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Abstract
Background and Objective: The dynamic studies of vibrating bodies resting on an elastic foundation carrying moving distributed load
are of considerable importance. To this end, several methods have been proposed to address this class of dynamical problems. The aim
of this study was to obtain a closed form solution to the new foundation model and analyze basically for exponentially decaying
foundation for both constant magnitude and harmonic variable magnitude. Materials and Methods:  The versatile solution technique
called Garlerkin and integral transformation were used to obtain solution to the governing equation. Solutions obtained were calculated
for various values of foundation modulli F0 and spatial coordinates x. Results: Analyses show that the higher values of the foundation
modulli decrease the transverse deflections of the non-uniform Bernoulli-Euler beam while transverse deflections of the beam decrease
as the spatial coordinates x decreases under the actions of moving distributed loads. Conclusion:  The paper presents closed form solution
for the displacement response of non-uniform beam carrying distributed load and it was observed that the responses amplitude of the
constant load is smaller than that of the variable magnitude load. This shows that resonance is reached earlier in harmonic variable
magnitude problem.
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INTRODUCTION

In the past few years, authors in the area of applied
Mathematics  and  Engineering  have   considered  problems
of dynamic vibration of beams and plates resting on or
without an elastic foundation1-6. Oftentimes, both analytical
and numerical methods are  widely  used in solving the
moving load problems on elastic structures. Examples of
moving loads include running across the bridge, cars, trains,
cranes etc., which causes elastic structures to vibrate
intensively as they acted  on  them especially at high
velocities.

Various researches have worked on the flexural vibration
of elastic structures having uniform cross sections whether the
inertia effects of the moving load is considered or not7-13.
Among studies  whose  non-uniform  structural  members
have been subjected to concentrated or distributed forces is
the  attempt  of  Wu  and  Dai14.  They  used  the  transfer
matrix  method  to investigate the dynamic responses of
multi-span  non-uniform  beams  under  moving  load. In a
later  development,   Oni15   investigated  the  response  of
non-uniform beam  resting  on elastic foundation to several
moving masses. The  deflection  of  the non-uniform beam
was calculated for several values of foundation modulli and
shown graphically as a function of time. Dugush and
Eisenberger16  also  considered  the  dynamic behavior of
multi-span non-uniform team traversed by a moving load at
constant and variable velocities. They used both modal
analysis direct methods.

More recently, Omolofe et al.17 studied the transverse
motion of non-prismatic deep team under the actions of
variable magnitude moving loads. Omolofe and Ogunyebi18

considered  the  dynamic  characteristics  of  a  rotating
Timoshenko beam subjected to a variable magnitude load
traveling at varying speed.

This  present  study, therefore, focused on response of
non-uniform beams resting on exponentially decaying
foundation and under uniformly distributed load.

MATERIALS AND METHODS

Definition of the problem
Assuming non-uniform simply supported beam with length
L under distributed load: The distributed loads Mi move
across the beam starting at time t = 0 with constant velocity Ci.
The equation of motion for the system is given by the fourth
order partial differential Eq.15:
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where, Q(x, t) is the shear force, q(x, t) is the constant moving
distributed force acting on the beam, µ is the mass of the
beam per unit length L, b is the material damping intensity,
y(x, t) is the vertical response of the beam, D(x, t) is the flexural
moment and t is time.

The flexural moment acting on the beam across section
is related to the vertical response as:

(3)   
2
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where, EI (x) the flexural rigidity of the beam, E is the young
modulus.

The distribution of the non-uniform characteristics may
be assumed as power functions. The parameters " and n are
used to approximate the actual non-uniformity of the beam
given as:

(4a)   n 2

oI x I 1 x


  

(4b)   n

ox 1 x    

(4c)   n

ob x b 1 x  

where,  I(x) is the variable moment of inertia of the be beam,
Io, µo and bo are the beam characteristics at x = 0. The
boundary conditions  depend  on  the  constraints  at the
beam ends, however for a simply supported beam whose
length is L, the vertical displacement at the beam ends are
given as:

(5a)   y 0, t y L, t 0 

(5b)   y 0, t y L, t 0  

where dash means derivative with respect to x.
It is assumed that the initial conditions are:
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(6)   2
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Analysis of non-uniform beam with exponentially decaying
foundation to constant magnitude moving distributed
forces: In this study, define the exponential decaying elastic
foundation F(x) as:

(7)x
oF(x) F e

where, λ is a constant and Fo is the elastic foundation constant
Furthermore, the constant vertical excitation acting on the
beam is chosen as:

(8)iq(x, t) PH(x c t) 

The distributed load is assumed to be of mass M and the
time t is assumed to be limited to that interval of time within
the mass on the beam, that is:

0<f (t) < L (9)

and H(x-ct) is the Heaviside function defined as:

(10a)  1, x 0
H x ct

0, x 0

   

with the properties:

  d
H x ct (x ct)

dx
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(10b)  0,     x ct
H x ct f (x)

f (x), x ct

   

where, δ(x-ct) represents the Dirac delta function and H(x-ct)
is a typical engineering function made to measure
engineering applications which often involved functions that
are either “off” or “on”. ci is the velocity of the ith particle of the
system, t is the travelling time substituting Eq. 2-6 and 7 into
Eq. 1:

Taking n = 1 for simplicity yields:
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To the authors best of knowledge, a closed form solution
to the fourth order Partial Deferential Eq. 2 governing the
motion of the slender beam under the actions of moving
force, does not exist. It is desirable to obtain some vital
information about the vibrating system.

Approximate analytical solution: To solve the beam problem
above in Eq. 11, it shall use the versatile solution technique
called Galerkin’s method often used in solving diverse
problems involving mechanical vibrations17 . The equation of
the motion of an element of the beam is generally
symbolically written in the form:

(12)y(x, t) q(x, t) 0  

where,  Γ is the differential operator with variable coefficients,
y(x, t) is the beam displacement, q(x, t) is the load acting on
the beam, x and t are spatial coordinates and time,
respectively. The solutions of the system of Eq. 11 is expressed
as:

(13)
n

i i
i 1

y(x, t) W (t)Q (x)




where, Wi (t) are coordinates in modal space and Qi (x)are the
normal modes of free vibration written as:

(14)i i i i i i i iQ (x) sin x A cos x B sinh x C cosh x       

where the constant, Ai, Bi and Ci define the space and
amplitude of the beam vibration. Their values depend on the
boundary condition associated with the structure. Thus, for a
simply supported beam, it can be shown that:

(15)i i i i

i
A B C 0 and

L


    

Thus,  for  a  beam  with  simple  supports at both ends,
Eq. 14 takes the form:

(16)i

i x
Q (x) sin

L



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Thus in view of Eq. 16 the transverse displacement
response of a simply supported elastic beam, using an
assumed mode method can be written as:

(17)
n

i
i 1

k x
y(x, t) W (t)sin

L




Substituting Eq. 17 into the governing Eq. 11 and after
some simplifications and arrangements one obtains:
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(18)

To determine, Wi the expressions on the left hand sides of
Eq. 18 are required to be orthogonal to the function .k x

sin
L



Thus:
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Where:

(20)   2 2 3 3
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(23)   4G x 1 x  

Further  rearrangements  and  simplifications  of  Eq. 19
we obtain:
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The integrals Ii are as follow:
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Equation 24 is the second order ordinary differential
equation with constant coefficient to a transformation. In
what  follow it  subject  the  system of ordinary differential Eq.
24 to a Laplace transform defined as:

(32)st( ) ( )e dt  

In conjunction with the initial conditions define in Eq. 8,
yields the following algebraic equation:

(33)       2
1 2 3 r 0 2 2

S
a r,k s a r,k S a r,k W s P

S
      

Where:

(34)0

k k ct
P ,

L L

    
     
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Subjecting Eq. 33 for further simplification yields:
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(35)o
i 2 2 2 2

1 2 1 2
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Where:
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To obtain the Laplace inversion of Eq. 35, it shall adopt the
following representations:

(38)1 22 2
1 2

S 1 1
g(s) ,f (s) and f (s)

S S d S d
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   

So that the Laplace inversion of each term of the RHS (35)
is the convolution of fi’s and g defined by as:

(39)
t

s i0
f g f (t u)g(u)du, i 1,2  

Thus the Laplace inversion of Eq. 35 is given by:
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P
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Evaluating integrals in Eq. 41 we have:
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Further simplification of  Eq. 40 yields:
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Substituting  Eq.  43  into  Eq.  13 which on inversion
yields:
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e
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

Equation 44 represents the transverse displacement
response of the non-uniform Bernoulli beam resting on
exponentially decaying foundation under the action of fast
moving distributed forces.

Response of non-uniform beam to harmonic variable
magnitude moving distributed loads: The dynamic behavior
of structurally damped non-uniform beam when subjected to
harmonic variable magnitude moving load is investigated.
Thus, the load P(x,t) is given as:

(45)mq(x, t) Psin tH(x c t)  

where,   Ω  is  the  circular  frequency of the harmonic force
and  all  parameters  are  as  defined  previously substituting
Eq. 45 in 1, vibration of the beam is then described by the
equation:

(46)   
2

2

m

Q(x, t) y(x, t) y(x, t)
x b x

x t t
F(x)y(x, t) Psin tH(x c t)

  
    

  
  

Equation 46 is the governing equation describing the
motion  of  non-uniform  beams  subjected to last moving
loads of varying magnitude. Like in the previous section as
closed-form solution to Eq. 46 is sought.

To this effect, use is made of an assumed mode method
already alluded to and by this method the transverse
detection yb(x, t) of non-uniform beam under the action of
variable magnitude moving load can be written as:

(47)
n

b m m
m 1

y (x, t) W (t)D (x)


 

where, Wm(t) coordinates in modal are space and Dm(x) are the
normal modes of free vibration.

Thus, for a simply supported beam Eq. 47 becomes:

(48)b m
m 1

m x
y (x, t) W (t)sin

L






 
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In view of Eq. 48 and following the same arguments as in
the previous section and after some simplifications and
rearrangements Eq. 46 becomes:

(49)
       
   

1 m 2 m

o
m 1 3 m

a m,k W t a m,k W t k ct
P sin t cos

La m,k W t





      
 
 


 

where, cm is the velocity of the mth particle of the system and
other parameter are as defined previously. Without loss of
generality, considering only the mth particle of the dynamical
system yields:

           1 m 2 m 3 m oa m,k W t a m,k W t a m,k W t P sin t cos     

(50)

Equation  50  is  analogous  to  Eq.  24,  thus  subjection
Eq. 50  to Laplace transform in conjunction with the boundary
conditions and using convolution theory we obtain:
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which on inversion yields:
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Equation 52 represents the transverse displacement
response of non-uniform beam resting on exponentially
decaying foundation under actions of harmonic variable
magnitude moving distributed loads.

RESULTS

In dynamics of structure, the transverse displacement of
an elastic beam may increase without bound. Therefore, one

is interested in resonance conditions. Equation 51 clearly
depicts that the non-uniform beam resting on exponentially
decaying foundation traverse by a constant moving load will
grow without bound whenever:

(53)2 2 2 2
1 2 1 2d d ,d or d    

and the velocity at which this occurs, known as critical velocity
is given by the relation:

(54) 
2

1
22 2 2

i a 2 1 2 1 3 2
1

1 L
c a a 4a a 2a a a

2 a k

            

while Eq. 51 shows that the same beam under the action of
harmonic variable magnitude moving loads will experience
resonance effects whenever:

(55)2 2 2 2
1 2 1 1 2 1d d ,d or d    

and the velocity at which this occurs, known as critical velocity
is given by the relation:

(56) 
2

1
22 2 2

i a 2 1 2 1 3 2
1

1 L
c a a 4a a 2a a a

2 a k

            

Therefore, it is evident from Eq. 54 and 56 that the critical
velocity of non-uniform beam resting exponentially decaying
foundation and under the actions of constant magnitude
moving load is greater than that of the same beam under the
action variable magnitude moving load. Hence, resonance is
reached earlier in the latter.

In order to illustrate the foregoing analysis, the non-
uniform beam of length 12.20 m considered. Furthermore,
flexural rigidity EI is 6.068×106 mG3/52, " = 0.025 and the
moving load is assumed to travel at the constant velocity of
8.123 m secG1. The transverse deflections of the beam are
calculated and plotted against time for various values of
foundation constant (modulli) and spatial coordinates x.
Values of K b/w 0 N mG3 and 500000 N mG1.

Figure 1 displayed the deflection profile of the simply
supported beam under the action of traveling distributed
forces when traveling loads are of constant magnitude. For
various values of foundation modulli Fo, the figure shows that
as Fo increases the deflection of the non-uniform beam
decreases.  For  various  time  t,  the displacement of the beam
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Fig. 1: Displacement response of a simply supported
structurally damped thin beam resting on
exponentially decaying foundation and subjected to
constant magnitude moving loads for various values of
foundation modulus K0

Fig. 2: Transverse displacement response of a simply
supported structurally damped thin beam resting on
exponentially decaying foundation and subjected to
constant magnitude moving loads for various values of
spatial coordinates x and for fixed value of foundation
modulus F0 = 4000

for fixed K for various values  of spatial coordinates x are
shown in Fig. 2. In Fig. 3, the deflection profile for various
values of foundation modulli Fo was given when the simply
supported beam is traversed by traveling load are of variable
harmonic magnitude. Figure 4 shows the displacement
response of the structure for fixed k and various values of
spatial coordinate x. It is deduced from these figures that the
interval at which structure is supported affect the response
amplitude of the beam significantly.
Finally, Fig. 5 depicts the comparison of the traversed

displacement of constant and harmonic variable moving loads

Fig. 3: Deflection profile of a simply supported structurally
damped thin beam resting on exponentially decaying
foundation and subjected to harmonic variable
magnitude moving loads for various values of
foundation modulus K0

Fig. 4: Transverse displacement response of a simply
supported structurally damped thin beam resting on
exponentially decaying foundation and subjected to
harmonic variable magnitude moving loads for various
values of spatial coordinates and for fixed value of
foundation modulus F0 = 4000

for fixed value of foundation modulus Fo = 4000. Clearly, the
response amplitudes of variable magnitude, moving load is
higher than that of the constant magnitude moving load.

DISCUSSION

In this study, analytical solutions were obtained for the
beam’s governing equation. Numerical analysis is also carried
out and results show the critical speed for the system
traversed by constant moving loads is higher than that under
the influence of variable moving loads.
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Fig. 5: Comparison of the response of the simply supported
structurally damped thin beam to constant and variable
magnitude moving distributed load for foundation
modulus K0 = 4000 

Hence, justification was achieved when this study was
correlated with results obtained in Prokic et al.2, Li etal.3, Oni7,
Gbadeyan and Oni 9, Dugush and Eisenberger16, Saravi et al.4

and Omolofe et al.17.

CONCLUSION

The results obtained in this present study give some
contribution to the theory of vibration in solid mechanics
especially moving load problems for exponentially decaying
system. Here, the response amplitude of the structural
member decreases with an increase in the foundation
constant. Essentially, this new findings are likely to find certain
applications in solutions of Beam and Plate problems for all
variants of boundary conditions.

SIGNIFICANCE STATEMENT

This present study reported for the first time a closed form
solution to the new structural models incorporating the
dynamic effects of constant and variable harmonic magnitude.
From the study, results obtained enabled the validation, in
comparison, that the responses of constant moving
distributed load is smaller than that of the variable magnitude
load for the non-prismatic beam considered. This shows that
resonance is reached earlier in variable magnitude load
problem. Hence, the study can be used in real design
problems by construction and transport engineers.
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