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ABSTRACT

This study deals with the reliability characteristics of two different, series system configurations
with mixed standby (include cold and warm standby) compoenents. The failure rates of the primary
and warm standby components are assumed to follow the Weibull distribution. The repair time
distribution of each server 1s exponentially distributed. Moreover, we will derive the mean time-to-
failure and the steady-state availability for a special case of a serial system of two primary
components, two warm standby components and one cold standby component, when the failure and
repair rate are constant.
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INTRODUCTION

System reliability and system availability have widely been studied because of their prevalence
in power plants, manufacturing systems and industrial systems. Maintaining a high or required
level of reliability and/or availability is often an essential request. In this chapter, we consider the
manufacturing system or the power plant to be serial system with mixed standby (include cold and
worm standby) components. A standby component is called a ‘cold standby’ if its failure rate 1s zero.
The standby component is referred as ‘warm standby’ when the failure rate is nonzerc and is less
than the failure rate of a primary component. Primary, warm and cold components can be
considered to be repairable.

The present study is differ from past work in that it presents a novel methodology to design a
system configuration involving series and mixed standby components. The reliability characteristics
of a system with M operating machines, S warm standby spares and R repairmen with exponential
failure and exponential repair time distributions was investigated (Wang and Sivazlian, 1989),
Srinivasan and Gopalan (1973) studied one on-line unit (operating machine) with general lifetime
distribution, w Warm standbys with exponential failure and exponential repair time distributions
based on only one assumption, namely, the system fails when no spares are available to
replace the failed operating machine. Meng (1993) compared the MTTF of four series-parallel and
parallel-series redundant system composed of 2n independent components, general ordering
relations between four systems in terms of their MTTFE are obtained.

In this study, we are going to study three different system configurations of series and mixed
standby components. These configurations 1,2 are compared based on their reliability. In addition,
for configuration 3 which is a special case, we are going to develop the explicit expressions for the
mean time-to-failure MTTF and the steady-state availability A(e) and to caleulate the cost/benefit
ratio (C/B) based on assumed numerical values given to the system parameters, as well as to the
costs components.
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ESTIMATION OF THE 2-PARAMETER WEIBULL DISTRIBUTION
The hazard function of a component following a 2-parameter Weibull distribution can be
described by:

Bl
h(t) = E';p

The likelihood function for m items begin test at the same time by Farnum and Beoth (1997)
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The partial derivatives of the natural log of the likelihood function are:
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Table 1: Compute estimate of the parameters « and [ for number of failures times t;

Order failures times t; Fori =1,2,...,10

1
) LT

A2 o= -

P=o [;10

37
31
27
24
18

2 3 4 5 6 7 8 9 10 v v

58 72 83 115 136 152 165 185 213 0.682 2.933 138.07
43 56 65 73 82 96 101 111 135 0.948 2.120 97.22
35 66 83 96 101 131 145 199 222 0.884 2.260 128.41
32 41 66 79 89 98 120 180 255 1.117 1.790 111.66
26 39 53 77 93 108 135 220 253 1.216 1.640 118.84

For censoring, t, is a recorded failure time for i<t and t, =ty for t+1<i<m, where t; is the

maximum test time for censoring, Tis the number of items that fail before ty. When allt, 1 =1,2,3.,

m) are available, the data are complete; complete data are a special case of right concerning for
T=m.

Our empirical investigations suggest that choosing:

v=Limh(p)

Then from Eq. 4, we have:

v=lnt, > Snt, (5)

T

i=1

and:

Z:]nti + (m—1)Int,

() = = 2 Int,
1& T 1< (6)
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Using Eq. 5-6 to obtain f:
=l
V+| — |V
[3: m _ 2 (7)

.2
This approximation simplifies to B=;-
Equation 7 provides a quick approximation to p and can be used as an initial estimate of § for

iterative MLE routines. Table 1 presents compute estimate of the parameters « and p for number
of failures times t;.

DESCRIPTION OF THE SYSTEM

For the sake of discussion, we consider the requirements of a 10 MW power plant. We also

assume that generators are available in units of beth 10 and 5 MW. Standby generators are always
necessary in case of failure. We assume that the switch is perfect (Wang and Kuo, 2000). We also
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assume that the switchover time from warm standby component to primary component, from cold
standby component to warm standby component, from failure to repair, or from repair to cold
standby component {(or primary component if the system is short) is instantaneous. Primary
compoenents and warm standby components can be considered to be repairable by Wang et al.
{2008) and Xie et al. (2004). Kach of the primary components fails independently of the state of the
others, has time-dependent failure rate A,(t) and follow Weibull distribution with parameters 0,,1m,.
Whenever, one of the primary components fails, a warm standby moves into operation if any 1s
moves into operation if any is available and a cold standby is put on warm standby state if any is
available, we now assume that when a warm standby moves into a primary component state, its
failure characteristic will be that of the primary component and when a cold standby moves into
a warm standby state, its failure characteristic will be that of a warm standby. We assume that
each of the available warm standby components fails independently of the state of all the others
and has time-dependent failure rate A,(t) and follow Weibull distribution with parameters 0,,m..
Whenever a primary component or a warm standby component fails, it 1s immediately repaired in
the order of breakdowns with a time-to-repair which is exponentially distributed with parameter
1. Onece a component. 18 repaired, it 1s "as good as new”, notice that a failed system is never repaired.
The following configurations are considered:

*  The first configuration is a serial system of one primary 10 MW component, one warm standby
10 MW component and one cold standby 10 MW component.

*+ The second configuration is a serial system of two primary 5 MW components, one warm
standby 5 MW component and one cold standby 5 MW component.

*  The third configuration (a special case): of two primary 5 MW components, two warm stand by
5 MW components and one cold standby 5 MW component, with constant failure rate A,4, and
constant repair rate p

THE RELIABILITY OF THE SYSTEM
The state probability Pi(t), for j =0,1,2,3 can be viewed as a result of solving a set of four first
order linear differential equations given by the following identity:

dp (1) - ST
% =Pi(t)=-p, (02 q, + ZP‘(t)a‘J ®

i] i%j

where, «; is the transition rate from state j to state i.
Calculations for configuration 1: For configuration 1, let P;(t) be the probability that exactly

3 components are working at time t, (t=0). if we let P(t) denote the probability row vector at time
t, then the 1imtial conditions for this problem are:

P(0)=[P,(0),P,(0), B(0}. P, (0}] =[1,0,0,0] ©

The system-state equations for a Markov model which is the set of the first-order linear
differential equations given by:
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The transition rate matrix Q for reliability according to configuration 1 1s given by:

_?"1 (t) - ;"2 (t) R 0 0
Q| HOFRG AO-AO-p 0
BE A () + Ay (1) ORI
0 0 () 0

We will take the matrix @ and delete the rows and columns for the absorbing state. The new
matrix 1s called A(t):

A=A p 0
A=A M)+, -AM-A,0-n 20
0 (02, (1) 2 (L-2p

We can write the system in the form:

P— A(t)P(t) (10)

B(t)
Pt =R ®
0]

To solve Eq. 10 with the initial condition:

where:

B |1
Pit=0)=|R(0)|= (11)
B | [0
Multiplying both sides of q. 10, e—!m% by then we have:
d *j’A(s)ds
—le?® Pty |=0 (12)
dt
and hence:
Jrov (13)
P(t)y=e" . P(t=0)
Our problem now is how to determine the value of efgncs)as
So assume that:
D= jA(s)ds (14)
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where:
. “H()-H,(t) pt 0
D= IA(S) ds=| H()+ Hy(t) —H(O-H,(t)—pt 2nt
" 0 H,{t)+H, (1) —H, (t)—2ut
and:

H, ()= [ 2 (dt H (1) = [ (Dt
[1} [1}
The methed of solving we follow gives us the value of eP by the following relation:
e” = oy T+ oy D+ o, D (15)

where, [ 15 the identity matrix of rank 3 and «,, ¢, ¢, are the parameters obtained from the solution

of the following system:
¢t =0y + oS + oS (16)
e =, + S, + 00,8 (17
e =0, + 0,8, + o, S (18)

where, S, 5,, 5; are the characteristic roots of the matrix D. These rcots are obtained from the
characteristic equation g(s) of the matrix D given by:

CH(0-Hy ()5 pt 0
g = H()+H,(t)  -H(O-H(U-p-s 2t (19)
0 H, () + H, (1) “H,(t)-2ut—s

By solving Eq 16-18, we have:

o = 8,5,(8, - Sa)e% +8,8(8, - Sl)eg2 +8,8,(8 -8, )es3 (20)
! (S1 - Sz)(s1 _Sa)(sz _Sa)

_ (8% — 8™ + (87 —81)e™ + (52 —g1)e® 2n
(S1 - Sz)(s1 - SB)(SE - SB)

1

o (5= 80¢% + (3, - 506" 4 (5, - 8, )e® (22)
: (Sl_SZ)(Sl _Sa)(sz _SB)
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Now we can obtain the value of e from Eqg. 15 and obtain the values of required states
probabilities from Eq. 13 which are:

B (ty=a, — o (H, (O +H, (1) + o, ((H1 (t)+H, (t))2 +u t(H O+ H, (t)))
P,(t)= o, (H(t)+ H, (1)) o, ((Hl(t)+ H, (1)) + (H,(t)+ H, O)(H, O+ H, (O +p t))
B (t) = o, (H, (1) + H, (1))

where:

T
t .
Hit)y=| —| ,1=12
10 {GJ i

The system reliability function of configuration 1 is:
R, (t):iP,(t): o (23)

where:

1 L 1. 1
Z(36ab—108c 82’ + 124/120°  3b°a’ — Sdbac + 81¢° +12¢a° ¥ 6| b —a’
6 39

5 = [
1
(36ba—108c—8a’ + 124/12b° — 3b%a’ — 54bac + 81¢* + 12ca’ )° -8

1
—é(36ab—108c—8a3 +124/12b% —3b%a* — 54bac+ 81c” +12¢ca’ +3Gb—$a2]

L
36ba— 108c—8a’ + 124/120° — 3b%a® — S4bac + 8lc? + 12¢a® )P 7la
3

1 o1
g(36ab—108c—8a3 +124/12b° - 3b%8” — 54bac + 81¢” + 12¢a® ° +6[§b—§a2j

1
{(36ba—108c —8a® + 124/126° — 3b%a’ — 54bac + 81c? + 12ca’ )°

and:

a=3H(t), + 2ZH,(t)+ 3t
b=3[H, (0] + [H, ()] + 4H, () H, (1) + 3ptH, () + 2peH ,(0)+ 2%t
c=[H,®)] + 2[H, (] H, )+ H, 0. [H 0]

with:

N NS
Ht)= [ﬁj =H2(t)=[m] =005

The relation between reliability and time as shown in Fig. 1.
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Fig. 1. Relationships between R,(t) and time in configuration 1

Calculations for configuration 2: Let F.({) be the probability that exactly 4 components are
working at time t, (£>0). if we let P(t) denote the probability row vector at time t, then the initial
conditions for this problem are:

P(0) = [P, (03.P, (0}, B (0}, (03] =[1.0,0,0] (24)

The transition rate matrix @ for reliability according to configuration 2 1s given by:

“2hO-A (1) 0 0
(DA, (1) 2 (OD-A,W—p 2 0
“lo 2, (1) + A, (1) —2A, (=2 0
0 0 22, (1) 0

We will take the matrix @ and delete the rows and columns for the absorbing state. The new
matrix is called Aft):

2, (-2 (1) p 0
AU =] 22O+ 2,0 24 M) -2,0-p 2n
0 20 (1) + A, (1) —22,(t)- 21

We can write the system in the form:

P— A(t)P(t) (25)

P,(1)
P(t){f’z (t)]

E®

where:
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To solve Eq. 25 with the initial condition:

B |1
P(t=0)=| B,(0) |= (26)
F{0)] [0

We will sclve Eq. 25 with the aid of the method used in the previous section and hence:

. —2H, (- H,(t) put 0
D:_[A(s)ds: 2H,(O+H,(t) —2H (O)—H,(t)—mt 2ut
’ 0 2H, (1) + H,(t) —2H, (t)-2pt

and:
O (ty= j%(t)dt,Hz(t) = j‘hz (tyde

Here the value of e” will be given by the same relation which is:
e” = oy T+ oy D+ o, D 27

where, | is the identity matrix of rank 3 and «, ¢, ¢, are the parameters obtained from the solution
of the following system:

e = oy + oL + ot (28)
€% = oy + Oy T, + 0T (29)
€% =0y + Oy, + 0L (30)

where, r;, 1y, ry are the characteristic roots of the matrix D. these roots are obtained from the

characteristic equation g(s) of the matrix D given by:

—2H,(t)-H,(t)-1t put 0
g(®)=| 2H,(t)+ H, (1) SO () - H, () pt—r 2pt (81)
0 2H, (t)+ H, (1) “2H, (t)—2ut —1

By solving Eq. 28-30, we have:

o, = TBl% 5 et 5 (5~ )" + 11, (5 — 1 )e” (32)
(L -5 -5 -1)
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O —met + (1 - rf)e” + (1 — 1 )e”
(4 — 1) —5 )1, - 1)

%

_{m-m)et +(r -1 e + (5 -1 )e"

L (5 — )5 —5,)(1, 1)

(33)

(34)

Now we can obtain the value of e from Eq. 27 and obtain the values of required states

probabilities from Kq. 25 which are:
P,(t) = oy — o, (2H, (1) + H, (1)) + o, ((2H1 O+ H,(0) +p t(2H,(0) + Hz(t)))

B, (1) = o1 (2H, (1) + H, (1) - o {(2H, (0 + Hy () + (2H, (0+ Hy(0)(2H, (0 + H, (0 + 1 )
P, (t) = o, (2H, (1) + H, (1))

where:

T
Hl(t)z{é] =12

The system reliability function of configuration 2 is:

R, (=S R(U=0,

where:
1 L 1. 1
g(36ab7108078a3+12\/12b373b2a2754bac+8102+120a3)376[§b7§a2}
L = T 1
A — Cc—o0d + — a — ac +olc + 12ca ——a
36ba — 108c —8a° + 124/120° —3b°a® — S4bac + 81c” + 12ca’ )? 3
1 L 1, 1
—E(3Gab—108c—8:—13 +124/12b" —3b%® — 54bac + 81c* + 12¢a’ )? +3[§b—§a2J
L., = L 1
(36ba— 108c — 8a® + 124/120° —3bia? — S4bac + 8lc* + 12¢a’ -3
1 L 1,1
—({36ab—108c—8a” +12+12b" —3b’a” — 54bac+81c* +12ca” }* +6| —b——a
. b E _J b bial b z RS b 2
iEI\E: 39
(36ba—108c —82° + 124/120° — 302" — 54bac + 81c” + 12¢a’ )
and:

a=6H(t), +2H,(t)+ 3ut
b=12[H, (t)] +[H, (0] + 8H, (). H,(t) + 6ptH (£)+ 2utH (1) + 2p’t?
c=8[H,()] +8 [H,(1)] H,(t)+ 2H, (). [H, )]
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Fig. 2: Relationships between R,{t) and time in configuration 2
with:

t 212 t 179
H ()= [ﬁj Ha(t)= [m] =005

The relation between reliability and time as shown in Fig. 2.
Calculations for configuration 3
Mean time to failure of the system: For configuration 3, let P,(t) be the probability that exactly
5 components are working at time t, (t=0). if we let P(t) denote the probability row vector at time
t, then the 1imtial conditions for this problem are:

P(0) = [P,(0), B, (03, B,(0), B (0), By(0)] = [1,0,0,0,0] (38)

where, the transition rate matrix Q for reliability according to configuration 3 1s given by:

2% -2, H 0 0 0
2A +2A, 2A-Z2A,-p 2p 0 0
Q=|0 2h + 22, 274 A, -2 0
0 0 2 + A, —23, —3u 0
0 0 0 23, 0

To evaluate the transient solution is too complex. Therefore, we will restrict ourselves in
calculating the MTTUF. Therefore, we will take the transpose matrix of @ and delete the rows and
columns for the absorbing state. The new matrix is called A:

—2% -2k, 22X +2A, 0 0

A n —27\1 —2).2 - 27\.1 + 27\.2 0 (37)
0 2n 2% — A, - 20 2h + A,
0 0 3p -2 -3u
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The expected time to reach an absorbing state 1s calculated from:

1
L1
E[TP(D)eP(ahsnrhnngj]:P(O)(_A1) 1 (38)
1
A 307 + 60 R, + U, + (6l + 47 0A2 + (18 + 24K, ), h, + (120 + 364, + 1624, )22
EI:TP(D)—)P(ahsnrbing)]:MTTF3: 1( a i i (ll 2)2 ( H3 2) S ( H 2 1) l) (39)
8(hy + )

Availability analysis of the system: For the availability case of configuration 3, we will use the
initial condition initial conditions for this problem from Eq. 36:
The deferential equations form can be expressed as:

P, (t

4.( : 2, -2, 0 0 o y|PW
PO o von, ono2n, w2 0 o || piD
P,(t) =] 0 27, + 20, o A, -2u o ||p,®
B Et) 0 0 2R, + A, =24, =3u 4p p, (1)
k 0 0 0 2%, 4
R(1) polt)

The steady state availability can be obtained using the following procedure. In the steady state,
the derivatives of the state probabilities become zero. That allows us to calculate the steady state
probabilities with:

Ar(e0)=1-PFy(0) (40)
and QP(«) = 0. Or, in the matrix form:
aoQ
24 -2, 0 0 o [P o
2+ 20, 2k —2h,—p 2 0 o [[PL)| o
0 20, + 24, 2% A, -2n 3 0 | pgo|=|0 (41)
0 0 20+ 2, —2A, -3u 4p p,() 0
0 0 0 2%, " 0
Pl

Using the following normalization condition:

SIB () =1 (42)

We substitute Eq. 42 in any one of the redundant rows in Eq. 41 to vield:
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Tahble 2: The size-propartional cost for the components

Component Cost (in §)
Primary 5 MW H5E+6
Warm standby 5 MW 3E+6
Cold standby 5 MW 2E+6

24, -2, 0 0 0 P4 0

2,+2h, 2R 2%, -p 0 o [|PL=)] o

0 2, + 22, 2 A, -2n 3 0 || pye) |=| 0 (43)

0 0 2%, -2, D=3 | oy | O

1 1 1 1 1 1

)

Solution of Eq. 43 provides the steady-state probabilities in the availability case. The explicit
expression for A(«~) is given by:

203+ (B A, + (61 2H,0R2 + (6P + (120 + 8RR, + (6L + 10%, + 44 A A,
(Ot 127 + 20 + A + (20, + (24000, + (1007 + 200020 + 120737 + (17p+ 8AAAT + (8+ 104, + 4544

(44)

Ar(w)=

Cost/benefit ratio: The notion of cost-benefit analysis is simple in principle. We assume the size-
proportional cost for the primary components, warm standby components and cold standby
components, respectively, shown in Table 2 with this we calculate the costs for configuration 3. It
utilizes the cost/benefit ratio (C/B) as a means to rank alternatives, let:

The cost for the configuration 3
The MTTF of configuration 3
The Ap(~) of configuration 3

C
B
B

The cost for configuration 3 (where there 1s two primary components, two warm standby
components and one cold standby component= 18K+63%).
A numeriecal illustration is provided by considering the following parameters:

A =06
Ay =0.05
Ay =10

Given these values, we can calculate for configuration 3:

¢« cost/MTTF =1.39E+6
s costfAp(«)=18.5E+6

CONCLUSION
We have provided in this paper, the reliability of two configurations, when the components
have time-dependent failure rate and a constant repair rate. By comparing the R(t) in both
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Fig. 3: Relationships between Rit) and time in configuration 1 and 2

configurations, we can see that in the first configuration the reliability is higher than reliability in
second configuration as shown in Fig. 3.

Moreover, from numerical results for the cost/benefit measure have been obtained for
configuration 3 (special case), we have provided a systematic methodology to develop the mean time
to system failure and the steady-state availability of series system with mixed standby components.
By comparing the cost/MTTF is smaller than cost/A(=). Consider the configurations in [6], we have
the configuration 3 gives small cost/MTTF than the cost/MTTF by configuration (two primary 5 MW
components, one warm standby b MW component and one cold standby B MW component) and the
configuration 3 gives smallest cost/A(e) than cost/A;(>) by configurations (one primary 10 MW
component, one warm standby 10 MW component and one cold standby 10 MW component), (one
primary 10 MW component, one warm standby 10 MW component and two cold standby 10 MW
components) and (one primary 10 MW component, two warm standby 10 MW components and one
cold standby 10 MW component).
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