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ABSTRACT

A two sets of test problems are tested upon, the first set consists of problems on ordinary
differential equations and the second set consists of problems on delay differential equations. The
problems are solved using the new RKD method and numerical comparisons are made when the
same problems are reduced to a first order system of ODEs and first order system of DDEs and
solved using the existing Runge-Kutta methods of order three and four. The RKD method 1s
adapted to sclve delay differential equations (DDEs). Stability polynomial of the methed for linear
special third order DDEs is given. The numerical results have clearly shown the advantage and the
efficiency of the new method in terms of accuracy and computational time.
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INTRODUCTION
Crenerally speaking, a special third order differential equations (ODEs) of the form:

YUty =1, yit), t=t, (1)
with initial conditions:

yito) =, ¥yt =B, y k) =y

where, :RXR—E which 1s not explicitly dependent on the first derivative y'(x) and the second
derivative v"(x) of the solution. The ordinary differential Eq. 1 is frequently found in many
physical problems such as thin film flow, gravity and electromagnetic waves. Most researchers,
scientists and engineers used to solve Eq. 1 by converting the third order differential equations to
a system of first order equations three times the dimension (Mechee ef al., 2013a). However, 1t 18
more efficient. if the problem can be directly solved using numerical methods. Such a type of work
can be seen 1n Awoyemi and Idowu (20058), Waeleh ef al. (2011), Zainuddin (2011) and
Jator (2010). All methods previously discussed are multistep methods; hence they need the starting
values when used to solve ODEs Eq. 1. Most of the methods for selving ODEs can also be adapted
for solving delay differential equations (DDEs).
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In recent years there has been a growing interest in numerical solutions of DDEs, this is due
to the appearance of such equations in various areas such as neural network theory, epidemiology
and time lag control processes (Mechee et al., 2013b). DDEs also provide us with realistic model of
many phenomena arising in real world problems for example DDEs can be used in modeling of
population dynamies and spread of infectious diseases and two body problems of electrodynamics
{Bellen and Zennaro, 2003; Forde, 2005; Driver, 1977; Smith, 2011; Erneux, 2009; Kuang, 1993).
In this study, we are concerned with the one-step method particularly the Runge-Kutta method of
order three for directly solving third order ordinary differential equations. Accordingly, we have
developed a direct Runge-Kutta (RKD) method which can be directly used to solve Eq. 1. The
advantage of the new method over multistep methods is that it is self starting. The method is then
adapted for solving special third order DDEs with multiple delays. The third order DDE can be
written in the following form:

ym(t) = f(t, Y(t); Y(t"ﬁ);y(t"fg)s ey Y(t"fn)); t>t0 (2)

with initial conditions:

yt) =), y't)=¢'t), y"(t)=9"t), tet,

where, @ is a continuous funetion and t,, t,, ..., T, are time delays.

Numeriecal results on two sets of problems consisting of ordinary and delay differential equations
are given and compared with the numerical results when the problems are reduced to a system of
first. order ODKEs and DDEs, respectively and solve using Runge-Kutta methods. Stability
polynemial of the method when applied to linear third order DDE is also presented. Numerical
results on two sets of problems consisting of ordinary and delay differential equations are given and
compared with the numerical results when the problems are reduced to a system of first order CDEs
and DDEs respectively and solve using Runge-Kutta methods,

Derivation of RKD method
The general form of RKD method with s-stage for solving initial value problem Eq. 1 can be
written as:

Yo =¥, +hY, +h—;y; v h@lblk, )
Vi =¥, +hy' ¢ hngik, (@
v, =h'+ hgblki (5)
Where:
k, =1(t,, v,) ®)
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2 .

) h . i-1

k. =f)t, +chy, +hey + %yn + h32aukJ (7)
j=1

fori=2,3, .., s. The parameters of RKD method are ¢, a, bi, b, b fori=1,2, .., sandj=1,2, ..,
s are assumed to be real. If a; =0 for i<j, it is an explicit method and otherwise implicit method. The
RED method can be expressed in Butcher notation using the table of coefficients as follows:

[ A
b
b’
bn'l-‘

To determine the coefficients of the RKKD method, the expressions given in Eq. 3-7 are expanded
using Taylor's series expansion. After some algebraic manipulations this expansion a equated to
the true sclution which are given by Taylor's series expansion. General order conditions for the
RED method can be found from the direct expansion of the local truncation error. The order
conditions can found in Mechee ef al. (2013a) which introduced direct Runge-Kutta (RKD) method
of order five with three stage for solving thin film problem.

ORDER CONDITIONS OF THE METHOD

Mechee et al. (2013b) derived the order condition of RKD method up to order six. In this study
using the same technique to get the order conditions up to order four. The order conditions for
two-stage third order RKD method can be written as follows.

Order conditions for y:

e  Order 3
T -1 (8)
6
e Orderd
e, = (©)
24
Order conditions for y"
«  Order 2
Yhi=1 (10)
2
+  Order 3
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Y =+ a
6
«  Order4
Ca 1 (12)
Zbic_ =—
D
Order conditions for y":
e Orderl
b, =1 (13)
e Order 2
. 14
Eblq:f (14)
2
e  Order 3
Tt =L (15)
3
e Orderd
> b/ L Y b, L (16)
i1 4’ 1 24

All indices are from 1 to s. To get third-order RKID methaod, the following simplifying assumption

is used in order to reduce the number of equations to be solved:
b =b,{l1-c),i=12 (17

ZERO STABILITY OF THE METHODS

Next, we will discuss the zero-stability of the methods it is one of the criteria for the method to
be convergent. Zero-stability is an important tool for proving the stability and convergence of linear
multistep methods. The interested reader is referred to the textbooks by Lambert (1991) and
Buteher (2008) in which zerc-stability 1s discussed. Zero-stability has been discussed in
Hairer et al. (2010), where it 1s used to determine an upper bound on the order of convergence of
linear multistep methods.

In studying the zero stability of RKD method, we can write methed, Eq. 2-4 as follows:
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1
1 0 0V Yiu 11 oY,
01 0|lhy.,, |50 1 1 ||hy (18)
0 0 1)lny,., [0 01wy,
1
-1 -1 o
p(e)=[Is-Al=[0 -1 -1 (19)
0o 0 -l
Thus the characteristic polynomial 1s:
ple) = (e-17° (20

Hence, the method is zero-stable since the roots are e =1, 1, 1, are less or equal to one.

DERIVATION OF THIRD ORDER RKD METHODS

The REKD method of s-stage and p-order can be derived by the solving the order conditions of
the methoed. The system of nonlinear equations (order conditions) of the method depend on p,
however, the existence of the sclutions of this system depends on the number of coefficients of the
method which depends on the s-stage of the method in addition to the number of independent order
conditions of the method.

DERIVATION OF TWO-STAGE THIRD-ORDER RKD METHODS

To derive the two-stage and third-order RED method, we use the algebraic conditions up to
order three in the equations of order conditions in y, ¥' and ¥" in KEq. 8, 10, 11 and 13-15. The
resulting system of equations consists of six nonlinear equations with 8 unknowns variables to be
solved. Consequently, there is a solution with two free parameters b,:

1
b, = b,

and a,, however we chose one of them arbitrary;

11
321_%

but the second free coefficients can be chosen using minimization of the truncation error.
Accordingly Dormand (1998) the free parameters can be chosen by minimizing the global error of

the fourth order conditions minimize the global error. The technique is as follows:

« First: We find the error coefficients of ¥, ¥' and ¥" respectively as the following:
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Tahle 1: Putcher tableau

0

2| 1L

3| 200
L L
10 15
1 1
T 7
1 3
4 4

[

_ (_5]2{5,1}2 @1)
2 72 3

SRS R (22)
2 36 72 5184

= ﬁ,/m +26244a% —291a,, (23)

‘TF(“)

‘T”(“)

2

+  Second: We find the global error norm as the following:

= L\/ssl —4320b, + 20736b? +181a,, (24)

2 216

4

TE

Finally, we minimize the four truncation errors in Kq. 21-24 with respect to the free parameter
by, in this case we get the free paramster as b, = 1/10. The error norms for y_, y', and y", are givern

by:
|

respectively, where 1%, 7% and 1'% are error terms of the fourth-order conditions for v, ¥' and "
respectively. The RKD method of order three and two-stage is denoted by RKD3 which can be
expressed in the following Butcher tableau in the Table 1.

T(“) ‘ TF(‘U ‘ ‘ ,.Cn(‘U ‘

=2.777%10 °,
2

=3.105%10 °,
2

=1.46x%10"°
2

Adapting RKD methods for directly solving third order DDEs: Consider problem Eq. 2
for initial value problem for delay differential equations. To find the solution y,,, at the point t,,,

fori=0,1, ..., n-1, we need the values of solutions at point t, and all time delays points t-t,, t;-1,
t;-Tg, ..., b1, for1=0,1,...,n (Mechee ef al., 2013a). The general form of RKD methods with s-stage

? 1 n

for solving the initial value problem DDEs Eq. 2 can be written as the following:
2
Yn+1 = Yn +hy;1 +h7y:1 +h321s:1b1k1 (25)
Yo =¥, thy, +h' Y bk (26)
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Von =h,+hY bk (27)

i=1

ko =f(t, vy (t = 1) y(t, %) y(t =), y(t, - 1,) (28)

i-1
k =flt,+chy, +hey, +h’c’y, +h*>ak y(t +he -1,
i=1

(29)
y(t, +he, =1, ).y(t, + he, —T.),...y(t, + he, -1, ))

The parameters of the methods Eq. 25-29 are ¢ a ,bi,b,b and a;fori=1,2 3, .., s and
7=1,2 3, .., s aregivenin Table 1.

TIME DELAY INTERPOLATION
Let the interval of the differential Eq. 2be I =[a,b] andt, = a+tihfori=0,1,2, ..., n and:

b= b-a
n
where n the number of points in the interval I.
The numerical method approximates the solution y,,, at the pointt,, fori=0,1, 2, ..., n-1,
Hence:
Vier = G 1), ¥t-10), vt 0, YiEATY) (30)

To evaluate the delay term we used cubic interpolation and the details of it. can be referred to
Mechee et al. (2013b).

STABILITY OF THE METHODS WHEN APPLIED TO THIRD ORDER DDE
To study the stability of numerical method (Eq. 3-5), consider the linear test equation:

Y'(x) = @y () Hpy (x-1) (81

when, the method 1s applied to the linear test Kq. 31, (Jiaoxun and Yuhao, 2005; Hongjiong and
Jiaoxun, 1995; Al-Mutib, 1984; Liu and Spijker, 1990), we have:

2 H
yn+1 = yn +hY;1 + hEY:l +h3§b1ki (Xn + C1h’ Yn +hc1’ Yi7y(xn + C1h_T))

2
=y_+hy + h?yn +h32f: 1b1k1(0t3Y1 +uy(x, + clhft))

v .=y, +hy Jrhzszbl‘kl(xn +ch,y, +he, Y, y(x, + clhft))

i=1

=y, +hy, +h22f:1biki (()::3Y1 + ;fy(xn + clh—'c))
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Vi = ya + R b (x, + oy, +he, Y.y (x, +oh=1))
i=1

=y, + hib;ki (OL3Y1 +wy(x, +ch —'E))

1=1

Where:
L hE .,
Y, =yn+chy, t5 Y +h Eauf(xn +eh Y, v(x, +clhfr))
i=1
h2
=y_ +hy, +7y; + h3zszlauf(c¢3YJ +y(x, + clhf’c))
and:
m+1=TZn +({cth)’ BY +(uh)’ BZ, (1)
such that.
Y. 111 b, b, b,
Z.=|hy, . T=/0 1 1.B=b b b
hy, 001 b b, bl
y(x, +¢h-1)
Z.(t)=y(x, +ch—71)
y(x, +c,h—1)
So:
Y, v, c, ¢! oY, +py(x, +ch-1)
Yo |¥2| |€ c: h a, - a, ) CY,wy(x, +eh-1)
Y, =]y, |+| ¢, [hy, +| ¢ Ey;+ T oY; + Py (x, +¢c;h—1)
: : : : C("sl C("ss :
Y, ¥, c, c: oY, +1y(x, +ch—1)
and:
Y (1 ¢, ot wy(x, +eh-1)
Y,| |1 c, ¢ wy(x, +e;h—1)

2

Y, =1y, +|c, |hy, + ¢ h?y;JrHocA wy(x, +ch-1)

: : ; wy(x, +ch—1)
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where, H, = (¢h)?, H, = (uh)®.

So:
Y, wy(x, +ch—1)
Y, wy(x, +¢,h—1)
Y, |=(1-Ha) (CZ, + HA)| Wy(x, +¢h-1)
Y, wy(x, +ch—1)
where:
2
c
1 ¢ 31
A _ Ct'l'l a]s C _ 1 02 ﬁ
2
a, o, :
Lo &
o2

Hence, the stability polynomial of the methed is:

Z,.,=TZ +HB(1-HB)(CZ +H,Z (1))
+1,BZ, (1) =T.Z, + T,Z, (1)

where:
y(x, +ch-1)
y(x, +¢;h—1)
7,(1) = y(x, +ch—7) |, T, =T+HB(1-H,A) 'C and T, = H,B[ H,(1-H,A) 'A+T]
y(x, +ch-1)
NUMERICAL RESULTS

In this section a set of third order ordinary and delay differential equations are solved using
RED2 method of order three and numerical results are compared with the existing RK methods of
the orders three and four.

The follewing notations are used in Fig. 1-8:

* h: Stepsize used

« REKD3: The Direct Rung-Kutta methed of order three derived in section 5

+  RK3: Existing Runge-Kutta method order three as given in Butcher (2008)

+ REK4: Existing Runge-Kutta method order fourth as in Dormand {1996)

*+ Total time: The total time in second to solve the problems

« MAX ERROR: Max |y(x )-y,| Absolute value of the true solution minus the computed
solution
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Fig. 1: A log max of errors

Log error

Fig. 2: A log max of errors

Log error

Fig. 3: A log max of errors

Log error
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3 -
—— RKD3
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—— RK4
-5 -
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Fig. 4: A log max of errors versus computational time for problem 4

Fig. B: A log max of errors
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Fig. 6: A log max of errors versus computational time for problem 6
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27 —— RKD3
—— RK3
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Fig. 7: A log max of errors versus computational time for problem 7
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Time

Fig. 8: A log max of errors versus computational time for problem 8

PROBLEMS OF ODES
Problem 1(Homogenous linear):

y''(t) = -y(t), O<t<b
« Inmitial conditions:
YO =1, yO=-1,y'0) =1,
+ Exact solution:
yit)=e*, b=1
Problem 2(Non homogenous linear):
v"(t) = -7 O<t<b
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* Initial conditions:
YO =1,y =-1y"O) =1
* HKxact solution:
yti=ehb=1

Problem 3(Homogenous non linear):

« Imtial conditions:

* HKxact solution:

y(t) =Jl+t.b=xn
Problem 4(Non homogenous linear):
Tt = -6y, O<t<b
« Inmitial conditions:
YO) =1,y =-1y"0) =2

* HKxact solution:

PROBLEMS OF DDEs

Problem 5 (Homogenous non linear):
Y"(t)=-e ' te* iy (t- 1), t=0
* Initial conditions:

YO =050 =-1,50 =1
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* HKxact solution:

yti=e " b=1
Problem 6(Homogenous linear):

y'it) = e My(t-,), t>0
« Initial conditions:
YO =1,y0)=-1y0) =1

+ Exact solution:

yti=ehb=1

Problem 7(Non homogenous non linear)

y'(t) = yi(tt, )+y2(t—':1)+753 —2{(1+t)+ 1, + 1, t>0
8y (x)

« Imtial conditions:

y(0) =1L y'(0) =1

* HKxact solution:

y()=l+t,b=x

Problem 8(Non homogenous linear)

y"() =yt )ty -t - In(1+t —g)-In(1+t -7, ) + %
(1+1)

* Initial conditions:
YO =0,y0=1y0=-1
* HKxact solution:
vty =In(1+t), b ==

DISCUSSION AND CONCLUSION

t>0

In this study, we have derived the RKD method of two-stage, third order. This method has been
adapted with delay differential equations. The zero-stability of the method is proven. The stability
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polynomial of the method when applied to linear third order DDE is also given. We used the method
for solving special third order ODEs as well as DDEs. For DDEs cubie interpolation is used to
evaluate the delay terms. Numerical results show that the RKD method is more accurate and
requires less computational time compared to the existing RIX methods,
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