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ABSTRACT

In this study, we apply fractional complex transform to convert the fractional system of partial
differential equations to the system of partial differential equations (PDEs).
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INTRODUCTION

To find the solutions of linear and nonlinear differential equations (Taiwo and
Abubalkar, 2011), many powerful methods have been used (Helal, 2005; Kazemma ef al., 2008;
Jin et al., 2010; Mazidi ef ¢l., 2011; Sharma and Methi, 2012).

In recent years (Zhang et al., 2012}, considerable interest in fractional differential equations
(Avaji ef al., 2012) has been stimulated due to their numercus applications in the areas of physics
and engineering.

Many important phenomena in electromagnetism, acoustics, viscoelasticity, electrochemistry
{Abu-Haija et al., 2007) and material science are well described by differential equations of
fractional order (Wang, 2007; Momani and Odibat, 2007). To find the explicit solutions of linear
and nonlinear fractional differential equations, many powerful methods have heen used such as
the variational iteration method (He ef al., 2010; Wu and Lee, 2010), homotopy perturbation
method (Golbabal and Sayevand, 2010) and the Exp-function method (Zhang ef al., 2010) The
fractional complex transform was first proposed by Li and He (2010). We extend the fractional
complex transform method to solve the system of fractional partial differential equations.

FRACTIONAL COMPLEX TRANSFORM
Jumarie’s (Jumarie, 2007, 2010) derivative is a modified Riemann-Liouville derivative
defined as:

ﬁ%f(z -7 (E(@) - f(0))dr,y <0,
D} fiz)= #if:(z—‘E)’"’(f(‘:)—f(o))d-:,0<y<1, (1)

T(-y)dz
(™ E@En™ n<y<n+lLnzl,

where, f (z) 1s a real continuous (but not necessarily differentiable} function. The fundamental
mathematical operations and results of Jumarie's derivative are given (Jumarie, 2007, 2010). Here,
we review some of them:

438



Asian J. Applied Sei., § (6): 438-444, 2012

Dic=0, y>0, c=constant
D! (cf(z)=cD!f(z), y>0, c=constant

byt LU

- ﬁ’T’ 0
2 TTap ol P

DI {f(z)g(z)) = (D] f(z))g(z)+ £(z)(D] g(z))
D (f(z(t)) =fl(z2)z™ (1) = £ (2)(2))

EXAMPLES
The fractional complex transform (Li and He, 2010, 2011) and (He, 2011) can convert a

fractional differential equation into its differential partner.
Example 1: Consider the linear system of PDEs:

DY uix,t)+ D vix,t)=0

(2)

D vix. )+ DPu(x,t)=0 O<o, p=l

with initial conditions:

%P

[

ra+p)

u(x,0)=

3

-

e

M e

where, ¢, p are parameters describing the order of the fractional Jumarie's derivative [8, 9]. By the

fractional complex transform:

B t* ¥ (3)
T=Proay T leay

where, p and q are constants which are unknown to be further determined. Using Jumarie’s chain

rule, we have:

Fu_uFT Fv_werT v
a ot Por a or as lotr (4)
Fu_udX pv_ v IX_ v
o axox er EE e
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By setting p =1 and q =1, we have:
uptv, =0, vtu, =0
ux, 0y =¢" v =" (5)
The exact sclutions are given by Ayaz (2004) as follows:
uw(X, T) = e¢* cosh T+e *sinh T
v(X,T)=e*cosh T-e*sinh T {6)

Hence:

x

ux,t)= € cosh[ t ]+ € sm.h[ t ]
I(l+p) I'dd+oy) L(l+p) 'il+a) (7)

%

VX, t)= e cosh[ L J— ¢ sm.h{ L J
i+ p I'idl+o)) T'{1+B) I'(l+ o)

Example 2: Consider the linear system of PDEs:

DY u(x, )+ DF ulx, 1) - 2vix, 1) =0
D vix, th+ DP v(x,t)—2u(x,t) =0, 0<o, Bl (8)

with initial conditions:

3

. X
u(x,0)= Smm

%P

I+ p)

v(X,0)=cos

By the fractional complex transform:

- r(:: TR r(gi 1
We have:
utu -2v =0, vetv F2u=0
u(X, 0) = sin(X), v(X, 0)=cos(X) (N
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The exact sclutions are given by Ayaz (2004) as follows:
u(X, T) = sin(X+T), V(X, T) = cos(X+T)

Hence:

u(x,t):si.n[ x + & J
I'ad+/ '+ o)

(om0
V(X,t)=co8 +
ra+py I'il+o)

Example 3: Consider the linear system of PDEs:

DX ufx, i+ vDE u(x, t) + uix, t)=1
DEvix, O+ uDE vix, - v(x, )= -1 0 < o= 1

with initial conditions:

xP

ra+p)

u(x,0)=¢e

_xP

ra+p)

vix,0)=¢e

By the fractional complex transform:

o xo ¥
[{oe+1) F'p+1

We have:
utvutu=1, vuv, v = -1
u(X, 0y =¢* wX, 0)=e *
The exact sclutions are given by Ayaz (2004) as follows:
uX, T)=e"", wX, T)=e™7

Hence:

f 1 = t
(L6 T(lve TR (b
u(x,ty=e v(x,t)=e

>
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Example 4: Consider the system of PDEs:

o B ¥ TDPw =
Do+ D vDw-D vDiw=-u

D}v+Df wDlu+DIwDlu=v

DYw+Df uDlv+ DIuDiv = w, 0<oBy<l
with 1nitial conditions:
[ ¥
u(X,yso):em
ra+y)
B ot
V(X, v, 0): em
i+
P ¥
wix,y,0y=e 2 (TUEPT X
I+

By the fractional complex transform:

t* xP x¥

T= , X= R Y=
[+ 1) I'p+1) 'iy+1)

We have:

UV, Wy-Vy Wy = -U

VptWy Uy TWy Uy =V

Wil VeTUy Vo = W

with initial conditions:

WX, Y, )=, WX, Y, =T, WX Y, T)=e™T

The exact sclutions are given by Ayaz (2004) as follows:

wX Y, =™, wX Y, T)="", WX Y, T)=e™"T

Hence:

x! . o )
ra+py T'd+y) T(l+o)
x! X' t*
_ + )
ra+p r'a+y Tl+o)

x! X' t*

u(x vy, t)=e(

v(xy.1)=e(

w(x vt)=e(—
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CONCLUSIONS
The fractional complex transform is very simple and use of this method does not need the
knowledge of fractional calculus.
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