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Abstract
Background  and  Objective:  Tuberculosis   (TB)  is  an  infectious  disease  that  poses  a  threat  to  the  human  population  in  the  world.
The aimed of study discussed are to build a model SIR and SEIR tuberculosis disease transmission and analysis for both models.
Methodology: The SIR model is a system of ordinary differential equations four dimension and SEIR model is a system of ordinary
differential equations five dimension. Both models are then analyzed by building a mathematical theorem, which guarantees the existence
of a case of TB, the disease-free equilibrium phase and stage of disease endemic TB.  Results:  Three  theorems proving using the
Lyapunov function method. Basic reproduction number R0 also be obtained from the two models, namely, if R0>1 then obtained
asymptotically stable equilibrium endemic globally and if the basic reproduction number R0#1, acquired the disease-free equilibrium
global asymptotically stable. Conclusion: The results of both models can be used to determine the status of TB disease in a region by
conducting a simulation using data in the region.

Key words:  TB disease, SIR and SEIR model, Lyapunov function, global stability, free disease, endemic

Received:  January 28, 2016 Accepted:  May 05, 2016 Published:  June 15, 2016

Citation:  Syafruddin Side, Wahidah Sanusi, Muhammad Kasim Aidid and Sahlan Sidjara, 2016. Global stability of SIR and SEIR model for tuberculosis disease
transmission with lyapunov function method. Asian J. Applied Sci., 9: 87-96.

Corresponding Author:  Syafruddin Side, Department of Mathematics, State University of Makassar, Indonesia

Copyright:  © 2016 Syafruddin Side et al.  This is an open access article distributed under the terms of the creative commons attribution License, which
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest:  The authors have declared that no competing interest exists.

Data Availability:  All relevant data are within the paper and its supporting information files.

http://crossmark.crossref.org/dialog/?doi=10.3923/ajaps.2016.87.96&domain=pdf&date_stamp=2016-06-15


Asian J. Applied Sci., 9 (3): 87-96, 2016

µ Nh h

Sh

µh

µh
µh

µh

Rh

Ii Ih

h hI h

h

h

INTRODUCTION

World Health Organization (WHO)1 states that in 1995,
0.33 of the world population has been infected tuberculosis
(TB), 9 million new patients and 3 million deaths worldwide,
95% of TB cases and 98% of deaths worldwide occur in
developing countries.

The TB infection can be divided into two kinds, namely,
latently infected and actively infected. Latent infected is a
condition,  in which the patient’s body found in TB bacteria
that are dormant (sleeping), does not cause TB disease in the
patient’s body, but in a certain period of time that are dormant
bacteria was able to get up and be active. People who are
infected with latent called latent TB patients. A person with
latent TB is not spread by TB bacteria to people who are
vulnerable to TB disease. Actively infected is a condition in
which the patient’s body to be active TB bacteria breed and
cause symptoms of TB disease. Actively infected person is
called active TB patients. People with active TB disease can
transmit TB to people who are susceptible to tuberculosis2.

People with latent TB and active TB patients can be cured,
but they are not immune or resistant. Within a certain period
of tuberculosis patients who had recovered can be re-infected
TB. The events of the infection by tuberculosis bacteria can be
described that in a population is divided into subpopulations.
Namely subpopulations are susceptible that are vulnerable to
TB disease, infectious latent is a population of patients with
latent tuberculosis, active infectious is a infected TB disease
and recovered patients are cured of latent tuberculosis2.

Mathematical models have found several study propose
compartmental dynamics such as Susceptible, Infected and
Recovered (SIR) models3-8 and Susceptible, Exposed, Infected
and Recovered (SEIR) models9-14.

In this study, analysis of the global stability for the models
SIR and SEIR will be studied by Lyapunov function method.
This method is a powerful technique for multidimensional
system for establishing conditions for global dynamics of the
four dimensional SIR model and the five dimensional SEIR
model of TB disease. Both models are resolved through the
use of Lyapunov functions adopted from Tewa et al.15 and
Syafruddin and Noorani16. In particular, this study follows
closely the ideas used recently by Syafruddin and Noorani16 to
establish the global stability of the endemic equilibrium.

MATERIALS AND METHODS

SIR model formulation for TB: Changes that occur in every
human population on the transmission of TB disease SIR
model adopted by Side17 can be interpreted in the  form  of
Fig. 1.

Fig. 1: Human population for TB transmission SIR model

The rate of change in the number of people who easily
infected with respect to time is  affected by the numberhdS

dt
 
 
 

of births that is µhNh a human population reduced the number
of people infected by the virus directly γ$hIhSh, the number of
people infected by the virus from infected humans are healthy
$hSh and the number of people who die µhSh can be
interpreted as follows in Eq. 1:

(1)h
h h h h h h h h h

dS
N S I S S

dt
      

The rate of change in the number of people infected with
respect to time is  influenced by the amount of humanhdI

dt
 
 
 

population has been infected because the virus directly
reduced the number of deaths of infected human population
µhIh and the number of human populations to recover from an
outbreak δhIh can be interpreted as follows in Eq. 2:

(2) h
h h h h h

dI
S I

dt
     

The rate of change in the number of people infected with
respect to time is  influenced by the amount of humanhdI

dt
 
 
 

population has been infected because as human virus infected
human population reduced the number of deaths µhIi and the
number of infected human populations recovered from
outbreaks nhIh can be interpreted in Eq. 3 as follows:

(3) i
h h h h h i

dI
I S I

dt
     

The rate of change in the number of human populations
recover over time  is the difference rather than thehdR

dt
 
 
 

number  of  people  who  have  recovered  from  the  infection
δhIh  and  µhIi  dengan  jumlah  kematian  manusia  pulih  µhRh
the number of human deaths recovered can be interpreted in
Eq. 4 as follows:
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(4)h
h h h i h h

dR
I I R

dt
    

Figure 1 can also be interpreted in the form of a
mathematical model that the model is not linear differential
Eq. 5 as follows:

(5)h
h h h h h h h h h

dS
N S I S S

dt
      

 h
h h h h h

dI
S I

dt
     

 i
h h h h h i

dI
I S I

dt
     

h
h h h i h h

dR
I I R

dt
    

With Nh(t) = Sh(t)+Ih(t)+Ii(t)+Rh(t) or:

Rh(t) = Nh(t)-(Sh(t)+Ih(t)+Ih(t))

The system of Eq. 5 is not linear differential equations to
model SIR of TB. The resulting model can be simplified by
assuming the following fractions:

h h i

h h h

S I I
x(t) , y(t) and z(t)

N N N
  

So the human population model for the transmission of
TB disease can be simplified as shown in Eq. 6:

(6)h h h h

dx
x xy x

dt
     

h

dy
x y

dt
  

h

dz
xy z

dt
   

With " = µh+δh dan 0 = µh+nh.

SEIR model formulation for TB: Changes that occur in every
human population on the transmission of TB disease for SIR
model can be interpreted in the form of Fig. 2.

Fig. 2: Human population for TB transmission with SEIR model

The rate of change in the number of people who easily
infected with respect to time is  affected by the numberhdS

dt
 
 
 

of births human population is µhNh reduced the number of
people infected by the virus directly $hSh, the number of
people showing symptoms of infection FhSh and the number
of healthy human beings who die µhSh can be interpreted in
Eq. 7 as follows:

(7) h
h h h h h h

dS
N S

dt
      

The rate of change in the number of people who show
symptoms of infection over time is  affected by thehdE

dt
 
 
 

number of people showing symptoms of infection FhSh
reduced the human population has been infected because the
virus directly NhEh, the number of human population has been
infected because the virus from infected humans γNhIhEh and
the number of deaths of human populations µhEh berikut can
be interpreted in Eq. 8 as follows:

(8)h
h h h h h h h h h

dE
S I E E E

dt
      

The rate of change in the number of people infected by
the virus of the time is influenced by the amount ofhdI

dt
 
 
 

human population has been infected because the virus
directly $hSh and the number of people showing symptoms of
infection (Exposed) NhEh reduced the number of deaths of
infected human population µhIh and the number of human
populations to recover from an outbreak δhIh can be
interpreted in Eq. 9 as follows:

(9) h
h h h h h h h

dI
S E I

dt
       
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The rate of change in the number of people infected by
the virus from infected humans is  influenced by theidI

dt
 
 
 

human population has been infected because the virus
infected humans reduced the number of deaths of infected
human population µhIh and the number of human populations
to recover from an outbreak nhIh can be interpreted as follows
in Eq. 10:

(10) i
h h h h h i

dI
I E I

dt
     

The rate of change in the number of human populations
recover over time  is the difference of the number ofhdR

dt
 
 
 

people who have recovered from the infection δhIh and µhIi the
number of human deaths recovered µhRh can be interpreted
in Eq. 11 as follows:

(11)h
h h h i h h

dR
I I R

dt
    

Figure 2 can also be interpreted in the form of a
mathematical model that the model is not linear differential
Eq. 12 as follows:

(12) h
h h h h h h

dS
N S

dt
      

h
h h h h h h h h h

dE
S I E E E

dt
      

 h
h h h h h h h

dI
S E I

dt
       

 i
h h h h h i

dI
I E I

dt
     

h
h h h i h h

dR
I I R

dt
    

With Nh(t) = Sh(t)+Eh(t)+Ih(t)+Ii(t)+Rh(t) or:

Rh(t) = Nh(t)-(Sh(t)+Eh(t)+Ih(t)+Ii(t))

The system of Eq. 12 is not linear differential equations to
model the SIR of TB disease. The resulting model can be
simplified by assuming the following fractions:

h h i h

h h h h

S I I E
x(t) , y(t) , z(t) , dan u(t)

N N N N
   

So the human population model for the transmission of
TB disease can be simplified  as  shown  in  Eq.  12  following
Eq. 13 and 14:

(13)h h h h

dx
x x x

dt
    

h h h h

du
x yu u u

dt
       

h h

dy
x u y

dt
     

h

dz
yu z

dt
   

With:

α = µh+δh dan η = µh+nh (14)

RESULTS AND DISCUSSION

Positivity of solutions for SIR model: Since the system 5 is
dealing  with  population  of  TB,  all  the  variables  and
parameters of the model are non-negative. It was claimed the
following:

Theorem 1: Let (Sh(t)>0, Ih(t)>0, Ii(t)>0, Rh(t)>0) the completion
of the system 5 with the initial state (S0h, I0h, I0i, R0h) and
compact set as in Eq. 15:

(15)  4
h h i h hD S (t),  I (t), I (t),  R (t) R ,L N  

To model the system 5, D is a positively invariant set that
covers all settlement in R4+.

Proof: Consider the Lyapunov function candidate for the
following:

L(t) = Sh+Ih+Ih+Rh

Derivative of the function with respect to time satisfied as
in Eq. 16:

(16)

h h i h

h h h h h h h h h h h

h h h h h h h h i

h h h i h h

h h h

dL
S I I R

dt

µ N S I S µ S S

(µ ) I I S (µ ) I

I I µ R

µ N µ L(t)

         
 

       
      

    
 
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Not difficult to prove that in Eq. 17:

(17)h h h h

dL
N L(t) 0 for L N

dt
    

Then,   from   the   above  Eq.  17,   it   is   known   that
dL/dt#0 that means that D is a set of positive invariant.
Conversely, by completing the system 16 is obtained that,

 which L(0) is the initial condition of L(t)hµ t
h0 L(t) N +L(0)e¯  ,

in Eq. 18.
Therefore, if:

t64, 0#L(t)#Nh (18)

and concluded that D is a set of positive invariant and cover all
of the settlement in This proves the theorem.4R .

This  theorem  guarantees  the  existence  of  TB  disease
in an area that was initially not found a virus carrier TB bacteria
then changed after the discovery of the population suspected
but not yet infected, Sh(t)>0, infected with TB, Ih(t)>0, TB
infected by people who have a positive TB, Ih(t)>0 and
recovered human Rh(t)>0 from bacteria TB. This theorem also
gives the conclusion that further investigation of TB cases this
stage so that we can identify the stage of disease spread TB to
the endemic phase of SIR model.

Positivity of solutions for SEIR model: Since the system 12 is
dealing with population of TB, all the variables and parameters
of the model are non-negative. It was claimed the following:

Theorem  2:  Let  (Sh(t)>0,  Eh(t)>0,  Ih(t)>0,  Ii>0,  Rh(t)>0)
completion    of    the    system    12    with    the    initial    state
(S0h, E0h I0h, I0i R0h) and compact set in Eq. 19:

(19)  5
h h h i h hD S (t),  E (t),  I (t),   I (t),   R (t) R ,   L N  

To model the system 12, D is a positively invariant set that
covers all settlement in 5R .

Proof: Consider the Lyapunov function candidate for the
following:

L(t) = Sh+Eh+Ih+Ii+Rh

Derivative of the function with respect to time satisfied in
Eq. 20:

(20)

h h h i h

h h h h h h h h

h h h h h h h h h

h h h h h h h h

h h i h h h i h h

h h h

dL
S E I I R

dt

µ N ( µ ) S S

I E E µ E S

E (µ ) I I E

(µ ) I I µ I µ R

µ N µ L(t)

           
 

        
      
      

     

 

Not difficult to prove that Eq. 21:

(21)h h h h

dL
N L(t) 0  for L N

dt
     

Then,  from  the  above  equation  it  is  known  dL/dT#0,
that  means  D  is  a  set   of   positive   invariant.   Conversely,
by  completing  the  system  12  is  obtained  that,

 which L(0) is the initialcondition of  L(t).hµ t
h0 L(t) N L(0)e¯   ,

Therefore, if t64, 0#L(t)#Nh and concluded that D is a set
of positive invariant and cover all of the settlement in  This5R .
proves the theorem.

This theorem guarantees the existence  of  TB disease in
an area that was initially not found a virus carrier TB bacteria
then changed after the discovery of the population suspected
but not yet infected, Sh(t)>0, exposed TB Rh(t)>0 infected TB,
Ih(t)>0, infected TB by people who have a positive TB, Ii(t)>0
recovered TB, Rh(t)>0. This theorem also gives the conclusion
that further investigation of TB cases this stage so that it can
identify the stage of disease spread TB endemic to the stage
using a SEIR model.

Global stability analysis of the SIR and SEIR model: The basic
reproduction number R0 of the system found by using the
method of Side17 and Diekmann et al.18, R0 for the system are
in Eq. 22:

R0 = αηµh (22)

For SIR model and SEIR model is in Eq. 23:

R0 = µhξηα (23)

With > = µh+Nh, " = µh+δh and 0 = µh+nh

Global stability of disease-free equilibrium for SIR model:
System  5  always  has  a  disease-free  equilibrium

 which means the disease willh h i h h
* * * * *P (S , I , S , R ) (N , 0, 0, 0)  ,
disappear. This section will examine the behavior of the global
balance of disease-free for the system 5.
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Theorem 3:  If R0#1, then the disease-free equilibrium P* for
SIR model SIR is stable asymptotic global stage in D.

Proof: Suppose candidate Lyapunov function is in Eq. 24:

(24)h h h h i h
*V(t) (S S lnS ) I I R    

By differentiating function of time obtained by the
following in Eq. 25:

(25)

h
h h i h

h

h h h h h h h h h

h
h h h h h

h

h h h h h i h h h i h h

h h
h h h h h h h h h i h h

h h

*

*

*
* *

*

S
V(t) S 1 I I R

S

(µ N S I E µ S )

S
1 S (µ ) I

S

I S (µ ) I I I µ R

S S
µ N 1 µ S 1 S µ I µ I µ R

S S

 
         
 

    

 
        

 
        

   
             

   



Using terms $h = 0 and Eq. 25 can be rewritten as:h h
*S N ,

h h
h h h h h h h i

h h

*

*

S S
V(t) µ N 1 µ N 1 µ I µ I

S S

   
           

   



(26)

h h
h h h h h i h h

h h

2
h h

h h h h h i h h

h h

*

*

*

*

S S
V (t) µ N 2 µ I µ I µ R

S S

(S S )
µ N µ I µ I µ R

S S

 
       

 


    



Therefore,  by using advanced LaSalle19 onV(t) 0


Lyapunov theorem, finite set of defined each settlement is
contained in the largest invariant set  is ah h h

*S S , R 0 

singleton {P*}. This means that the disease-free equilibrium P*
is the global stage is a stable asymptotic in D. This concludes
the proof.

Global stability theorem SIR model explains about the
stage rather than the presence of TB cases as described in
theorem 1. This step explains that if an individual is infected
with TB but R0#1. It means will not cause another individual
infected. This means that in the region TB disease can still be
controlled and are at that stage is not alarming.

Global stability of disease-free equilibrium for SEIR model:
System  12  always  has  a  disease-free  equilibrium

 which means the diseaseh h h i h h
* * * * * *P (S , E , I , I , R ) (N , 0, 0, 0, 0) 

will disappear. This section will examine behavior of global
balance of disease-free for system.

Theorem  4:  If  R0#1,  then  the  disease-free  equilibrium  P*
for SIR model SEIR is stable asymptotic global stage in D.

Proof: Suppose candidate Lyapunov function is in Eq. 27:

(27)h h h h h i h
*W(t) (S S lnS ) E I I R     

By differentiating function of time obtained by the
following Eq. 28:

h
h h h i h

h

*S
W(t) S 1 E I I R

S

 
           
 



(28)

 

   
 

 

h
h h h h h h h h

h

h h h h h h h h h h h

h h h h h h h h h h

h h i h h h i h h

*

*

S
W(t) μ N σ β μ S μ N

S

σ β μ S σ S γφ I φ μ E

         β S φ E δ μ I γφ I E

μ I δ I μ I μ R

     

     

     

    



Using terms $h = Fh = 0 and Eq. 28 can beh h
*S N ,

rewritten as in Eq. 29:

h h
h h h h h h h h h i

h h

*

*

S S
W(t) μ N 1 µ N 1 µ E µ I µ I

S S

   
            

   


h h
h h h h h i h

h h

*

*

S S
W(t) μ N 2 µ (E I I R )

S S

 
        

 


(29)
2

h h
h h h h h i h

h h

*

*

(S S )
μ N µ (E I I R )

S S


    

Therefore, and by using advanced LaSalle19 onW(t) 0

Lyapunov theorem, finite set of defined each settlement is
contained in the largest invariant set  is ah h h

*S S , R 0 

singleton {P *}. This means that the disease-free equilibrium P*
is the global stage is a stable asymptotic in D. This concludes
the proof.

Global stability theorem for this SEIR the model describes
the  stages  of  the  existence  of  TB  cases  as  described  in
theorem 2. This step explains that if an individual is infected
with  TB  but  R0#1.  It  means  it  will  not  cause  other
individuals  infected.  This  means  that  in  the  region  TB
disease can still be controlled and are at that stage is not
alarming.
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Global stability of the endemic equilibrium for SIR model:
Simplify the SIR model of the system of Eq. 5 to obtain the
following Eq. 30:

h
h h h h h h h h h

dS
N S I S S

dt
      

 h
h h h h h

dI
S I

dt
     

(30) i
h h h h h i

dI
I S I

dt
     

System 30 has an equlibrium point h h i
** ** ** **P (S , I , I ) D 

called endemic equilibrium and satisfied h h i
** ** **S 0, I 0, I 0  

with:

2 2 2
h h h h h h h

h 2
h

** (µ ) ( µ ) 2µ ( )
S

2

             




 2 2 2
h h h h h h h h

h 2
h

**
(µ ) ( µ ) 2µ ( )

I
2

              




and:

 2 2 2 2
h h h h h h h h h

h 2
h

**
µ (µ ) (µh ) ( µ ) 2µ ( )

I
2

               




The following theorem gives a global explanation of the
endemic equilibrium system 30.

Theorem 5:  If R0>1 then the positive equilibrium state of the
system are endemic 30 exists and asymptotic global stage is
stable on D, with the assumption that in Eq. 31:

(31)

h h
h h

h

h h

h h h
h h

i

**

**

**

**

**

S
( µ )

I

S S

I S
( µ )

I

 
  


 
     


with  (δh+µh) are the rate of infected 1 to recovered human
and   the   rate   of   birth/death  human  population  and  also
(n h+µh) are the rate of infected 2 to recovered human and the
rate of birth/death human population.

Proof: Suppose a Lyapunov function is in Eq. 32:

(32)h h h h h h i i i
** ** **V(t) (S S lnS ) (I I ln I ) (I I ln I )     

Derive the Eq. 32 to obtain Eq. 33 the following:

h h i
h h h

h h i

** ** **S I I
V(t) S 1 I 1 I 1

S I I

     
                 
     



h h h h
h h h h h h h h h

h h hh

h i h i
h h h h h i

h i h i

** ** **
** ** **

**

** **
** **

** **

S S S I
V (t) µ N 1 µ S 1 S (1 ) I S

S S IS

S I I I
1 (µ ) I (1 ) (µ ) I 1

S I I I

   
              

   
   
              

   



(33)

Substitution assumption in Eq. 31 into Eq. 33 is obtained
Eq. 34:

(34)

h h i i
h h h h h

h ih i

2 2
h h i i

h h h h h

h h i i

** **
** **

** **

* *
** **

* *

I I I I
V (t) S 1 1 I S (1 1 )

I II I

(I I ) (I I )
S I S

I I I I

 
           

 
  

    
 



Equation  34  ensures  that,  for  all  (Sh  (t),  Eh  (t),V(t) 0


Ih (t), Ii (t))0D and  satisfied fulfilled if and only ifV(t) 0


 and h h h h
** **S S , I I  i i

**I I .
Then   the   balance   P**   is   only   positive   invariant   set

of     system     of     Eq.     30     are     contained     entirely 
within    and  h h i h h h h i h

** ** **L S (t), I (t), I (t) , S S , I I , I I   

subsequently by asymptotic stability theorem19, a positive
balance P** is endemic asymptotic global stage is stable in D.
This proves the theorem.

Global stability theorem for SIR models at this stage to
explain that if an individual is infected with TB disease, R0>1,
then that individual will transmit the virus to other individuals.
This means that at this stage of  TB disease is endemic because
it no longer can be controlled and is at an alarming stage, thus
becoming a threat to the human population in the area.

Global stability of the endemic equilibrium for SEIR model:
Simplify SEIR model in the system of Eq. 12 obtain the
following Eq. 35:

 h
h h h h h h

dS
N S

dt
       

h
h h h h h h h h h

dE
S I E E E

dt
      
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(35) h
h h h h h h h

dI
S E I

dt
       

 i
h h h h h i

dI
I E I

dt
     

System    35    has    a    equilibrium    point
 known as endemic equilibrium andh h h i

** ** ** ** **P (S , E , I , I ) D 

satisfied  with:h h h h
** ** ** **S 0, E 0, I 0, I 0   

2 2
h h h

h 2
h h h h

h h

h h h h h h h

h h h h h h h

** T(T 4U 2 V) V T V
E

2 (µ )

T µ

U (µ ) (µ )

U (µ )(µ ) (µ )

       


    
  

        

        

h h h h h h h h
h h

h h h h h h h h

**
** **µ µ (µ ) E

S , I
(µ ) (µ ) (µ )

      
 

         

and:

h h h h h h h h
i

h h h h h

**
** µ (µ ) (µ ) E

I
(µ ) (µ )

       


     

The following theorem will provide a global explanation
of endemic equilibrium 35.

Theorem 6: If R0>1, then the positive equilibrium state of
endemic system 35 exists and asymptotic global stage is
stable on D, with the assumption that in Eq. 36:

(36)

h h h h
h h

h

h h

h h

h h h
h h

i

**

**

**

**

**

**

S E
( µ )

I

S S

E E

I S
( µ )

I

   
  


 





    

with (δh+µh) are the rate of infected 1 to recovered human and
the rate of birth/death human population and also (nh+µh) are
the rate of infected 2 to recovered human and the rate of
birth/death human population.

Proof: Suppose a Lyapunov function in Eq. 37 is:

h h h h h h h h h i i i
** ** ** **W(T) (S S lnS ) (E E ln E ) (I I ln I ) (I I ln I )       

(37)

Derive the Eq. 37 to obtain 38 the following:

h h h i
h h h i

h h h i

** ** ** **S E I I
W(t) S 1 E 1 I 1 I 1

S E I I

       
                        
       



h
h h h h h h h h

h

h h h h h h h h h

h
h h h h h h h h

h

h
h h h h h h h h h h h h

h

h
h h h h h

h

**

**

**
**

**
**

**
**

S
W(t) µ N ( µ )S µ N

S

( µ )S S I E

E
(µ ) E S I E

E

I
(µ ) E S E (µ )I S

I

I
E (µ )I

I

       

         

        

         

   



Then it have:

(38)

h h
h h h h

h h

h h h
h h h h

h h h

h i
h h h h h h

h i

i
h h i h h h

i

h h
h h i h h

h h

**
**

**

** **
** **

**

**
**

**

**

**
** **

**

S S
W(t) µ N 1 µ S 1

S S

E S I
S 1 S 1

E S I

E I
I E 1 I E

E I

I
(µ ) I I E

I

E I
(µ ) I E 1

E I

   
         

   
   

          
   

 
        

 

      


    





h
h h h h h

h

h i
h h i

h i

** **
**

**
** **

E
µ E 1 (µ ) I

E

I I
1 (µ ) I 1

I I


  


 
     

 
   
          

   

Substitution assumption in Eq. 36 into Eq. 38 is obtained
Eq. 39:

(39)

h
h h h h h h h

h

h h
h h i

h h

h
h h h

i

2 2
h h i i

h h h h h h h

h h i i

** ** **
**

**
**

**

**
**

* *

* *

I
W(t) (µ ) I 1 ( S E )

I

I I
1 (µ ) I 1

I I

I
I E 1

I

(I I ) (I I )
( S E ) I E

I I I I

 
         

 
   
           

   
 

   
 

  
       

 



Equation  39  ensures  that    for  all  (Sh (t),  Eh (t),W(t) 0

Ih (t),  Ii (t))0D  and    fulfilled  if  and  only  ifW(t) 0

 and h h h h h h
** ** **S S , E E , I I   i i

**I I .
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Then the balance P** is only positive invariant set of
system  of  Eq.  35  are  contained  entirely  within

  h h h i h h h h h h i i
** ** ** **L S (t), E (t), I (t), I (t) , S S , E E , I I , I I    

and subsequently by asymptotic stability theorem19, endemic
positive balance P** is endemic asymptotic global stage is
stable in D. This proves the theorem.

Global stability theorem for SEIR model at this stage to
explain that if an individual is infected with TB disease R0>1,
then that individual will transmit the virus to other individuals.
This means that at this stage of TB disease is endemic because
it no longer can be controlled and is at an alarming stage, thus
becoming a threat to the human population in the region.

Korobeinikov20 and Korobeinikov and Maini21 have used
the Lyapunov function method for SEIR and SEIS epidemic
models. Syafruddin and Noorani7 and Tewa et al.15 have used
the Lyapunov function method for SIR and SEIR model dengue
fever disease. Side17 has made mathematical modeling SIR for
tuberculosis disease but has not discussed the SEIR model,
global stabilty and the Lyapunov function method. In this
study, Lyapunov function method is used to SIR and SEIR
model for Tuberculosis disease.

CONCLUSION

This study is acquired two mathematical models in TB
transmission is SIR and SEIR. Both models were analyzed using
Lyapunov function to explain the stability of the global TB
disease. The first and second theorem explains the existence
of TB disease in the region. The third and fourth theorem
describes TB disease-free equilibrium, when the basic
reproduction  number  R0#1  and  the  two  last  theorem
describes endemic TB disease, when the basic reproduction
number R0>1. All of theorem has been proved using Lyapunov
function.

ACKNOWLEDGMENT

We would like to thank DIKTI 683/UN36/PL/2015 for
financial support.

REFERENCES

1. Heryanto, D.A.M. and M.K. Freddy, 2014. Treatment history of
tuberculosis mortality cases in Bandung district. J. Ekologi
Kesehatan, 3: 1-6.

2. Prihutami, L., 2009. Analisis kestabilan model penyebaran
penyakit tuberculosis. Universitas Diponegoro, Semarang.
http://eprints.undip.ac.id/5201/1/Lisa_P.pdf

3. Takahashi, A., J. Spreadbury and J. Scotti, 2010. Modeling the
spread of tuberculosis in a closed population. May 28, 2010.
http://educ.jmu.edu/~strawbem/math_201/final_reports/S
cotti_Takahashi_Spreadbury_Final.pdf

4. Dontwi,     I.K.,     W.     Obeng-Denteh,     E.A.     Andam     and
L. Obiri-Apraku, 2014. A mathematical model to predict the
prevalence and transmission dynamics of tuberculosis in
Amansie  West  District,  Ghana.  Br.  J.  Math.  Comput.   Sci.,
4: 402-425.

5. Idianto, B. Prihandono and N. Kusumastuti, 2013. Analisis
kestabilan lokal model dinamika penularan tuberkulosis satu
strain dengan terapi dan efektivitas chemoprophylaxis.
Buletin Ilmiah Mat. Stat. dan Terapannya, 2: 173-182.

6. Fredlina, K.Q., T.B. Oka and I.M.E. Dwipayana, 2012. Model sir
(susceptible, infectious, recovered) untuk penyebaran
penyakit tuberkulosis. e-Jurnal Matematika, 1: 52-58.

7. Syafruddin, S. and M.S.M. Noorani, 2013. A SIR model for
spread of dengue fever disease (simulation for south sulawesi
Indonesia and selangor Malaysia). World J. Mod. Simulation,
9: 96-105.

8. Atkins, T., 2008. Modeling transmission dynamics of
tuberculosis inclunding various latent periods. M.Sc. Thesis,
University of Central Florida, Orlando, Florida.

9. Guihua, L. and J. Zhen, 2004. Global stability of an SEI
epidemic model. Chaos Solitons Fractals, 21: 925-931.

10. Li, G. and Z. Jin, 2005. Global stability of a SEIR epidemic
model with infectious force in latent, infected and immune
period. Chaos Solitons Fractals, 25: 1177-1184.

11. Li, G., W. Wang and Z. Jin, 2006. Global stability of an SEIR
epidemic model with constant immigration. Chaos Solitons
Fractals, 30: 1012-1019.

12. Syafruddin, S. and M.S.M. Noorani, 2011. SEIR model for
transmission of dengue fever. Int. J. Adv. Sci. Eng. Inform.
Technol., Vol. 2. 10.18517/ijaseit.2.5.217

13. Syafruddin, S. and M.S.M. Noorani, 2010. SEIR model for
transmission of dengue fever in Selangor Malaysia. Int. J. Mod.
Phys.: Conf. Ser., 1: 1-5.

14. Rangkuti, Y.M., S. Side and M.S.M. Noorani, 2014. Numerical
analytic solution of SIR model of dengue fever disease in
south Sulawesi using homotopy perturbation method and
variational   iteration  method.  J.  Math.  Fundamental  Sci.,
46: 91-105.

15. Tewa, J.J., J.L. Dimi and S. Bowong, 2009. Lyapunov functions
for a dengue disease transmission model. Chaos Solitons
Fractals, 39: 936-941.

16. Syafruddin, S. and M.S.M. Noorani, 2013. Lyapunov function
of SIR and SEIR model for transmission of dengue fever
disease. Int. J. Simulation Process Modell., 8: 177-184.

17. Side, S., 2015. A susceptible-infected-recovered model and
simulation for transmission of tuberculosis.  Adv.  Sci.  Lett.,
21: 137-139.

95



Asian J. Applied Sci., 9 (3): 87-96, 2016

18. Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz, 2000.
Mathematical Epidemiology of Infectious Diseases: Model
Building, Analysis and Interpretation. John Wiley and Sons,
New York, ISBN: 9780471492412, Pages: 303.

19. LaSalle,  J.P.,  1976.  The  Stability  of  Dynamical  Systems.
SIAM, Philadelphia, ISBN: 9781611970432, Pages: 73.

20. Korobeinikov, A., 2004. Lyapunov functions and global
properties for SEIR and SEIS epidemic models. Math. Med.
Biol.: J. IMA., 21: 75-83.

21. Korobeinikov, A. and P.K. Maini, 2004. A Lyapunov function
and global properties for SIR and SEIR epidemiological
models with nonlinear incidence. Math. Biosci. Eng., 1: 57-60.

96


	AJAPS.pdf
	Page 1


