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ABSTRACT
This study presents a methodology for uncertainty quantification in cyclic creep analysis. The

BP model, the Whaley and Neville model, the modified MC90 for cyclic loading and the modified
Hyperbolic function for cyclic loading are used for uncertainty quantification. Three types of
uncertainty are included in Uncertainty Quantification (UQ): Natural variability in loading
materials properties, data uncertainty due to measurement errors and modeling uncertainty and
errors during cyclic creep analysis. With the consideration of all type of uncertainties, a complete
measure for the total variation of the model response can be achieved. This study finds that the BP
model performs the best for cyclic creep prediction followed by the modified Hyperbolic model and
modified MC90 model. Furthermore, a global Sensitivity Analysis (SA) that considers the
uncorrelated and correlated parameters is used to quantify the contribution of each source of
uncertainty to the overall uncertainty of the prediction as well as to identifying the important
parameters. The errors in determining the input quantities and the model itself can produce
significant changes in creep prediction values. The influence of the variability of the input of
random quantities on the cyclic creep is studied by means of a stochastic uncertainty and
sensitivity analysis. The Latin Hypercube Sampling (LHS) is used in the stochastic sensitivity
analysis, from which it has been determined that the cyclic creep deformation variability is
influenced the most by the Elastic Modulus of concrete, then the compressive strength, mean stress,
cyclic stress amplitude and number of cycle, with decreasing influence.

Key words: Cyclic creep, input variables, stochastic, sensitivity analysis, uncertainty
quantification

INTRODUCTION
The creep of concrete under a sustained static load is a well-known phenomenon and much

research has been carried out in this context (Neville et al., 1983; Bazant, 1988). Under actual
operating conditions, many structures are subjected to dynamic loads in addition to the static loads.
The effect of traffic loads on bridges and pavement, vibrating machinery on floor systems, wave
loads on offshore structures and wind load on slender buildings are familiar examples. Such
structures experience repeated loads and must be designed to control deformation due to both the
static and dynamic creep. Numerous researchers have found an increase in cyclic creep when the
concrete is subjected to cyclic loading. It is important to keep in mind that cyclic creep is measured
relative to the creep under sustained load equal to the mean cyclic stress and not the creep under
a sustained load equal to the upper cyclic stress (Neville et al., 1983; Motra et al., 2013a, 2014b).
Also, time-dependent nonlinearity also grows during cyclic loading especially under higher strains,
thus  cyclic   creep  is  a  nonlinear  phenomenon.  Many  studies  have  examined  the  stress-strain
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behaviour of drying and confined concrete under cyclic compression and tension and numerous
concrete models have been proposed but very few studies addressed the long term time-dependent
behaviour of concrete under cyclic load. Since the first works attempting to characterize the
behaviour of concrete under a rapidly fluctuating (1 Hz) stress of given duration were published
which (Probst, 1931, 1933) a significant research effort has been devoted to that field and has found
the irreversible deformation to increase with the number of cycles. There is a decrease in non-
elastic deformation with an increase in the age of the concrete during the application of cyclic load,
this behaviour is similar to that under static loading. Many others mathematical and experimental
models have been documents in the literatures like Ross (1937), Lorman (1940), Neville et al.
(1983), Bazant and Panula (1979), CEB (1990a), Bazant and Kim (1992), Terje and Gordana (1992)
and Schwabach (2005) model.

Much research has been carried out to investigate the uncertainties of the time-dependent
behaviour of plain concrete under sustained loading (Bazant et al., 2012a; Keitel and Dimmig-
Osburg, 2010; Yang, 2007a) but less work has been done on concrete under cyclic loading. Some
work has been carried out on the cyclic creep and its structural effect by Bazant et al. (2012b) and
Yu et al. (2012). Significant efforts have continuously been inputted into the study about the
uncertainties in creep and shrinkage effects. The external or parameters uncertainty and internal
(model uncertainty, measurement uncertainty and uncertainty of the creep phenomenon)
uncertainty were referenced from Smith and Goodyear (1988), Bjerager and Krenk (1989), CEB
(1990b),  ACI  (1992),  Li  and  Melchers  (1992),  Tsubaki  (1993),  Bazant  and  Baweja (1995),
Teply et al. (1996), Yang (2005) and Adam and Re da Taha (2011). Uncertainty analysis of creep
models under sustained loading with the use of the Latin Hypercube Sampling was proposed
(Bazant and Liu, 1985; Keitel et al., 2014); however, most of the existing importance analysis
techniques assume input variables independence, while a few studies have focused on the
importance analysis of correlated input variables and degradation materials behaviour under cyclic
loading (Friedhelm et al., 2009), which is the common case in concrete structures.

Uncertainty in cyclic modeling has been classified by Madsen and Bazant (1983) into three
categories: Parameter uncertainty, measurement uncertainty and model uncertainty. The
uncertainties introduced by the model structure and parameterization have received much
attention in recent years  (Madsen  and  Bazant,  1983;  Al-Manaseer   and   Ristanovic,   2005;
Yang, 2007b; Keitel and Dimmig-Osburg, 2010; Keitel et al., 2014; Keitel, 2011; Pan et al., 2011;
Sankararaman et al., 2011; Motra et al., 2013a, 2014a). Model uncertainty arises from incomplete
understanding of the phenomenon being modeled and/or the inability to accurately reproduce creep
phenomenon with mathematical and statistical techniques. In contrast, parameter uncertainty
results from deficient knowledge of parameter values, ranges, physical meaning and temporal and
spatial variability. But parameter uncertainty is also reflected in the incomplete model
representation of the creep phenomenon (model uncertainty) and the inadequacies of parameter
estimation techniques in light of uncertain and often limited, measured data. Different UQ and SA
techniques will perform better for specific type of models. One method of importance measure of
models is to consider the uncorrelated and correlated parameters, proposed by Xu and Gertner
(2008), Most (2012) and Motra et al. (2013b). The distinction between uncorrelated and correlated
contribution of uncertainty for an individual variable is very important and the output response
and input variables are approximately linear in this method. One of the most important and basic
concepts is that the results of any scientific experiment always has a degree of uncertainty which
is known as experimental uncertainty. Although the uncertainty inherent  in  measured  data used
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to calibrate and validate model predictions is commonly acknowledged, measurement uncertainty
is rarely included in the evaluation of model performance. One reason for this omission is the lack
of data on the uncertainty inherent in measured cyclic creep data.

The problem of quantifying the contribution of systematic error and measurement uncertainty
considered for the calculation of the uncertainty. In fact, since its first edition (ISO, 1993) of the
Guide to the Expression  of  the  Uncertainty  in  Measurement  (GUM)  and  in  the  latest one
(ISO, 2008), the GUM attempts to completely set aside the concepts of the true value and
measurement errors, whose connection with measurement uncertainty is considered (Clause E.5.1).
GUM uncertainties are standard deviation of probability distribution and as a degree of belief,
quantified by  means  of  a  subjective  probability distribution (Clause 3.3.5). The GUM
Supplement 1 (JCGM, 2008) is based on the general concept of propagating Probability Density
Function (PDF) where, in order to obtain the PDF for the measured quantities, the Monte Carlo
Method (MCM) (Robert and Casella, 2004) was suggested. Consequently, the law of propagation
of uncertainties is based on a construction of a linear approximation of the model function
(Wubbeler et al., 2008). The GUM uncertainty framework-GUF (JCGM, 2008) and MCM are
approximate methods where the first method is more precise than the second one. Apart from that
MCM is more valid than the GUF for large class of problems (JCGM, 2008).

In this study, a statistical framework is discussed for the cyclic creep function. As a first step,
the   four   cyclic   creep   models   in    plain    concrete    are    discussed    briefly:   BP  model
(Bazant  and  Panula,  1979;  Bazant  and   Kim,   1992),   modified   MC90/EC2   (CEB,  1990c;
Terje and Gordana, 1992), Whaley and Neville model (Whaley and Neville, 1973) and modified
Hyperbolic function (Ross, 1937; Schwabach, 2005). Subsequently, the influences of input
parameters are discussed in step 2. The Monte Carlo simulation with Latin Hypercube Sampling
(LHS) technique is used for determining the parameter uncertainty, SA, measurement,
phenomenon and model uncertainties which is explained in step 3. In step 4, the overview of UQ
and SA (Xu and Gertner, 2008; Most, 2012) and measurement UQ according to GUM (Monte Carlo)
methods are explained. Further, stochastic UQ and SA, are used to determine the uncertainty level
of different models and analyse the quality of model and to what degree the randomness of an input
quantity influences the variability of the output. The present study has considered the amount of
degradation with respect of both strength and stiffness of the concrete.

MATERIALS AND METHODS
Cyclic creep models: Several experimental and mathematical models have been developed for
estimating cyclic creep strain. The most widely used mathematical models are the BP model and
the Whaley and Neville model, as well as the modified MC90/EC2 and the modified Hyperbolic
function experimental cyclic creep models (Gaede,  1962;  Mehmel and  Kern,  1962;  Neville  et al., 
1983; Suter and Mickleborough, 1975; Hirst and Neville, 1977).

Based on the test data the Whaley and Neville model has shown that the cyclic creep strain can
be expressed as the sum of the two strain component: A mean strain component and a cyclic strain
component. We consider uniaxial stress describe as:

(1)0

1
sin(2 t)

2
     

where, σ is mean stress, 1/2Δ is cyclic stress amplitude and ω circular frequency.
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The  mean  strain  component  is  the  creep  strain  produced   by   the   static   mean  stress
(σm) = (σmax-σmin)/2. The additional cyclic creep component is found to dependent on both mean stress
(σm) and the stress range (Δ) = σmax-σmin. They proposed the following predictive equation for the
total cyclic creep strain:

(2)       
 0

0 el 0 0
c 0

t t1 1
t t t t t

E t

 
           

(3)
1

63
0 m(t t ) 129 (1 3.87 )t 10      

where, g (t-t0) is the cyclic creep strain, σm  is  the  mean  stress  expressed  as  a  fraction  of the
compressive strength and Δ is the stress-range expressed as a fraction of the compressive strength
Φ (t-t0) is the creep function.

Shown above the static and dynamic components of dynamic creep is a function of time. It can
also be expressed as a function of number of cycles:

(4)
1 1

3 3
0 0 0(t t ) 129 t 17.8 N      

The above equation is fits when σm<0.45 and Δ<0.3. The dimensions of the cyclic creep
specimens are 76×76×203 mm cast vertically which is fog-cured for 14 days at 20±1°C. The
specimens were enclosed in polyethylene bags containing some water which was not in direct
contact with the specimens. The cyclic load varied sinusoidally at 9.75 (Hz) cycles per second. The
BP model takes into consideration both shrinkage strain and mechanical strain. According to the
BP model, cyclic creep function (t-t0) = g/σmean, where, g is the strain mean level of cycle, is as
follows:

(5) oc oc d 0 d
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And this equation modified:
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In which tdc can be calculated as:
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where, ω is the  frequency  (Hz),  kω  is  the  empirical  constant and the function F(σmax) is the
nonlinearity over proportionality factors.

The long-time material model presented in the 1990 CEB Model Code (MC90) was chosen as
the model  and  the  static  creep  tests  within  the  previously  mentioned  and  the  modified by
(Terje and Gordana, 1992) cyclic creep function is defined as:

(9)c 0 cc 0
0

c o c c

(t t ) (t t )1
(t t )

E (t ) E (28 d) E (28 d)

   
    

In these expression nc (t-to) is the static creep ratio and ncc is the cyclic creep ratio, t' the
concrete age at loading and t the actual time. The cyclic creep ratio is defined as:

nCC(t-t0) = β(t0) β(fcm) β(Sm) β(Δ) nCC β(N, ω) (10)

In this expression fcm is the average compressive cylinder strength at 28 days, Sm the ratio
between the mean stress and the concrete strength at the start of testing, Δ the relative stress
amplitude, N is the number of load cycles and ω is the frequency N = (t-t0)ω:

β(N, ω) = Nn1 = ((t-t0) 86400 ω)n-1, with, n = 0.022 (11)

The general expression for cyclic creep term is then written as:

nCC(t-t0) = 1.39 β(t0) β(fcm 81+10.5 (Sm-0.4)2 Δ(Nn-1) (12)

This expression is derived for high strength concrete and it is applicable also plain concrete
with different constants parameters.

The hyperbolic function form German code 1045-1 or DAfStb booklet 525 (DIN5) modified by
(Schwabach, 2005) gives the final equation as:

(13)
b b
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The constant a, b, d and e are determined from cyclic creep experimental data.
For concrete with a compressive strength 52.00 MPa, the value of a, b, d and e are found to be

318.22, 0.30, 0.10 and 0.20, respectively.

Sources of uncertainty: This section describes the method used to include the different sources
of uncertainty in cyclic creep prediction. These sources of uncertainty can be classified into three
different types; physical or natural uncertainty, data uncertainty and model uncertainty, as shown
in Fig. 1.
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Fig. 1: Sources of uncertainty in creep prediction

Figure 1 illustrates different sources of error and uncertainty considered and the proposed
methodology used.

Physical or natural uncertainty: Physical or natural uncertainty refers to the uncertainties or
fluctuations in the environment, test procedures, instruments, observer, etc. 

Hence, repeated observations of the same physical quantity do not yield identical results. This
study considers the physical uncertainty in loading and materials properties. The uncertainty in
the systematic errors to the measurement, human error, variability in others materials properties
such as Poisson ratio, supplementary cementing materials, the curing time period, temperatures,
etc. are not considered.

Data uncertainty: Experimental data is available in literature to characterize the distribution
of materials properties such as Young’s modulus of elasticity, compressive strength of concrete, etc.
This data may be sparse and cause uncertainty regarding the probability distribution type and
parameters; these errors are not considered in this paper and the quantification of these errors is
trivial and will be considered in future study. The measurement uncertainties are calculated using
the GUM (ISO, 1993, 2008; JCGM, 2008; Motra et al., 2013b) and Monte Carlo method. Bayesian
model screening is implemented using the Monte Carlo method which is described in literature
(JCGM, 2008; Motra et al., 2014a). The study found that the experimental error between 0.062 and
0.121 is reasonable for different tests.

Model uncertainty: More than 10 different creep prediction laws have been proposed in the
literatures; each with its own limitations and uncertainties. The uncertainty in cyclic creep
prediction can be subdivided into two different types: creep model error and uncertainty in model
coefficients. These errors are assumed to represent the difference between the model prediction and
the experimental observations. The variation from the experiments have been determined by
Madsen and Bazant (1983), Li and Melchers (1992), Motra et al. (2013c) for the comparison with
measured  data.  No  one  has  done  statistical  analysis of cyclic creep data and there is no existing
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data bank for cyclic loading. All previous comparisons were based on the RILEM data bank for
sustained loading. So far, the effects of cyclic loading on the calculation of variation in experiments
have been neglected but they may be non-negligible for large structures, such as bridges with many
lanes or with dense traffic and heavy trucks. The measurement error (Cvn, α.0.08) and internal
uncertainty (Cvn, β.0.05) were assumed. The coefficient of variation of the creep phenomenon α and
measurements β are used to determine the coefficient of variation of the model uncertainties. The
model uncertainty factor is normally distributed with an expected value of E(ncr, cyc) = 1. Frequency
of loading also appears to have an influence on cyclic creep. Creep generally decreases with an
increase in frequency so that under very rapid cycles the behaviour of concrete becomes more
elastic.

Data assessment which is composed of test description, determination of error sources,
estimating of uncertainty and documentation of the results is a key part of the entire experimental
testing. Furthermore, uniform cyclic loading causes less creep than loading in an irregular pattern
within the same range of stresses. Table 1 lists the comparisons of the total coefficient of variation
of four models based on statistic input variables. Using the coefficients of variations, a generally
valid comparison of the cyclic creep prediction of different models is enabled. The variation of the
model response to the measured creep functions, CVØ, cr, cyc, is given in the first row of Table 1. In
these comparisons, the BP model is found to be the best model.

Uncertainty quantification in model parameters
Bayes methods: This section explains the Bayesian technique used in the uncertainty analysis
of the measurements, in which the MCM was used with the experimental data. In order to obtain
reliable results through MCM, the number M of trails, or evaluations performed by the model, of
106 is often considered appropriate in order to provide a coverage interval of 95%. However, the
random nature of the process and the nature of the probability distribution of the output quantity
Y have an influence on the values needed for M which varies for each case. Each value of standard
uncertainty yr = (r = 1,..., M) is obtained by performing a random sampling from each of the
probability density functions from the input quantities Xi and evaluating the model with the values
found. The M values of Y thus obtained must be arranged in an increasing order. The output
quantity and the associated standard uncertainty can be calculated as follows:

The average:

(15)
M

r
r 1

1
y y

M 

 

And the standard deviation is taken as the standard uncertainty u(y) associated with y:

(16)
M

2 2
r

r 1

1
u (y) (y y)

m 1 

 
 

Table 1: Model uncertainties
Model BP model MC90 model Hyperbolic Neville
CVΨ, cr, cyc 0.283 0.306 0.300 0.380
Cvn, α 0.080 0.080 0.080 0.080
Cvn, β 0.062 0.086 0.093 0.121
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The variation, according to Madsen and Bazant (1983), is composed of the uncertainty the creep
model itself CVmod,cr,cyc the measurement uncertainty Cvn, β and an internal uncertainty of the creep
phenomenon Cvn, α. Using the decomposition of the variance, or the decomposition of the coefficients
of variation as follows:

(17)2 2 2 2
Z,cr ,cyc mod,cr ,cyc , ,CV CV CV CV     

In order to carry out the MCM, the program is run in MATLAB for n_digit = 1, performing 106

evaluations of the different models until there is a stabilization in the results. The program gives
the estimated cyclic creep with the associated standard uncertainty, measurement uncertainty
which (Cvn, β) or u(Ex). For simplification in this work, the standard uncertainty u(Ex), is written as
measurement uncertainty (Cvn, β) which is shows in the last row of Table 1 with the shortest 95%
coverage interval. For the result validation, GUF and MCM give an estimation of cyclic creep that
is noticeably different. Graphical approximations, in the form of a histogram of the probability
density function of the output quantity, were created from the parameters from the GUF and MCM,
onto which the curve of a Gaussian distribution has been superimposed. The probability density
functions obtained from these two methods are in good agreement with each other. The basis of this
method is the theory that cyclic creep models should not be evaluated against the values of
measured data which are uncertain but against the inherent measurement uncertainty,
particularly, the deviation calculation of the probability distribution (MCM) of measured data.

Global sensitivity analysis: The objective of the SA is to identify critical inputs variables of a
model and quantify how input uncertainty impacts model outcomes. The sensitivities are solved
at nominal values and cannot account for the variation effect of the input variables and thus these
sensitivities are local. In contrast, the uncertainty importance measure is defined as the
uncertainty in the output that can be apportioned to different sources of uncertainty in the model
input and thus measures is also called global sensitivity. Xu and Gertner (2008) and Most (2012)
methods are used in this study and have an approximately linear output response to the input
variables. For a model y = (x1, x2, x3,..., xi,..., xk) and the main effect of each variable, the model can
be simplified as the following:

(18)K
0 i 1 i iy x e     

where, β0,..., βk are regression coefficients and e is the error. The partial variance (Vi) and total
variance (V) can be estimate for uncorrelated variables as follows:

(19)
N

2 2 2
i i i ji i
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1
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The sensitivity of variable xi can be calculated as:

(21)i
i

V̂
S

V̂
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where, xji is the jth sample element for variable xi, xði is the sample mean of the variable from the
LHS and βi is the least-square estimate of the regression.

The partial variance Vi is decomposed into partial variance  due to uncorrelated variationU
iV

of input variables Xi and partial variance  due to correlated variation of the input variables:C
iV

(22) U C
i i iV  = V  +V

The partial variance Vi can be estimated as follows:

(23)
N

2
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j 1

1ˆ ˆV (y y)
N 1 

 
 

The partial variance ( ) can be estimated as follows:U
iV

(24)
N

( i) 2
j

j 1

1ˆ ˆV (y y)
N 1





 
 

The sensitivity indices can be calculated as follows:

(25)i
i

V
S

V̂


(26)
U

U i
i

V
S
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(27)
C

C i
i

V
S

V̂


where, Vi, ,  are the partial variances, uncorrelated variance and correlated varianceU
iV C

iV

respectively.

UQ and SA of cyclic creep function
Input parameter and parameter correlation: The uncertainty factors of the cyclic creep models
that are assumed to be random are: The compressive strength of concrete (fc), the Young’s modulus
of elasticity (Ec), the relative humidity (RH), the water-cement ratio (w/a), the sand-aggregate ratio
(a/c), the geometry factor (ks), the cement content (c), the frequency of loading (ω), the mean stress
(σm), the stress amplitude (Δ) and the number of cycle (N). The statistical properties of the material
properties of the concrete are given in Table 2. The dynamic modulus of concrete, Ed and the
dynamic compressive shear strength of concrete, fd are crucial parts for the analysis of the cyclic
creep function because these quantities are depend on the strain rate, number of cycle.

Numerous empirical relationships are available in the literatures. The “Deterioration of
Materials and Structures” (Friedhelm et al., 2009) provides an overview of degradation of concrete
under cyclic loading and is used in this paper. The deformation of concrete at any instant is defined
as follows:

Total strain = Elastic strain+Creep+Shrinkage (28)
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Table 2: Statistic properties of the input variables
Variables Mean Std CoV Distribution Models Sources
fc,28 52.00 MPa 3.12 0.06 Log-normal 1,2,3,4 30
fd 50.70 MPa 3.00 0.06 Log-normal 1,2,3,4 Assumed
Eci, 28 34144 Mpa 3414.4 0.1 Log-normal 1,2,3,4 30
Ecm,28 29394 MPa 2994.0 0.1 Log-normal 1,2,3,4 30
Ec,d 33290 MPa 3329.0 0.1 Log-normal 1,2,3,4 Assumed
Humidity 0.65 [-] 0.026 0.04 Normal 1,2,3 28
Cement content 362 (kg mG3) 36.20 0.1 Normal 1,3 29
Water-cement ratio 0.50 [-] 0.05 0.1 Normal 1 29
sand-cement ratio 5.16 [-] 0.516 0.1 Normal 1 29
Fine-aggregate ratio 0.50 [-] 0.05 0.1 Normal 1 29
Geometry factor ks 1.15 [-] 0.057 0.05 Normal 1,2,3 29
Frequency 9 Hz 0.72 0.08 Normal 1,3 Assumed
Mean stress 0.35fc [-] 0.035 0.1 Normal 1,2,3,4 Assumed
Stress amplitude 0.3fc [-] 0.03 0.1 Normal 1,2,3,4 Assumed
Number of cycles 106 Number 80000 0.08 Normal 1,2 Assumed
a 318.22 31.82 0.1 Normal 3 Assumed
b 0.3 0.03 0.1 Normal 3 Assumed
d 0.1 0.01 0.1 Normal 3 Assumed
e 0.2 0.02 0.1 Normal 3 Assumed
1: BP, 2: Modified MC90/CE 2, 3: Modified hyperbolic, 4: Neville

Table 3: Correlation matrix Neville model
Variables fc Ec σm Δ
fc 1 0.8 0 0
Ec 1 0 0
σm 1 0
Δ Symm. 1

Table 4: Correlation matrix modified MC90/EC2 model
Variables RH ks fc Ec σm Δ N
RH 1 0 0 0 0 0 0
ks 1 0 0 0 0 0
fc 1 0.8 0 0 0
Ec 1 0 0 0
σm 1 0 0
Δ Symm. 1 0
N 1

Table 5: Correlation matrix modified hyperbolic model
Variables RH ks fc Ec a b d e
RH 1 0 0 0 0 0 0 0
ks 1 0 0 0 0 0 0
fc 1 0.8 0 0 0 0
Ec 1 0 0 0 0
a 1 0 0 0
b 1 0 0
d Symm. 1 0
e 1

If the elastic strain under a constant stress is assumed to diminish with time, then the creep
is increased by a corresponding amount to insure that the total strain is constant.

Under cyclic loading, the precise interpretation of elastic strain is very important, because
changes in elastic strain due to change in elastic modulus are generally small compared with the
sum of others  quantities. Only the correlations of ñ = 0.4 and ρ = 0.8 were used and those under
ρ = 0.1 were neglected in the stochastic analysis due to insignificance. These models are not
intended to include the effects of temperature on creep.

The input variables correlation of the Neville model, modified MC90/CE2 model, modified
Hyperbolic function model and BP model are shown in Table 3-6.
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Table 6: Correlation matrix BP model
Variables RH c w/c a/c ks fc ω Δ

RH 1 0 0 0 0 0 0 0
c 1 -0.4 -0.4 0 0.4 0 0
w/c 1 0 0 -0.4 0 0
a/c 1 0 -0.4 0 0
ks 1 0 0 0
fc Sym 1 0 0
ω 1 0
Δ 1

RESULTS AND DISCUSSION
Uncertainty of cyclic creep strain: The mean value of the predicted cyclic function for the four
models over a short period time is presented in Fig. 2. Since the initial elastic strains were not
reported, because of the pronounced short time creep duration, the strains had to be assumed and
so the compressions are only relevant to the part of the strain that represents the creep increase
due to strain cycling. Significant errors have often been caused by combining the creep coefficient
with an incompatible value of the conventional elastic modulus, thus analysis must properly be
based on the cyclic creep function. In Fig. 2 the data of all four models shows very different  values
in the  first hour of testing and at 100 h the difference shown is small which may be the fluctuation
in time to the physical mechanism of creep. The modified MC90/EC2, Neville and modified
hyperbolic models are based only on the set of data and may not be applicable for conditions
substantially different than that of the experiments.

Figure 3 and 4 show the results of the uncertainty analysis of four different models. Both
figures show that the correlated and uncorrelated contributions of input variables have important
contributions to the uncertainty in model output. The uncorrelated input variable uncertainty of
Neville model is very small with only the contribution of four variables. On the other hand the
input variables have a notable effect on the output because there are more variables and complex
models  and  the  model  uncertainty  is  small. The  correlated  and uncorrelated input variables
for model  Neville  shows  largest  uncertainty Cvpar, cr, cyc(t-t0) = 0.08 at t = 1 h  and  uncertainty
Cvpar, cr, cyc (t-t0) = 0.06 at t = 100 h, the uncertainty decreases with the increase in time under load.
The uncorrelated input quantities uncertainty of the modified MC90 model and modified Hyperbolic
model have a Cvpar, cr, cyc (t-t0) = 0.10 and are almost independent of time.

The uncertainty of the BP model is strongly time-dependent, varying in the range of Cvpar, cr, cyc

(t-t0) = 0.11-0.08.
Taking into account the input variables and the real correlation of model Neville, the input

variables increase significantly Cvpar, cr, cyc(t-t0) = 0.08 which may strongly influence the strength and
Young’s modulus of elasticity due to its correlation. Comparing the all uncertainty of the models
in Fig. 4, we conclude that the model and measurement play an important role on the uncertainty
behaviour of models. In comparison, of all models the BP model has the lowest total uncertainty
Cvpar, cr, cyc(t-t0) = 0.30 and model Neville has highest total uncertainty Cvpar, cr, cyc(t-t0) = 0.40. The
modified MC90 model, modified Hyperbolic model and Neville model are based on the experimental
data and also assumed that the strain-time equation does not always fit satisfactorily with the
experimental data, so that long-term values cannot be estimate with confidence. Generally, if creep
is measured over a longer time interval, the better the prediction of creep. The CV of the initial
time of loading is higher and decreases with the time because there are more uncertainties in the
measurements at the initial time. The most important variable in short-time creep is model
uncertainty factor for all the models.
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Fig. 2: Mean value of creep function

Fig. 3(a-b): Input variables uncertainty of cyclic creep prediction, (a) Uncorrelated and (b)
Correlated parameters

Total Model Quality (MQ) can be used to balance the better response of the model to its
uncertainty in order to select the model that is best model quality for a certain response. Figure 5
shows the time-dependent model quality. The MQ is dependent on total uncertainty considering
the correlated input quantities. The MQ is slight time dependent and thus the time integration
according to the (Keitel, 2011) is used and is shown in the results given in Fig. 5. In all these
comparisons, the BP model is found to be the best. The CEB-MC90/EC2 model (CEB, 1990a) which
modifies his original MC90/EC 2 model (Terje and Gordana, 1992) by co-opting key aspects of cyclic
loading (the mean stress and stress amplitude function and dependence on the number of cycles
would simply mean a loading frequency), comes out as the second best. Considerably worse but the
third best overall is seen to be the modified Hyperbolic model. Since the current Neville model,
labelled Neville, is the simplest model, introduced in 1973 on the  basis  of  Neville’s  research
(Neville et al., 1983), it is not surprising that it comes out as the worst because it is based on only
four variables and there is no consideration of concrete composition and environmental variables.
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Fig. 4(a-b): Input variables and model uncertainty of cyclic creep prediction, (a) Uncorrelated and
(b) Correlated parameters

Fig. 5: Model Quality (MQ) of cyclic creep prediction

Sensitivity analysis of the cyclic creep strain: A SA is required to find out the dominant effect
of the variability of input random variables on the cyclic creep strain. Figure 6-9 show the results
of the sensitivity analysis of uncorrelated and correlated variables. For the calculation of the
sensitivity, the model uncertainty is not considered and it is assumed that the sensitivity indices
are upto:

pK

pp' 1
S 1




The normalization is necessary due to consideration of correlation which may vary the results
of sensitivity indices Sp$1. From this arise the difficulty to compare the uncorrelated and the
correlated indices. High values of sensitivity Sp means highly influential on the uncertainty, for
example Sp= 1 means only this quantities affect the output. The input quantities sensitivity of the 
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Fig. 6(a-b): (a) Uncorrelated and (b) Correlated sensitivity indices of Neville model

Fig. 7(a-b): (a) Uncorrelated and (b) Correlated sensitivity indices of model modified hyperbolic

Neville model is presented in Fig. 6. All input quantities are approximately time-independent. The
reason behind this is that the expression depends on the value of the mean stress, stress amplitude,
compressive strength and modulus of elasticity of concrete as well as other input quantities
considered in this model which are assumed to be constant with respect to time. The strength and
modulus of elasticity is not exactly constant over the time but it is much complicated to consider
otherwise. It is seen that the most sensitive quantities turn out to be elastic modulus and followed
by compressive strength. The mean stress and stress amplitude do not influence as much in
comparison to the two quantities above. The variable correlations strongly influence the sensitivity
indices, among which, Ec and fc are most influential quantities.

The modified Hyperbolic model also show constant sensitivity indices for all the input
quantities over the time. In this model the time is account only this quantity ((t-t0)/(a+(t-t0))

b and
the influence of both a and b is much smaller than compared  to  that  of  the  other  quantities. The
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Fig. 8(a-b): (a) Uncorrelated and (b) Correlated sensitivity indices of modified MC90/CE2 model

Fig. 9(a-b): (a) Uncorrelated and (b) Correlated sensitivity indices of the (BP) model

elastic modulus is the most influential variable and followed strength of concrete. The correlations
show the variable’s influences on the sensitivity indices. Figure 7 shows the sensitivity indices of
all input variables of modified hyperbolic model.

The sensitivities of the modified MC90 model remain approximately constant over the time. The
humidity influences the time function by factor βH but the influence is relatively small. The
sensitivity indices of Ec, fc and σm fluctuate over the time. The main reason for this is that these
variables are affected by the time the specimen is under loading but the effects are small. There
is clearly a large difference between the sensitivity indices between the uncorrelated and correlated
variables for the most influential quantities. In the case of the uncorrelated input quantities, Ec is
the most dominating input quantities. On the other hand, the Ec and fc are the most sensitive
quantities due to the strong correlation with each other. The numbers of cycle, mean stress and
stress amplitude have small influence.
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The sensitivity indices of the BP model are shown to be more time dependent. The main reason
behind this is that there are more combinations of time function with the input quantities. It is
seen that the most influential quantities turn out to be concrete strength. Second is the content of
the cement, when quantities are assuming the uncorrelated. Further, the stress amplitude and
frequency is the third and fourth most influential quantities. The influences of the water cement
ratio, aggregate-sand ratio and humidity not insignificant. The concrete strength is most
dominating of the quantities when considering the quantities correlation. The second dominant
quantities are the cement content and stress amplitude. The sensitivity indices of cement content
and stress amplitude decrease with increasing time. The cyclic parameter is also seen to have
considerable influence.

CONCLUSION
In the present study, a probabilistic framework is suggested for the prediction of the cyclic creep

of plain concrete considering four different cyclic creep models. Different sources of uncertainty;
physical variability, data uncertainty and model error/uncertainty, were included in the cyclic creep
analysis. The input quantities which drive the cyclic creep such as, elastic modulus, concrete
strength, mean stress, cyclic  stress  amplitude,  number  of  cycle,  humidity,  cement  content,
water-cement ratio, sand-cement ratio, geometric factor have been considered as random variables.
The uncertainty and sensitivity analysis are computed using the LHS sampling technique. It is
seen from the uncertainty analysis the complex cyclic creep the BP model has the good MQ and less
uncertainty whereas the simple Neville model has higher uncertainty and lower MQ. In contrast,
the complex model needs computational effort and more input variables. Stochastic sensitivity
analysis is performed to determine the predominant factor amongst the input variables which
influences the cyclic creep prediction. It is observed that cyclic creep is more sensitive to the elastic
modulus and strength of concrete, followed by mean stress, stress amplitude, frequency, cement
content, humidity and water cement ratio. Further, the present study of cyclic creep models brings
some interesting point. Most of the creep analysis is only sustained load; the cyclic loading effect
is neglected. Cyclic effect, neglected so far, might not be negligible for long span bridge with many
lanes or with a dense traffic of heavy trucks. This may cause the excessive time-dependent
deflection of concrete structures. The concrete structure can lose their stiffness by (1) The
degradation of concrete and (2) The creep of concrete etc. The relationship between the frequency
of the structure and its age is important for the study of the long-term behaviour of materials and
possibly for the detection of its damage. There are significant changes of the modulus of elasticity
of concrete due to cyclic creep. 

Also, the proposed approach for UQ and SA is applicable to several engineering disciplines and
the domain of cyclic creep analysis was used only as an illustration to develop the methodology. In
general, the proposed methodology provides a fundamental framework in which multiple models
can be connected through a Bayes network and the confidence in the overall model prediction can
be assessed quantitatively.

ACKNOWLEDGMENT
This research is supported by the German Research Foundation (DFG) via research training

group “Assessment of Coupled Experimental and Numerical Partial Models in Structural
Engineering (GRK 1462)” which is gratefully acknowledged by the authors.

255



Asian J. Applied Sci., 8 (4): 240-258, 2015

REFERENCES
ACI,  1992.  Prediction  of  creep,  shrinkage  and  temperature  effects  in   concrete   structures.

ACI 209R-92, American Concrete Institute, Farmington Hills, MI., USA.
Adam, I. and M.M. Re da Taha, 2011. Identifying the significance of factors affecting creep of

concrete: A probabilistic analysis of RILEM database. Int. J. Concr. Struct. Mater., 5: 97-111.
Al-Manaseer, A. and S. Ristanovic, 2005. Sensitivity of the Models for Predicting Shrinkage of

Concrete.  In:  Shrinkage  and   Creep  of  Concrete,   Gardner,   N.J.   and  J.  Weiss (Eds.).,
ACI SP-227-3, American Concrete Institute, USA., pp: 41-66.

Bazant, Z.P. and J. Kim, 1992. Improved prediction model for time-dependent deformations of
concrete: Part 5-cyclic load and cyclic humidity. Mater. Struct., 25: 163-169.

Bazant,  Z.P.  and  K.L.  Liu,   1985.    Random   creep   and   shrinkage   in   structures: Ampling.
J. Struct. Eng., 111: 1113-1134.

Bazant, Z.P. and L. Panula, 1979. Practical prediction of time-dependent deformations of concrete.
Materiaux Constr., 12: 169-174.

Bazant, Z.P. and S. Baweja, 1995. Justification and refinements of model B3 for concrete creep and
shrinkage 1. Statistics and sensitivity. Mater. Struct., 28: 415-430.

Bazant, Z.P., 1988. Mathematical Modeling of Creep and Shrinkage of Concrete. John Wiley and
Sons, New York, USA., ISBN-13: 9780471920571, Pages: 459.

Bazant, Z.P., Q. Yu and G.H. Li, 2012a. Excessive long-time deflections of prestressed box girders.
I: Record-span bridge in palau and other paradigms. J. Struct. Eng., 138: 676-686.

Bazant, Z.P., Q. Yu and G.H. Li, 2012b. Excessive long-time deflections of prestressed box girders.
II: Numerical analysis and lessons learned. J. Struct. Eng., 138: 687-696.

Bjerager,  P.  and  S.  Krenk,  1989.   Parametric   sensitivity   in   first   order    reliability   theory.
J. Eng. Mech., 115: 1577-1582.

CEB, 1990a. CEB-FIP Model Code for Concrete Structures. Corporate Executive Board, Lausanne,
Switzerland.

CEB, 1990b. CEB-FIP model code. Technical Report No. 43, Corporate Executive Board (CEB),
Lausanne, Switzerland.

CEB., 1990c. CEB-Fip model code 1990. Comite Euro-International du Beton. Bulletin
d’Information, No. 204.

Friedhelm, S., B. Rof, O.T. Bruhns, D. Artmann, H. Ruediger, K. Detlef and G. Meschke, 2009.
Lifetime-Oriented  Structural  Design  Concepts.   Springer   Science   and   Business  Media,
New York, NY., USA, ISBN-13: 9783642014628, Pages: 776.

Gaede,  K.,  1962.  Versuche  Uber   Die   Festigkeit   und   Die   Verformung  von  Beton  Bei
Druck-Schwellbeanspruchung. Deutecher Ausschuss fur Stahlbeton, Heft 144, Vertrieb Durch
Verlag von Wilhelm Ernst und Sohn, Berlin.

Hirst, G.A. and A.M. Neville, 1977. Activation energy of creep of concrete under short-term static
and cyclic stresses. Mag. Conc. Res., 29: 13-18.

ISO, 1993. Guide to the expression of uncertainty in measurement (GUM). ISO/IEC Guide 98:1993,
International Organization for Standardization (ISO), Geneva, Switzerland.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=45315.

ISO, 2008. Uncertainty of measurement-part 3: Guide to the expression of uncertainty in
measurement (GUM). ISO/IEC Guide 98-3:2008, International Organization for
Standardization (ISO), Geneva, Switzerland. http://www.iso.org/iso/catalogue_detail.htm?
csnumber=50461

256



Asian J. Applied Sci., 8 (4): 240-258, 2015

JCGM, 2008. Evaluation of measurement data-supplement 1 to the guide to the expression of
uncertainty in measurement-propagation of distributions using a Monte Carlo method. JCGM
101:2008, Joint Committee for Guides in Metrology (JCGM), France.
http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf.

Keitel, H., B. Jung, H.B. Motra and H. Stutz, 2014. Quality assessment of coupled partial models
considering soil-structure coupling. Eng. Struct., 59: 565-573.

Keitel, H. and A. Dimmig-Osburg, 2010. Uncertainty and sensitivity analysis of creep models for
uncorrelated and correlated input parameters. Eng. Struct., 32: 3758-3767.

Keitel, H., 2011. [Evaluation methods for prediction quality of concrete creep models]. Ph.D. Thesis,
Fakultat Bauingenieurwesen, Bauhaus-Universitat Weimar, Germany, (In German).

Li, C.Q. and R.E. Melchers, 1992. Reliability analysis of creep and shrinkage effects. J. Struct.
Eng., 118: 2323-2337.

Lorman, W.R., 1940. Theory of concrete creep. Proc. Am. Soc. Test. Mater., 40: 1082-1102.
Madsen, H. and Z.P. Bazant, 1983. Uncertainty analysis of creep and shrinkage effects in concrete

structures. ACI J. Proc., 80: 116-127.
Mehmel, A. and E. Kern, 1962. Elastische und Plastische Stauchungen von Beton Infolge

Druckschwell-und Standbelastung. Deutecher Ausschuss fur Stahlbeton, Heft 153, Vertrieb
Durch Verlag von Wilhelm Ernst und Sohn, Berlin.

Most, T., 2012. Variance-based sensitivity analysis in the presence of correlated input variables.
Proceedings  of  the  5th  International  Conference  on   Reliable   Engineering  Computing,
June 13-15, 2012, Brno, Czech Republic, pp: 335-352.

Motra, H.B., A. Dimmig-Osburg and J. Hildebrand, 2013a. Evaluation of experimental
measurement  uncertainty  in   engineering   properties   of  PCC  samples.  J.  Civil  Eng.  Res.,
3: 104-113.

Motra, H.B., A. Dimmig-Osburg and J. Hildebrand,  2013b.  Influence  of measurement
uncertainties on results of creep prediction of concrete under cyclic loading. Proceedings of the
8th International Conference on Fracture Mechanics of Concrete and Concrete Structures,
March 10-14, 2013, Toledo, Spain, pp: 805-814.

Motra, H.B., A. Dimmig-Osburg and J. Hildebrand, 2013c. Uncertainty quantification on creep
deflection of concrete beam subjected to cyclic loading. Proceedings of the 11th International
Conference on Structural Safety and Reliability, (ICOSSAR 2013), June 16-20, 2013, Columbia
University, New York, USA., pp: 5141-5148.

Motra, H.B., J. Hildebrand and A. Dimmig-Osburg, 2014a. Influence of specimen dimensions and
orientation on the tensile properties of structural steel. Mater. Testing, 56: 929-936.

Motra, H.B., A. Dimmig-Osburg and J. Hildebran, 2014b. Quality assessment of models with an
application to cyclic creep prediction of concrete. Int. J. Reliabil. Safety, 8: 262-283.

Neville, A.M., W.H. Dilger and J.J. Brooks, 1983. Creep of Plain and Structural Concrete. 1st Edn.,
Construction Press, London and New York, ISBN-13: 978-0860958345, Pages: 380.

Pan, Z., C.C.F. Fu and Y. Jiang, 2011. Uncertainty analysis of creep and shrinkage effects in
loading-span continuous rigid frame of sutong bridge. J. Bridge Eng., 16: 248-258.

Probst, E., 1931. The influence of rapidly alternating loading on concrete and reinforced concrete.
Struct. Eng., 9: 410-429.

Probst, E., 1933. Plastic flow in plain and reinforced concrete arches. ACI J. Proc., 30: 137-141.
Robert, C.P. and G. Casella, 2004. Monte Carlo Statistical Methods. 2nd Edn., Springer-Verlag,

New York, USA., ISBN-10: 0387212396, pp: 645.

257



Asian J. Applied Sci., 8 (4): 240-258, 2015

Ross, A.D., 1937. Concrete creep data. Struct. Eng., 15: 314-326.
Sankararaman, S., Y. Ling and S. Mahadevan, 2011. Uncertainty quantification and model

validation of fatigue crack growth prediction. Eng. Fract. Mech., 78: 1487-1504.
Schwabach, E., 2005. Verformungs-und Degradationsverhalten von Niederzyklisch Uniaxial

Druckbeanspruchtem Beton.  Dissertation   an   der   Fakultt   Bauingenieurwesen  der
Bauhaus-Universitt Weimar, Germany.

Smith, M.J. and D.G. Goodyear, 1988. A practical look at creep and shrinkage in bridge design. PCI
J., 93: 108-121.

Suter, G.T. and N.C. Mickleborough, 1975. Creep of concrete under cyclically varying dynamic
loads. Cement Conc. Res., 5: 565-575.

Teply, B., Z. Kersner and D. Novak, 1996. Sensitivity study of BP-KX and B3 creep and shrinkage
models. Mater. Struct., 29: 500-505.

Terje, K. and P. Gordana, 1992. Material Model for High Strength Concrete Exposed to Cyclic
Loading. In: Fracture Mechanics and Concrete Structures, Bazant, Z.P. (Ed.). Elsevier Applied
Science, London.

Tsubaki, T., 1993. Uncertainty of prediction. Proceedings of 5th International RILEM Symposium,
September 6-9, 1993, Barcelona, Spain, pp: 831-847.

Whaley, C.P. and A.M. Neville, 1973. Non-elastic deformation of concrete under cyclic compression.
Maga. Concrete Res., 25: 145-154.

Wubbeler, G., M. Krystek and C. Elster, 2008. Evaluation of measurement uncertainty and its
numerical calculation by a Monte Carlo method. Measurement Science and Technology No. 19,
July 2008. http://iopscience.iop.org/0957-0233/19/8/084009.

Xu, C. and G.Z. Gertner, 2008. Uncertainty and sensitivity analysis for models with correlated
parameters. Reliab. Eng. Syst. Saf., 93: 1563-1573.

Yang, I.H., 2005. Uncertainty and updating of long-term prediction of prestress forces in PSC box
girder bridges. Comput. Struct., 83: 2137-2149.

Yang, I.H., 2007a. Prediction of time-dependent effects in concrete structures using early
measurement data. Eng. Struct., 29: 2701-2710.

Yang, I.H., 2007b. Uncertainty and sensitivity analysis of time-dependent effects in concrete
structures. Eng. Struct., 29: 1366-1374.

Yu, Q., Z.P. Bazant and R. Wendner, 2012. Improved algorithm for efficient and realistic creep
analysis of large creep-sensitive concrete structures. Struct. J., 109: 665-676.

258


	AJAPS.pdf
	Page 1


