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ABSTRACT

Many authors have studied the determination of sample size in longitudinal studies under
different situations. A statistical methodology for determining the minimum sample size required
for within-subjects repeated-measures design, applying Hotelling’s T? analysis under the general
covariance structure exists. This procedure i1s extended to between-subjects repeated measures
design when there are two treatment groups, assuming the correlation structure among the
repeated measures are autoregressive or compound symmetry. Three possible methods of analysis
POST, CHANGE and ANCOVA are used to determine the sample size under the assumption that
the correlation structure is compound symmetry. In this paper, we extend the existing method to
obtain minimum sample size assuming that the correlation structure is first order autoregressive
or a random effects model.

Key words: Sample size determination, summary statistics, compound symmetry, first order auto
regression, random effects

INTRODUCTION

The determination of sample size is an important step before embarking on a research study.
A sample that is too small will not possess the required statistical power to identify significant
changes when they truly exist, on the other hand, sample sizes larger than required will increase
the cost for the research project. Under these circumstances, it becomes imperative to determine the
required minimum sample size prior to start of the study with appropriate statistical significance
{Machin and Campbell, 1987).

When the dependent variable is a continuous one and 1s measured at a single time point, the
estimation procedures for sample size determination are well founded. The corresponding situation
for repeated measurement experiments has not been completely developed.

The absence of autocorrelation of the error terms and zero co-variance between the explanatory
variables and the error terms are the basic assumptions in the classical linear regression model. In
case of violation of the above two assumptions, various methods for estimating the parameters have
been suggested by Olaomi and Ifederu (2008). Their results show that when auto correlation 1s at
p = 0.4 and when the exponential regressor is significantly correlated at 5% with the auto error
terms the Ordinary Least Squares is preferred.

Typically, in a longitudinal study, a correlation structure is assumed among the set of repeated
measures captured at well-defined junctures within an individual. The correlation structure
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Compound Symmetry (CS) 1s commonly used, as it is very simple and assumes that the variance
at all time points are the same and the correlation between two time points is the same. Fleiss
(1988) argues that Compound Symmetry (CS) correlation structure will rarely be satisfied in a
repeated measurements experiment. Snedecor and Cochran (1980) feel that this assumption is too
restrictive for many real valued situations.

An alternative correlation structure is the First Order Autoregressive, AR(1), which assumes
that the correlation between adjacent time-peints is the same and the correlation decreases by the
power of the number of time intervals between the measures.

The Random-Effects (RE) model provides the basic modeling framework for much of the clinical
trials.

The panel data can be approached from a set of similar Randomized Controlled Trials making
use of pooling methods to find the efficacy of pharmaceutical regimens. Further, Random Effect
model 18 one of the meaningful techniques when individual studies results are combined. This is
a more realistic model as it allows for variation in the true effect across the studies (Antoine et al.,
2007). The use of random effects allows the longitudinal data to work with Autoregressive (AR)
process (Nath and Bhattacharjee, 2011).

It 1s useful for analyzing longitudinal clinical trials in which there is a sizable number of
missing ohservations, either due to missed visits, loss to follow-up, or death (Albert, 1999). Ware
{198B) while discussing about the goodness of fit, mentions that the Random Effects (RE) and Auto
Regressive (AR) models introduce strong assumptions about covariance patterns, especially when
the number of cbservations on each subject is large. Hence, in this study we derive an expression
for the sample size requirements for repeated measurements experiments under the auto regressive
model of order 1 (AR(1)) and Random Effects (RI) model.

Three different formulations of interferon beta (IFNB) an immunomoedulatory agent was
compared using random effects in a longitudinal study (Nikfar ef al., 2010). It has been shown that
the asymptotic relative efficiency is more compared to other correlation structures under the
assumption of auto regressive correlation structure (Akanda et al., 2005).

For sample size calculation in longitudinal studies, two additional quantities are required,
namely (1) the number of repeated observation per subject and (2) the correlation among repeated
observations which can be estimated from a previous longitudinal study. In this study, we consider
the case where the subjects are allocated at random to two treatment groups and measurements
on every individual is taken repeatedly at well-defined time points during the course of study.

There are various summary measures in longitudinal study settings that help to bridge the gap
between complex statistical methods and inadequate statistical usage. They are Mean, Area Under
Curve (AUC), Maximum (Minimum) value, Time to Maximum (Minimum), Regression co-efficient,
and change between first and last value (Matthews et al., 1990) and also summarizing data
through a piecewise linear growth curve model (Chandrasekaran et al., 2005). Though the choices
of summary measures are wide, the main objective in many clinical trials is to determine the
average response to treatment over time. This provides three possible methods of analysis as
identified by Frison and Pocock (1992), They are:

*+ Post-treatment means (POST): A simple analysis using the mean for each patient’s
post-treatment measurements as the summary measure

* Mean changes (CHANGE): A simple analysis of each patient’s difference between mean of
post-treatment measurements and mean of baseline measurements, the latter often consisting
of just a single baseline value per patient
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Analysis of covariance (ANCOVA): Between-patient variations in baseline measurements are
taken into account, by using the mean baseline measurement for each patient as covariate in a
linear model for treatment comparison of post-treatment means.

As observed by Frison and Pocock (1992), ANCOVA has a smaller variance as compared to
POST and CHANGE. Henee, in situations where the main objective is to determine the average
response to a particular treatment over time, in comparison to another treatment or placebo,
ANCOVA 15 superior to both, ignoring the pre-treatment data and simply subtracting the post-
treatment value from the baseline value for each individual. Also, as pointed out by Senn (1994),
ANCOVA 1s the best of the three methods considered and the only one which produces unbiased
estimators in the presence of chance observed imbalance. It does this whether or not the baselines
are subject to measurement error. Hence, in this study, sample size determination has been
considered in situations where ANCOVA is the method of analysis to summarize the repeated
measures data in order to determine the response of a particular treatment over time.

A SIMPLE MODEL AND AN EXAMPLE

In the sample size determination for the moedel for two treatment groups, let us assume that a
randomized clinical trial has two treatment groups (i = A or B) with n, subjects per group and
suppose all patients have p pre-treatment and q post-treatment wvisits. The quantitative
measurement y 1s observed at every visit for every patient. We adopt the simple model:

y1st = IJ'IT’.J’_eISt

where,1=A B;s=12, ... n;t=12, ..., p, ptl, ... ptq; u,is the underlying true mean response for
treatment i at time t. As a result of randomization we can assume p,,_ s, for the pre-treatment visit
and e, 1s the individual sth patients ‘error’ around the mean response p,,.

Let ¥ ={o, } be the covariance matrix for all pairs of measurement times t, 1. For simplicity we
assume this 1s the same for both the treatments. It 1s helpful to define three sub matrices:

Yow=logifort I=prl, . ptq, Y . ={o,tfort,1=1, .,p

and:
Y =d{o,tfort=1, .. ,pandl=pt+l, pt2, ..., ptq
That is:
T | 2
D] I
Zows | Zew

The variance formulate for three approaches are:

Post-treatment means (POST):
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g
Mean change (CHANGE):
var[(g,:’“‘5:?)7(;;“7;;")}[HL+HLJ[Z‘ by ay J

Analysis of covariance (ANCOVA).

ey (1 1) |
Var(xA — Xz ):[—+—} >, =
n, Ny post ZT

For a randomized clinical trial all three estimates of the mean treatment difference have the

same expected value (070”9, It can be seen that among the above variance formulae, the

1 1
oy
n, Mg

Pt it = §. In the conventional approach to power

common sample size adjustment is:

Let the alternative hypothesis be [,
calculation, we define @ and B as the type I and type II errors for ANCOVA. Tt is convenient to
assume that sample sizes are sufficiently large and that the normal approximation to the
t- distribution can be applied. In that case, for two equals sized treatment groups of size n:

-2

Xz
) @)

pre

where, Z_., ., and I, are the respective means of the q°, qxp and p” components of the three
sub-matrices ¥ . ¥ . and ¥ __ and f(«,B) = [z(c/2)+z(B)]*, z(y) is the standardized normal deviate
exceeded with probahbility ¥ and it is to be noted that o 1s the within-patients standard deviation.

The expression for the sample size formula when using the correlation matrix 1s:

n= ?Fm Y ]f (. B) 2)

where P

post!
and p? components. Using the above expression, Frison and Pocock (1992) derived the sample size

under the CS model to be:

Y. and P arve the respective means of the three correlation sub-matrices of g% gxp
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_2'(1+(p-lp  gp’
T [ P 1+(q71)pJf(a’B)

where, the mean of the correlation matrix ¥, is:
@ -17p]
Mean of the correlation matrix ¥__,, is:
%[m(q*(q—l)*p)]

and, Mean of the correlation matrix ¥, _ .
On substitution of these quantities in (2), one gets the required sample size n, under the
assumption of C8 covariance structure. The same method is adopted for the determination of the
sample size under the random effects first order auto regressive and random effects models.
The covariance matrix for random effects model (RE): Let y; = ¢ +p+u;, where y; is the
observation on the ith individual on occasion j, ¢ is the individual effect, f3;is the occasion effect and
u; is random error. However, the ¢, are randomly selected from a distribution of individual effects
and constitute a random effect. Then the model becomes:

V= oc+oc1+ﬁj+uij (i=1,2,..,nj=12,....p)
and the generalization of this in matrix form 1s:
Vi~ Zibit X e,

Here, the b, are random effects, yielding a combined contribution to v, via the design matrix 7,
and P is a vector of fixed effects. Such models are sometimes called two-stage models because the
e,, refer to within-individual variation {(stage 1) and the b, refer to between-individual variation
(stage 2). Models with this general form have now become popular. An early expositions to this type
of modeling 1s form the work of Laird and Ware (1982). We can generalize this supposing that
E(b) =0, E(e) =0, var(b) = B, var(e) = E, and that b, and e, are independent.

Then:

2, = var(y,) = var(Zbvar(e) = ZB 7" +E,

where, bi and el are multivariate normal.
The correlation matrix under the Random effects model is:

Y =707 +0° 1

where, the matrix Z has {(p+q) rows and [ columns of treatment groups (two) and ¢ =1 X, is the
dispersion matrix. For example, the covariance matrix for 7x7 (7 repeated value) the matrix of ),

pre

are:
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(¢11 + 2(1]12)<*>1(.:1:'12 + 2¢22) (¢11 + 2¢'12) + 2(¢12 + 2¢22) + 0-2 (¢11 + 2¢12) + 3(¢12 + 2¢22)

(¢11 + 1¢'12)+ 1(¢12 +1¢'22)+ Gz (¢11 + 1¢'12)+ 2(¢12 +1¢22) (¢11 + 1¢12) + 3(¢12 +1¢22)
(¢11 +3¢12)+1(¢'12 +3¢22) (¢11 +3¢'12)+2(¢12 +3¢22) (¢11 +3¢12)+3(¢12 +3¢'22)+0-2

The mean of ) are:

l{mp)% +2poy, [Mj + 0y [MJ + pcz}
pp 2 2

Matrix of ¥ ..
(¢11+1¢12)+4(¢12+1¢22) (¢11+1¢12)+5(¢12+1¢22) (¢11+1¢12)+6(¢12+1¢22) (¢11+1¢12)+7(¢12+1¢22)

(0, +20, )+He (+20, ) (0 +20 )+5(8  +20,) (o) +20 )+6(p +20,,) (& +2¢ )+7(p  +2¢,.)

(¢11+3¢12)+4(¢12+3¢22) (¢11+3¢12)+5(¢12+3¢22) (¢11+3¢12)+6(¢12+3¢22) (¢11+3¢12)+7(¢12+3¢22)

The mean of ¥ ;. are:

pp+Ly,
1 PP+l P+PP+q+ly_pp+D 2
Pq (pq)¢11+¢12M 2 Jﬂ{ 2 2 H+¢22 ((p+q)(p+q+1)_p(p+1)]
2 2
Matrix of }, .

(G +30,7)+ (5 #3050+ 07 (b +4y1)+ 200y +40) (07 +4059) + 3045 + 40y;) (Gp +4037)+ 48y +40;)
(B + 50500+ @y +503) (B +50y)+ 20y, +50y0)+ 00 (@ +50,1)+3(85 + 5055) (g + 590+ 4085 +5955)
() +60y 1)+ (05 +60y5) (B + 600+ 2005 +60y0) (@ +60,)+3(8y5 +60p)+ 07 (61 = 60y)+ 405 +6055)
(1 +Typ) + (G5 +7055) (1 + 7410+ 20015 +T03) (b +70,0) 430, = T0y0) (0 +70y) 4400y, +Thy) 4 07

Mean of ¥ is:

op)6, +ad, [[(‘” PorarD pEaD), 44 l)} v’

ﬁ o, H(p+q)(p+q+l)7p(p+1)]*[q(q+l)]]

2 2 2

The general form of 0% = ¢, H ¢, Ht(d, i y+0%i=1,2,..,p+q and 0, = (dyHi ¢+ ] (b o+ Gy
L1=1,2, .., ptg; 1.
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On substitution of these quantities in (1) we get the sample size n, under the assumption of

random effects.

Correlation structure for first order autoregressive model (AR(1): Assume that the
correlation matrix has a first-order autoregressive structure, which i1s consistent with the
observation that the correlations exhibit the p, p?, p? pattern required under the AR{1) structure.
From the covariance matrix, the correlation matrix is obtained by removing the constant variance,
0o?. Under the auto regressive model of order 1 for pre treatment p and post treatment q, the
correlation matrix is given as:

[ 1 p I
p 1 PP Pt et
|
|
L S P!
e
P I 1 p i
PPt N e
|
|
_Pp+q—1 pp+q—2 . . . pp | Pp—l Pp-z 1 ]

Henece, we arrive at the following:

Mean of the correlation matrix ¥ is:

dEbE]

Mean of the correlation matrix ¥, is:

i)

Mean of the correlation matrix ¥ 1s:

i[(kp“)(kpﬁ)p}
g (1-py

Substitution of these quantities in (2), we get the required sample size n, under the assumption
of first order auto regressive covariance structure.
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RESULT AND DISCUSSION

Table 1-4 provide the minimum number of subjects required in each treatment group, assuming
equal allocation, under the CS and AR(1) correlation model, for a one sided test at « and p for
A=101.1,p =0 (1.9 forp (pre-treatment) = 1 and 3 and q (post-treatment) =3 (2)9. The
greatest difficulty lies in choosing an appropriate values for A and o but this problem applies to any
power calculation with quantitative data expressed as means. Note that o here is the
between-patients standard deviation.

Table 1: Sample required in each treatment group, assuming equal allocation, for the AR(1) correlation structure (pre-treatment
p = 1), for a two-sided test at o = 0.05 and [ = 0.20 for selected values of p (No. of post-treatment repeated), p and A = (o/%)
Standardized A = 2%(c®/8%)

Repeated o} 4 6 8 10 12 14 16 18 20
4 0.1 12 18 24 30 36 42 48 54 G0
0.2 13 20 27 34 40 47 54 60 67
0.3 15 22 30 37 44 52 59 66 74
0.4 16 24 32 40 48 56 64 72 30
0.5 17 25 33 42 50 58 66 5 83
0.6 17 25 33 42 50 58 67 5 83
0.7 16 23 31 39 47 54 62 70 78
0.8 13 19 26 32 39 45 52 58 64
0.9 8 12 16 20 24 28 32 36 40
6 0.1 11 15 18 22 26 30 33 37
0.2 9 13 17 22 26 30 34 39 43
0.3 10 15 20 25 30 35 40 45 50
0.4 11 17 23 29 34 40 46 51 a7
0.5 13 19 26 32 39 45 52 58 64
0.6 14 21 28 35 42 49 56 64 71
0.7 15 22 29 37 44 51 59 66 73
0.8 14 21 a7 34 41 48 55 62 69
0.9 10 15 19 24 29 34 39 44 49
8 0.1 8 11 13 16 19 21 24 27
0.2 6 9 13 16 19 22 25 28 32
0.3 7 11 15 19 22 26 30 34 37
0.4 9 13 18 22 26 31 35 40 44
0.5 10 16 21 26 31 36 41 47 52
0.6 12 18 24 30 36 42 48 54 G0
0.7 13 20 a7 34 40 47 54 GO 67
0.8 14 21 28 34 41 48 55 62 69
0.9 11 16 22 27 33 38 44 49 55
10 0.1 4 6 8 10 13 15 17 19 21
0.2 5] 10 12 15 17 20 22 25
0.3 &) 12 15 18 21 24 27 30
0.4 7 11 14 18 21 25 29 32 36
0.5 9 13 17 21 26 30 34 39 43
0.6 10 15 21 26 31 36 41 46 51
0.7 12 18 24 30 36 42 48 55 61
0.8 13 20 a7 34 40 47 54 GO 67
0.9 12 18 24 30 36 41 47 53 59
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Table 2: Sample required in each treatment group, assuming equal allocation, for the AR(1) carrelation structure (pre-treatment p = 0),
for a two-sided test at « = 0.05 and [ = 0.20 for selected values of p (No. of post-treatment repeated), p and A = (o/d)
Standardized A = 2%(c®/8%)

Repeated o} 4 6 8 10 12 14 16 18 20
4 0.1 9 14 18 23 28 32 37 41 44
0.2 11 16 21 27 32 37 42 48 53
0.3 12 18 25 31 37 43 49 55 61
0.4 14 21 28 35 42 50 57 64 71
0.5 16 24 33 41 49 a7 65 73 81
0.6 19 28 37 47 56 G5 75 84 94
0.7 21 32 43 54 64 75 86 96 107
0.8 24 37 49 61 73 86 98 110 122
0.9 28 42 56 70 84 97 111 125 139
6 0.1 6 9 12 16 19 22 25 28 31
0.2 7 11 15 18 22 26 29 33 37
0.3 9 13 17 22 26 30 35 39 44
0.4 10 16 21 26 31 36 41 47 52
0.5 12 19 25 31 37 43 49 56 62
0.6 15 22 30 37 44 52 59 67 74
0.7 18 27 36 44 53 62 71 80 89
0.8 21 32 43 54 64 75 86 97 107
0.9 26 39 52 65 78 91 104 117 130
8 0.1 9 12 14 16 19 21 24
0.2 6 8 11 14 17 20 22 25 28
0.3 7 10 13 17 20 24 27 30 34
0.4 8 12 16 20 24 28 32 37 41
0.5 10 15 20 25 30 35 40 44 49
0.6 12 18 24 30 36 43 49 55 61
0.7 15 23 30 38 45 53 61 68 76
0.8 19 29 38 48 57 67 76 36 96
0.9 24 37 49 61 73 36 98 110 122
10 0.1 4 9 11 13 15 17 19
0.2 5 11 14 15 18 20 23
0.3 5] 11 14 16 19 22 25 27
0.4 7 10 13 17 20 23 27 30 33
0.5 8 12 16 21 25 29 33 37 41
0.6 10 15 21 26 31 36 41 46 51
0.7 13 20 26 33 39 46 53 59 66
0.8 17 26 34 43 51 G0 69 77 86
0.9 23 34 46 57 69 80 92 103 115

The sample size under covariance structure in CS is less when p is large. In AR (1) the sample
size increases with increase in post-treatment. Besides, when A = 0.2 irrespective of whether the
pre-treatment is taken, the sample size generally tends to start from around 200, leave alone the
number of post-treatment wisits (q); also when A = 0.6 the sample size usually begins with 25,
When p=0.3 with the same A = 0.2 and p = 3, the sample size decreases in both (AR(1) and
U8 models. When p =3 and A =0.61n AR(1) with p = 0.3 and p = 0.9 in C5 model, the sample size
decreases.
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Table 3: Sample required in each treatment group, assuming equal allocation, for the CS correlation structure (pre-treatment p = 1), for
a two-sided test at ¢ 0.05 and [ = 0.20 for selected values of p (No. of post-treatment repeated), p and A = (0/8)
Standardized A = 2%(c®/8%)

Repeated o} 3 5 7 9 11 13 15 18 21
3 0.1 9 3 22 28 34 40 46 55 65
0.2 10 3 24 30 37 44 51 61 71
0.3 11 4 25 32 39 46 53 63 74
0.4 10 3 24 31 38 45 52 63 73
0.5 10 3 23 30 36 43 49 59 69
0.6 9 3 21 27 32 38 44 53 62
0.7 7 2 17 22 27 32 37 44 51
0.8 5 2 13 16 20 23 27 32 38
0.9 3 1 7 9 11 13 15 18 20
5 0.1 6 11 15 19 23 28 32 38 45
0.2 8 13 18 23 28 33 38 46 53
0.3 8 14 19 25 30 36 41 50 58
0.4 9 14 20 26 31 37 43 51 60
0.5 8 14 19 25 30 36 41 50 58
0.6 8 13 18 23 28 33 38 46 53
0.7 6 11 15 19 23 28 32 38 45
0.8 5 11 14 17 21 24 28 33
0.9 3 6 8 10 11 13 16 18
7 0.1 5 12 16 19 22 26 31 36
0.2 7 11 15 20 24 28 38 39 46
0.3 7 12 17 22 27 32 41 44 51
0.4 8 13 18 23 28 33 43 46 54
0.5 8 13 18 23 28 33 41 46 53
0.6 7 12 16 21 26 31 38 42 49
0.7 6 10 14 18 22 26 32 36 42
0.8 4 10 13 16 19 24 27 31
0.9 2 6 7 9 11 13 15 17
9 0.1 5 11 14 17 20 23 27 32
0.2 7 10 14 18 22 26 29 35 41
0.3 7 11 16 20 25 30 34 41 48
0.4 8 12 17 22 27 31 36 44 51
0.5 8 12 17 22 27 31 36 43 51
0.6 7 11 16 20 25 29 34 40 47
0.7 6 10 13 17 21 25 29 35 40
0.8 4 10 13 16 19 22 26 30
0.9 2 4 6 7 9 10 12 14 17

Frison and Pocock (1992) have observed that in simple designs where there is only one post
treatment reading and no pre-treatment reading, the POST analysis requires around n = 100 in
each group. Increasing the number of post-treatment reading has some effect on decreasing n but
with no use of pre-treatment reading n remains at around 75 even with q = 8 The CHANGE
analysis with p = 1 pre-treatment (a two-sample t-test comparing mean change) leads to a required
n around 60 for g = 1 post-treatment measurement, which can be reduced to n<40 if q is increased
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Table 4: Sample required in each treatment group, assuming equal allocation, for the CS correlation structure (pre-treatment p = 0),
for a two-sided test at o 0.05 and [ = 0.20 for selected values of p (No. of post-treatment repeated), p and A = (0/d)
Standardized A = 2%(c®/8%)

Repeated o} 3 5 7 9 11 13 15 18 21
4 0.1 9 3 22 28 35 41 47 57 66
0.2 11 4 26 33 41 48 55 66 77
0.3 13 4 29 38 46 55 63 76 88
0.4 14 5 33 43 52 62 71 85 100
0.5 16 5 37 47 58 68 79 95 111
0.6 17 6 41 52 64 75 87 104 122
0.7 19 6 44 57 70 82 9B 114 133
0.8 21 7 48 62 75 89 103 123 144
0.9 22 7 52 66 81 96 111 133 155
6 0.1 11 15 20 24 29 33 40 46
0.2 9 14 20 26 31 37 43 51 60
0.3 10 17 24 31 38 45 52 63 73
0.4 12 21 29 37 45 53 62 74 86
0.5 14 24 33 43 52 62 71 85 100
0.6 16 27 38 48 59 70 81 a7 113
0.7 18 30 42 54 66 78 90 108 126
0.8 20 33 46 60 73 86 100 119 139
0.9 22 36 51 65 80 94 109 131 153
8 0.1 5 9 13 16 20 23 27 33 38
0.2 7 12 17 22 27 32 37 45 52
0.3 9 16 22 28 35 41 47 57 66
0.4 12 19 27 35 42 50 58 69 81
0.5 14 23 32 41 50 59 68 81 95
0.6 16 26 36 47 57 67 78 93 109
0.7 18 29 41 53 65 76 88 106 123
0.8 20 33 46 59 72 85 98 118 137
0.9 22 36 51 65 79 94 108 130 152
10 0.1 5 8 11 14 17 21 24 28 33
0.2 7 11 16 21 25 30 34 41 48
0.3 9 15 21 27 33 39 45 54 63
0.4 11 18 26 33 41 48 55 66 77
0.5 13 22 31 40 48 57 66 79 92
0.6 15 25 36 46 56 66 76 92 107
0.7 17 29 41 52 64 75 87 104 122
0.8 19 32 45 58 71 84 97 117 136
0.9 22 36 50 65 79 94 108 130 151

to 4 or more post-treatment measurements. The superiority of ANCOVA is illustrated by a further
fall in sample size. For instance, with p = 1 and q>4 we can reduce n to below 30 if ANCOVA is
used.

It is often possible to have more than one pre-treatment visit in a repeated measures design
{all pre-treatment wvisits occurring before randomization) and here we consider the improved
efficiency for both ANCOVA and CHANGE. Of course the time lapses between pre-treatment
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measurements may affect the correlation structure. The more widespread use of such power
calculation formulae may add greatly to a sensible choice of n, p and g in repeated measures
designs. While the compound symmetry assumption is unlikely to be true, it 1s often not wildly off
the mark and so use of these simple formulae should give an adequate estimate of order of
magnitude for n. A plausible value of p in the range 0.5 to 0.75 should usually be appropriate.
Perhaps the greatest difficulty lies in choosing an appropriate value for d/o but this problem applies
to any power calculation with quantitative data expressed as means. Note that o here is the
between-patient standard deviation, although the ANCOVA and CHANGE analyses are within-
patient in essence (Frison and Pocock, 1992),

In most practical circumstances the bias of ANCOVA should be small. Having more than one
pre-treatment measurement will reduce this bias further, since it 1s approximately proportional to
1/p. In many repeated measures trials the analysis 1s complicated by missing values and patient
withdrawals. In summary statistics approach it 1s relatively easy to define sensible criteria for
coping with oceasional missing values. However, patient withdrawals proveke greater problems
since they are often associated with informative censoring (Wu and Bailey, 1989).

In the summary statistics approach to analysis of repeated measures we confirm the well known
result that ANCOVA is superior to both ignoring pre-treatment reading and simply subtracting
pre-treatment readings for each individual (Fleiss, 1986),

It 1s noted that the parameters will not be unbiased when there is correlation among responses.
In this respect, Nugraha (2011) has proved that the MLE on mixed logit model is precise in
estimating the parameters in a discrete model like GEE. When there are many parameters in the
model, the concept of subsetting has been used to eliminate the parameters which are redundant
and close to zero (Qjo et al., 2008).

Maximum likelihood estimates of the covariance parameters, listed in the order; @, ®,, ®,, and
o®. Note that neither @, nor ®,, is statistically different from zero. If @, and ®,, are both zero, then
the random effects covariance structure ZO®Z'+I reduces to the compound symmetry structure
{(Dixon, 1992).

CONCLUSION

It has been cbserved that for repeated measures design, ANCOVA is the best of the three
summary methods considered-FPOST, CHANGE and ANCOVA. It gives the most unbiased estimator
in the presence of chance observed imbalance. In many longitudinal studies, the covariance
structure either assumes the Auto Regressive or Random Effect (RE) structure. Henece, the
procedure to estimate sample size for such kind of longitudinal studies with the covariance structure
of the outcome variables as AR or RE structure 1s very much useful to the practitioners.
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