genetic material. For instance, gene
number two of a parent is replaced with gene number two of other parent. In other words, a cell
can be shifted by the other cell in a same location/column (genes only move vertically not
horizontally).

Mutation 1s an operator of generating new genetic materials as oppose to crossover. That 1s, a
gene can be shifted by other gene in another location/eclumn (genes can move both vertically and
horizontally). Two major methods are proposed herein to execute the mutation operation: uniform
flipping and switching genes. The mutation operator selects a parent to produce an offspring. In
the uniform flipping method, the value of each gene is flipped (replaced with a random selection
from the existing options) to proeduce an offspring that is different from a parent. While, in the
switching genes method, a selected number of genes (determined at random) are switched. The two
mutation techniques are illustrated in Fig. 1b.

The fitness of new generated offspring is compared with the current parents in the population.
If the offspring fitness is higher than the lowest parent fitness in the population, the parent with
the lowest fitness is removed and the new offspring is entered into the population. These processes
finally result in the next generation population with higher average fitness.

Termination: This evolutionary process is repeated until a termination condition has been
satisfied. Common terminating conditions are:

* A solution is achieved that provides minimum criteria

*  Pre-specified number of generations achieved

* Assigned budget {computation time/money) reached

*  Successive iterations no longer produce better results (reached a plateau)

PAVEMENT MANAGEMENT SYSTEM
The fundamental elements of a pavement management system at network or project level are
as follows:

+ Pavement management system models
+ Pavement management system constraints
*  Decision support system

These elements are presented to be able to demonstrate the versatility of GA in sclving
pavement management problems through investigation of an optimum GA structure.

Pavement management system models: Pavement management system models include
performance models, cost models and improvement models which are briefly described
below.

Performance models indicate the deterioration rate of a pavement, throughout its service life.
There are several performance models used for pavement management which are widely divided
into deterrmnistic and probabilistic (Ben-Akiva et al., 1993).

Cost models predict user cost (e.g., Vehicle Operating Costs (VOCs)) with regards to pavement
condition level, percentages of vehicle types and traffic volume. For instance, a pavement section
with high roughness and severe distress would result in higher VOCs than a smooth section with
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lower distress. Improving the condition level of pavement would reduce VOUs and prolong the life
span of pavements. The cost of maintenanece actions is strictly hmited to the annual budget. The
challenge is to manage trade-offs between applying appropriate maintenance actions and
accommodating budget constraints to minimize user cost.,

The improvement models are employed to evaluate the effectiveness of each maintenance
action. These models estimate condition level of pavement, after implementing maintenance actions.
Improvement models usually provide the improvement in terms of an increase in a pavement,
condition index (e.g., the International Roughness Index (IRD)).

Pavement management system constraints: Several constraints have been taken into
consideration to solve pavement management problems: a triggerfterminal level of a pavement
condition index (e.g., IRI), available budget, government/userfowner constraints, ete.

Decision support system: Having defined performance models, cost models, improvement
models and constraints, a decision support system (objective function) is required to investigate
optimum maintenance actions that should be implemented at proper time on degraded
pavement sections to meet constraints and enhance the performance of pavement sections.

To evaluate and determine possible solutions, objective functions are needed. The following
objective functions are commonly utilized:

¢« Minimization of maintenance cost

+  Maximization of saving in VOCs

«  Maximization of effectiveness

«  Maximzation of saving in VOCs over cost,
«  Maximization of effectiveness over cost

Effectiveness is defined as the area under a pavement performance curve multiplied by
section length and traffic volume. The effectiveness of pavement can be estimated using Eq. 1
{Haas, 1997). The more the effectiveness the better the overall pavement condition level 1s:

Effectiveness = AxVxL (1
Where:
A = Area under the performance curve
V = Annual Average Daily Traffic (AADT) (veh h™)

L

Length of a pavement section (km)

In order to investigate a near optimum solution, a model which represents an objective function
is required. The mathematical formulations presenting abovementicned objective functions are
expressed in Eq. 2-6;

T N
Min. maintenance cost = > (1+1)™" 37 C, (2)

t=1 n=1

T H
Max. saving in VOCs =3 (1+1n)" 2 VOC, (3)

t=1 n=1
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T H
Max. effectiveness =3 (1+1)" 3 E, 4)
t=1 n=1
o . T ¥ voc 5
Max. saving in VOCs over maintenace cost = Z(l+r)' EC—“‘ ( )
t=1 n=1 [
T N E
Max. effectiveness over maintenace cost =3 (1+r}" EC—“‘ (6)
=1 PETR

where, C, 1s cost of a maintenance action of pavement section n at time period t; VOC,  is vehicle
operation cost of pavement section n at time period t; K is effectiveness of pavement section n at
time period t; r is a discount rate; T is a planning horizon (years) and N is a number of pavement,
sections. The discount rate is applied to estimate the net present value annually. The maintenance
strategy should accommodate various constraints as follows:

+ Total maintenance strategies <total budget,
« A pavement condition index of an individual pavement section in each year <trigger
level

Since GA is based on random process, the constraints cannot be simply formulated. The common
approach to serve the constraints is to ehminate solutions/strings which violate the constraints from
a population. Although this approach is easy to use, it removes strings that may be useful in mating
processes. Hence, the Lagrangian relaxation method 1s employed to benefit from the total strings
whether or not strings violate the constraints. Namely, these constraints are not rigidly enforced
but a penalty for viclating the constraints would be assigned to associated solutions. The penalty
is usually a function of the amount of viclation. That is, the more the violation ratio the more the
penalty is. The penalties for violating a maintenance budget and pavement condition trigger level
are presented as follows:

Total maintance cost — Total budget (7)

Budget penalty = Total budgel

Pavement condition index — Trigger level (8)

Pavement condition penalty = - ol
rigger leve

Although, two major constraints have been defied here, other constraints can be readily added
to the model such as considering a trigger level for overall network condition or annual budget
limit.

Single-objective vs. multi-objective functions: The results can be demonstrated using either
single-objective functions or multi-objective functions. A common approach to obtain a single-
objective function out of various objective funections is to combine them (e.g., calculate weighted
summation of objective functions). The ratio of benefit to cost is proposed as a single cbjective

funetion. The benefit can be effectiveness or saving in VOCs. Maintenance cost has been widely
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used as a single objective function to determine optimum maintenance strategies; however,
considering only maintenance cost is not a wise approach since benefits achieved by implementing
a maintenance strategy plays a significance role in decision making in infrastructure management
so that it is suggested to take account of both benefit and cost.

The multi-objective functions may be benefit vs. cost (e.g., effectiveness vs. cost). This later
approach has been commonly overlocked by the pavement engineers due to the computationally
complexity of the preblems, while has been acknowledged by research in other fields (Touat ef al.,
2010; Cao and Cleghorn, 2011). However, multi-objective functions would specify the trade-off
between benefit and cost which is useful for decision makers to find an optimum solution which
matches with the engineers’ need. Both approaches are presented herein. A single-objective
funetion 1s employed to date to reach the near optimum solution. In fact, multi-objective functions
provide better overview for engineers and assist decision makers to assess the trade-off between two
opposite objectives. In order to evaluate the fitness of each solution, an efficient set of non-dominant
solutions should be investigated. Since two objective functions (i.e., maximizing the benefit and
minimizing the cost) should be considered concurrently, a set of non-dominant sclutions is searched.
In this case, instead of specifying an individual string as an optimum solution, a set of non-
dommnant. solutions 1s proposed. Non-dominant sclutions are alternatives that contain the best value
for cost and benefit.

COMPUTATIONAL STUDY

A solution can be presented as a string that has N x T cells/genes {(Fig. 2a). Each cell expresses
a maintenance action (i.e., action 1, 2, ... , 8) in each year (over planning horizon, T years) which
should be implemented on a pavement section (i.e., section 1,2, ..., N). For instance, the string

presented in Fig. 2b shows that action numbers 1, 1 and 2 will be executed on pavement sections

(@)

Pavement Year Year Year
section 1 2 T \
1 0 1 Maintenance 4 Possibl
1 2 @@ actions: 3 CEEIE
2 T 0 Lo s 3 { solutions
0 2 3
1 1 T SNxT
. 1 T 4
N 2 0 B
\ //
NxT I
(b)
Sec 1 2 . N 1 2 .. N 1 2 N
tJoi]..J2afJofof..[1 [l T T ][ 2]3]2]4]
| Lt | L | »
Year 1 Year 2 Year T
dl
|
NxT

Fig. 2(a-b): Problem setting; (a) Problem presentation and (b) String/solution
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1, 2 and N in the first year, respectively. It also expresses that pavement section number 1 and 2
are not selected for treatment in the second year.

Cost, effectiveness, vehicle operation cost, ete. (Eq. 2-68) which were proposed as objective
functions along with constraints (Eq. 6, 7 and 8) were applied to evaluate fitness of strings in a
population. Detailed presentation of GA calculations 1s out of scope of this paper and only outcomes
of investigation of optimum GA structure will be presented.

OPTIMUM GA STRUCTURE

In order to investigate the optimum GA structure (simulation number, mating operator
methods, operators’ probability), an experimental design has been conducted. This experimental
design requires independent replicates to be executed for different GA structures. Appropriate
software which 1s able to set up different GA structures is essential to conduct the experiment.
Although available software in the market (http://www. palisade.com) is powerful and can
sufficiently run GA for various problems, they do not provide various operators’ methods as
discussed earlier or not able to change GA settings such as operators’ method and their
probabilities. Therefore, a spreadsheet program was developed which is able to run GA with various
(3A’s settings including combinations of different operators and their probabilities.

Microsoft Kxcel software 1s chosen for execution of this model due to its user friendly interface
and powerful programming features. The Marco Language of Microsoft Excel is employed to code
the procedure of implementing GA for solving pavement management problems. Every attempt was
taken to provide powerful and accurate coding for various GA structures along with providing a
user friendly interface. As shown in Fig. 3a, users can set detailed setting of GA such as population
size and number of simulation. Users are capable to continue evolving the existing population
instead of generating new population in each trial. Moreover, the operators’ probabilities i.e.,
percentage of time in which the crossover operator is used versus mutation can be selected. More
importantly, the desired operator’s method of mating can be specified which includes uniform, one-
point and two-point methods for the crossover operator and uniform flipping and switching genes
methods for the mutation operator. In the case of choosing switching genes method, a number of
switched genes should be additionally determined.

As Fig. 3b shows, the objective function values are presented as cutputs together with the
single objective function curve (benefit/cost vs. solution#), the multiple objective function curve
(benefit vs. cost) and the convergence rate curve. Moreover, the process of mating (crossover or
mutation) can be ocbserved while the simulation 1s running. Finally, once the simulation process
finishes, the pop up window appears on the screen showing the best solution number, the
corresponding string and the associated cbjective function value (in terms of benefit/cost).

EXPERIMENTAL DESIGN

An experimental design was conducted to cover all possible combinations with regards to
operators’ methods. There are three types of crossover methods and two types of mutation methods
proposed herein to execute the mating process. Thus, the two-level factorial experiment was
apphed. Six experiments were defined with respect to various methods of crossover and mutation
demonstrated in Table 2. To investigate an optimum setting of GA, three criteria were examined
which included a number of simulation, optimum combination of operators’ methods and operators’
probabilities,

First, to search for a sufficient number of simulations, five replicates/series of population with
a same size (1.e., B0 strings/parents) but consisting different strings were generated at random. The
percentage of application of crossover and mutation operators was considered consistent (80 and
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20, respectively) for all replicates to be able to analyze the effect of simulation number on
convergence. Various numbers of simulations were tested at an interval of 50 (starting from 0) to
reach convergence of an objective function value (which is discussed later). As shown in Fig. 4a,
the convergence rate is equal to 500 according to several trials.

Secondly, to search for optimum combinations of mating methods (six combination according
to the factorial design shown in Table 3), the GA was run for three replicates (sets of population
which were populated at random). Based on an objective function value, various combinations were
ranked. As shown in Fig. 4b, experiment 4, US (i.e., crossover method: uniform and mutation
method: switching genes) 1s the optimum combination, while experiment 2, OU (i.e., crossover: one
point and mutation: uniform flipping) is the worst.

Thirdly, the Genetic Algorithm criterion that has not been received encugh attention by
researchers is to dedicate optimum percentages/probability of applying mutation and crossover
operators. Various percentage values range from 100 to 70% at interval of 5% for the crossaover
operator probability and from O to 30% at the same interval for the mutation operator probability
were run for 500 simulations using the optimum mating scenarios proposed earlier (1.e., US:
uniform crossover and switching gene mutation). Each pair of preobabilities {for crossover and
mutation) was replicated five times each time for 500 simulations. The convergence rate
{a simulation number within 500 which an objective function converges) and the population
evolution rate (percentage of increase in the value of an objective function) have been determined
and are presented in Table 3.

It can be observed from Table 3 that the best scenario in terms of the convergence rate is
scenario 1 (crossover probability = 100 and mutation probability= ), while the best one in terms
of the population evolution rate is scenario 3 (crossover probability = 90, mutation
probability= 10). Regarding the fact that the population evolution rate is more important than
convergence rate and the difference between the convergence rate of scenario 1 and scenario 3 1s

not significant, the third scenario i1s proposed as the ocptimum scenario.

Table 2: Six scenarios to the mating process

Experiment 1D Crossover techirique Mutation techirique
1 uu Uniform Uniform flipping
2 ou One point Uniform flipping
3 TU Two points Uniform flipping
4 us Uniform Switching genes
5 08 Omne point Switching genes
[&] TS Two points Switching genes

Table 3: Kvaluation of different crossover and mutation operation probabilities

Scenario Crossover (%) Mutation (%) Convergence rate (# Simulations) Population evolution rate (%)
1 100 0 320 30.27
2 95 5 366 31.91
3 90 10 363 32.02
4 85 15 392 31.01
5 80 20 416 31.67
6 75 25 448 30.78
7 70 30 449 20.48
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Fig. 4(a-b); Effective genetic algorithm approach, (a) Convergence to a near optimum solution and
(b) Ranking of various genetic algorithm approaches for three population sets

Ultimately, the optimum preblem setting for the Genetie Algorithm can be summarized as
follows:

*  Number of simulation: 500

* Crossover technique: uniform

+« Mutation technique: switching genes

*  Percentage of running crossover operator: 90%
+ Percentage of running mutation operator: 10%

The methodology used to conduct the experimental design for investigating the optimum GA
settings seems statistically sound and it provides reasonable results which are consistent with the
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researchers’ achievements to date (Bosurgi and Trifiro, 20054, b). The contribution of this study
was to examine statistical experiments to achieve the optimum GA settings while researchers
{Pilson et al., 1999; Maj and Jha, 2007) commonly applied selected/assumed GA settings.

CONCLUSION

A decision support system plays significant role in pavement management both at a network
level and a project level. This system searches for eptimum maintenance actions at adequate time
to be implemented on an appropriate pavement section. Genetic Algorithm was found to be an
efficient tool to deal with such a computationally complex problem. Since the problem is
significantly complex especially where a pavement network has thousands of kilometers of roads,
the GA settings are of significant importance. Having applied optimum GA settings would result
in a significant amount of saving in computation time. An experimental design was conducted in
a developed spreadsheet program to examine several combinations of operators and statistically
sound results were achieved. The GA settings provided optimum number of simulations, operators’
methods and their probabilities.
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