ISSN 1996-3343

Asian Journal of **Applied** Sciences

http://knowledgiascientific.com

∂ OPEN ACCESS

Asian Journal of Applied Sciences

ISSN 1996-3343 DOI: 10.3923/ajaps.2020.84.93

Research Article Evaluation of Mutant Silkworm Genetic Resources for Important Morphological and Quantitative Characters

G. Lokesh, M. Maheswari, Ritwika Sur Chaudhuri, D.S. Somaprakash, S. Sekar and R.K. Mishra

Central Sericultural Germplasm Resources Centre, Central Silk Board, Hosur, Tamilnadu, India

Abstract

Background and Objective: Genetic diversity and variability in the population are pre-requisite for the crop improvement programme. Collection and maintenance of genetic diversity is a fundamental component in long-term management strategies for genetic improvement of silkworm. The silkworms mutant were evaluated for morphological characters and rearing traits during two crop seasons i.e., winter and summer to analyze the performance and to identify better mutant accessions. **Materials and Methods:** Total 23 mutant silkworm accessions were considered for the study, the important morphological characters during egg, larva and cocoon stages were recorded and compared with the catalogue data. Total 12 important silkworm quantitative traits were studied and analysed using multi trait analysis package to identify better accessions. **Results:** Significant amount of variations were observed among different accessions for different traits. Among 23 mutant silkworms 08 were qualified in the cumulative Evaluation Index (EI) (>50). The cluster analysis showed heterogeneity among the silkworm accessions based on the grouping. The Principal Component Analysis (PCA) indicated the grouping of 06 mutants along with commercially important silkworm races Multivoltine Pure Mysore (PM) and bivoltine (CSR-2). **Conclusion:** Since these genotypes were considered most suitable for basic genetic studies rather its usefulness in silk production. The correlation studies using PCA revealed that some of the mutant silkworms conserved in the germplasm showed on par with commercially important silkworms conserved in the germplasm showed on par with commercially important silkworm scenserved in the germplasm showed on par with commercially important silkworms conserved in the germplasm showed on par with commercially important silkworm scenserved in the germplasm showed on par with commercially important silkworms conserved in the germplasm showed on par with commercially important silkworms conserved in the germplasm showed on par with com

Key words: Silkworm, Bombyx mori, mutant, evaluation, germplasm, genetic resources, genotypes

Citation: G. Lokesh, M. Maheswari, Ritwika Sur Chaudhuri, D.S. Somaprakash, S. Sekar and R.K. Mishra, 2020. Evaluation of mutant silkworm genetic resources for important morphological and quantitative characters. Asian J. Applied Sci., 20: 84-93.

Corresponding Author: G. Lokesh, Central Sericultural Germplasm Resources Centre, Central Silk Board, Hosur, Tamilnadu, India

Copyright: © 2020 G. Lokesh *et al*. This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Study about genetic diversity are an important tool that enables breeders to make good selection of parents to ensure genetic variability. Heterosis between genotypes is often enhanced when the two parents are genetically diverse¹. The silkworm Bombyx mori. L is one of most important economic insect species which is exploited for the production of natural silk. The species has wide distribution found both in temperate as well as tropical regions with greater genetic diversity in morpho-biochemical and biometric characters². It has been estimated that, more than 3000 silkworm strains are available worldwide which developed through breeding^{3,4}. The temperate silkworm strains generally have Uni and bi-voltinism are quantitatively as well as qualitatively superior races compared to tropical polyvoltine silkworm races. On the other hand polyvoltines are better in terms of survival rate, hardiness and resistance to biotic and abiotic challenges⁵. The silkworms has been used as a model for genetic studies because of its large size, ease of rearing in laboratory and short life cycle. The existence of more than hundreds of geographical races and genetically improved strains used for commercial silk production which differ not only qualitative traits but also in quantitative traits such as body size, feeding duration, thermal tolerance and disease resistance. These traits remain to be subjected to systematic analysis using modern genetic tools⁶.

The principal aims of crop improvement is to develop silkworm breeds with superior multiple traits including improved silk productivity, adaptability, disease tolerance and other commercially important characters. Before any breeding tasks, it is imperative to understand the behavior, performance in different life stages and quality and quantity of the silk produced by the silkworm breed/race which is pre-requisite for the selection as parents. The domesticated mulberry silkworm, Bombyx mori L. represents itself as various mutants evolved both from spontaneous and induced mutation. These mutants are maintained by fanciers and breeders in the closed line culture system for many years and serve as a basic tool for genetic analyses including phylogenetic, physiological, ethological, biochemical and molecular studies since systematic linkage studies have been successfully carried out⁷. More than 400 mutations have been mapped corresponding to 230 genes with 28 linkage groups⁸⁻¹⁰. The mutant silkworm races shows different phenotypic characters, such as variation in egg color, larval duration, larval marking, cocoon shape, cocoon color and hemolymph colour. Morphological characterization has direct or indirect relation with various quantitative and qualitative traits¹¹. These races also show wide diversity in the yield, economic parameters and exhibit considerable variations for several heritable characters viz., egg colour, larval markings, cocoon colour and cocoon shape. Further, morphological traits along with correlation parameters help to identify and group similar performing germplasm for effective conservation in the gene bank. As the mutant silkworm genetic stocks, it is possible to use directly in silkworm breeding for evolving new races12 and characterizations of morphological mutant traits were utilized as a basic tool for genetic analysis and were used to study the genetic diversity and distance among the population. In current research, the performance of mutant silkworm genetic resources conserved in the centre are evaluated for 11 rearing and grainage parameters and also compared with the popular commercially exploited bivoltine silkworm race to examine its potentialities for commercial cocoon production.

MATERIALS AND METHODS

Study area: The present study was conducted during 2018-2019 at Central Sericultural Germplasm Resources Centre (CSGRC), Hosur, Tamilnadu state, India.

Research procedure: Silkworm Bombyx mori mutant genetic resources which were collected and maintained at CSGRC, India are selected (Table 1) for the evaluation of important morphological characters, rearing parameters and grainage performance as per the standard descriptor (Table 2, 3). The rearing of 23 silkworm mutant accessions was conducted during June-July and December-January. Three replications of each mutant accession were maintained in a separate $2' \times 3'$ Plastic perforated trays arranged on rearing stand. The rearing was conducted as per the Standard silkworm rearing procedure¹³ and Standard Operational Procedure for conservation of silkworm germplasm. G-2 mulberry variety for chawki rearing and V-1 mulberry variety leaves was used for rearing of late age silkworms. The morphological data was collected based on the physical observation and compared with passport data available at the centre. The data for 12 important rearing and grainage parameters was collected for 5 years (2 crops/year). Mutant silkworm data was compared important mutivoltine (PM) and with commercially bivoltine (CSR-2) silkworm breeds using PCA analysis for better understanding of the possibilities of mutant silkworms for commercial exploitation.

Statistical analysis: Mean data of 5 years for 23 mutants from 12 important quantitative characters were considered. The number of rearing conducted during the period was treated

Asian J. Applied Sci., 1.	3 (2): 84-93, 2020
---------------------------	--------------------

Table 1: List of mutant silkworm germplasm maintained at CSGRC, Hosur, India

Acc. No.	National accession number	Name of the race
BBE-0306	NBAII-CSG0000306	TMS-12
BBE-0307	NBAII-CSG0000307	TMS-14
BBE-0308	NBAII-CSG0000308	TMS-32
BBE-0309	NBAII-CSG0000309	TMS-33
BBE-0310	NBAII-CSG0000310	TMS-35
BBE-0311	NBAII-CSG0000311	TMS-38
BBE-0312	NBAII-CSG0000312	TMS-61
BBE-0313	NBAII-CSG0000313	TMS-62
BBE-0314	NBAII-CSG0000314	TMS-64
BBE-0315	NBAII-CSG0000315	TMS-65
BBE-0316	NBAII-CSG0000316	TMS-66
BBE-0317	NBAII-CSG0000317	TMS-67
BBE-0318	NBAII-CSG0000318	TMS-75
BBE-0319	NBAII-CSG0000319	TMS-82
BBE-0320	NBAII-CSG0000320	TMS-2
BBE-0321	NBAII-CSG0000321	TMS-17
BBE-0322	NBAII-CSG0000322	TMS-31
BBE-0323	NBAII-CSG0000323	TMS-69
BBE-0331	NBAII-CSG0000331	TMS-34
BBE-0333	NBAII-CSG0000333	OD-Translucent
BBE-0390	NBAII-CSG0000390	TMS-04
BBE-0391	NBAII-CSG0000391	TMS-13
BBE-0392	NBAII-CSG0000392	TMS-18

BBE: Bombyx mori bivoltine exotic, NBAII: National bureau of agriculturally important insect, CSG: Central sericultural germplasm, TMS: Mutant silkworm

Table 2: Parameters for the evaluation of mutant silkworm germplasm during

rearing and grainage
Parameters
Fecundity (No.s)
Hatching (%)
Weight of grown larvae (g)
Total larval duration (h)
5th Instar larval duration (h)
Effective Rate of Rearing (ERR) by no.
ERR by wt. (kg)
Pupation rate (%)
Single cocoon weight (g)
Single shell weight (g)
Shell ratio (%)

Table 3: Descriptor for important morphological characters of mutant silkworm germplasm

5 1		
Egg	Cocoon	Larva
Egg colour	Cocoon colour	Larval markings
Egg Shape	Cocoon shape	Body colour of 5th instar larva
	Nature of constriction	Nature of integument

as replications. Multivariate analysis was conducted to analyze the variability in the parameters among different accession. WINDOWSTAT statistical package was used for ANOVA to compare the performance of the accessions in two different seasons. PAST3 statistical software package was used for Principal Component Analysis (PCA) to compare the mutant accessions with commercially important silkworm races and to generate cluster grouping.

RESULTS AND DISCUSSION

The evaluation of morphological characters of the mutant silkworm genetic resources in the present study was recorded in egg, larva and cocoon stages and compared with the catalogue data (Table 4). The present observations are on par with the catalogue data which is maintained at the Silkworm Germplasm Information System (SGIS). Maintenance of original characters of the silkworm genotypes over the generations is one of the prime objectives of the silkworm germplasm.

Quantitative trait analysis: The data of 23 mutant accessions recorded for 5 years was analyzed for 12 important characters showed significant variations among different mutant genotypes which were evident from the calculation of Coefficient Variation (CV%). The higher variability was recorded with single shell weight, minimum value recorded 0.097 g in BBE-0318 and maximum recorded in BBE-0392 (0.217 g). In contrast, lower variations recorded in total larval duration 533.85 h in BBE-0309 and 566.4 h in BBE-0391 (Table 5). The multiple trait evaluation indices assessment of all the accessions by taking into consideration of all the parameters recorded in Table 5. High variability was observed in the parameters such as fecundity (10.158), larval weight (16.687), survivability /ERR by weight (11.76), cocoon weight (12.47), shell weight (23.49) and SR% (13.17) recorded

Asian J. Applied Sci., 13 ((2): 84-93, 2020	9
-----------------------------	------------------	---

Table 4: Morphological characters of mutant silkworm genetic resources

	Nama of	Egg			Larva					Cocoon				
Acc. No.	Name of the race	Colour		Shape	Marking	Colour		Inte	gument	Colour		Shap	e C	Constriction
BBE-0306	TMS-12	White	E	Ellipsoidal	Marked	Mixed		Ора	que	White		Elong	gated	Faint
BBE-0307	TMS-14	Creamish	white I	Ellipsoidal	Plain	Pale red		Ора	que	Greenish w	hite	Elong	gated	Faint
BBE-0308	TMS-32	White	E	Ellipsoidal	Plain	White		Ора	que	White		Elong	gated	Faint
BBE-0309	TMS-33	White	E	Ellipsoidal	Marked	Dirty		Ора	que	White		Elong	gated	Faint
BBE-0310	TMS-35	White		Ellipsoidal	Plain	Light yello	w	Ора	que	White		Elong	gated	Nil
BBE-0311	TMS-38	Light yello	w (Oval	Marked	Brown		Ора	que	Flesh		Elong	gated	Faint
BBE-0312	TMS-61	Brownish	red I	Ellipsoidal	Faint marke	d Light yello	w	Ора	que	White		Elong	gated	Faint
BBE-0313	TMS-62	White	(Oval	Marked	White		Ора	que	Yellow		Elong	gated	Faint
BBE-0314	TMS-64	White	E	Ellipsoidal	Marked	Yellow		Tran	slucent	White		Elong	gated	Nil
BBE-0315	TMS-65	White	E	Ellipsoidal	Marked	Brown yell	ow	Tran	slucent	Chrome yel	low	Elong	gated	Faint
BBE-0316	TMS-66	Creamish		Ellipsoidal	Marked	White		Ора	que	Yellow		Elong	gated	deep
BBE-0317	TMS-67	Creamish	white I	Ellipsoidal	Plain	Light yello	w	Ора	que	Flesh		Elong	gated	Nil
BBE-0318	TMS-75	White with	n red tint	Ellipsoidal	Plain	White		Sem	i-translucent	White		Elong	gated	Faint
BBE-0319	TMS-82	Creamish	white I	Ellipsoidal	Plain	White		Opa	que	White		Elong	gated	Nil
BBE-0320	TMS-2	White	E	Ellipsoidal	Marked	White		Opa	que	White		Elong	gated	Faint
BBE-0321	TMS-17	White	E	Ellipsoidal	Plain	Light yello	w	Opa	que	White		Elong	gated	Faint
BBE-0322	TMS-31	Creamish	white I	Ellipsoidal	Marked	Light yello	w	Opa	que	Chrome yel	low	Elong	gated	Deep
BBE-0323	TMS-69	White	E	Ellipsoidal	Marked	Light yello	w	Opa	que	White		Elono	-	Faint
BBE-0331	TMS-34	White		Ellipsoidal	Marked	White		Opa	•	White		Elono		Faint
BBE-0333	OD-Translu	White		Ellipsoidal	Marked	White		•	Islucent	White		Elong		Faint
BBE-0390	TMS-04	White		Ellipsoidal	Marked	White		Opa		White		Elono	-	Faint
BBE-0391	TMS-13	White		Ellipsoidal	Marked	White		Opa	•	White		Elong	,	Faint
BBE-0392	TMS-18	White		Ellipsoidal	Marked	White		Opa	•	White		Elong	-	deep
Table 5: Perl		Hatching	Larval		,		Yld/1	0000	Pupa	Cocoon	Chally		CD (0()	Coco/100
DDF 0307	Fecundity	(%)	weight (g	i) Tld	Vld	(No.)	(W	t)	(%)	wt.	Shell v	vt.	SR (%)	dfl
BBE-0306					101550			~ ~						
Average	402.150	94.379	26.462	542.850		9666.150	11.5		90.912	1.155	0.176	20	15.257	44.256
MinMax.	341-494	87-98.4	19.9-31.9			8767-9942	8.4-		71.8-98	0.9-1.3	0.12-0		12.01-20.8	26.8-64
CV (%)	13.194	3.440	12.600	8.580	17.900	3.100	17.4	00	6.700	13.960	23.600)	15.400	22.900
BBE-0307														
Average	351.250	92.622	23.459	549.900		9727.600	11.3		94.038	1.146	0.161		14.082	42.320
MinMax.	261-439	80.8-98	16.9-28.6			9300-9929	9-15		91.05-96.9	0.95-1.37	0.12-0		11.8-17.4	33.3-61.65
CV (%)	14.150	4.010	13.800	8.200	18.400	1.900	14.8	00	1.800	12.300	18.130)	9.440	14.600
BBE-0308														
Average	315.925	93.018	21.001	540.350		9575.250	8.24		90.985	0.928	0.115		12.512	29.351
MinMax.	181-450	67.6-98.4	12.3-28.8	480-628	90-168	8233-9925	5.8-	11.7	79.3-98.36	0.59-1.23	0.05-0	.15	9.45-15.8	14.06-41.2
CV (%)	23.900	6.870	25.700	9.300	21.300	5.200	21.4	00	6.300	24.050	26.800)	11.900	24.200
BBE-0309														
Average	353.350	93.916	21.686	533.850	115.550	9531.900	8.81	5	92.272	0.942	0.122		13.049	32.759
MinMax.	262-438	81.7-97.2	16.5-25.8	456-624	88-168	7967-9960	7-11	.01	76.3-98.04	0.69-1.23	0.08-0	.15	11.1-14.4	24-43.8
CV (%)	12.150	4.120	13.800	9.500	21.140	5.500	11.0	60	5.800	16.600	17.300)	7.600	15.200
BBE-0310														
Average	267.900	88.706	20.416	553.150	130.550	9561.750	9.94	5	87.189	0.975	0.122		12.589	35.607
MinMax.	116-367	77.4-98	14.9-26.3	480-624	84-168	8867-9960	7.8-	13	46.4-97.6	0.813-1.26	0.09-0	.15	10.8-14.2	19.8-49.6
CV (%)	25.500	7.500	14.400	7.500	20.300	2.900	14.5	00	14.900	15.220	15.900)	7.240	20.270
BBE-0311														
Average	304.850	90.396	23.254	539.150	121.150	9623.250	9.95	5	92.480	0.993	0.121		12.281	36.498
MinMax.	196-460	71.5-97	17.2-31.2			9233-9968	7.2-		85.4-97.4	0.76-1.22	0.08-0	.15	10.50-14.7	13.5-55.94
CV (%)	25.300	8.650	17.800	8.600		2.400	15.1		4.200	14.330	17.160		9.880	25.900
BBE-0312								-						
Average	354.450	90.496	17.001	537.200	120.650	9605.700	8.07	0	91.705	0.837	0.103		12.461	29.379
MinMax.	177-630	75-99	12.5-24.8			8767-9928	6-10		86-95.1	0.60-1.17	0.06-0	14	9.60-15.70	
CV (%)	33.900	7.390	20.000	8.800		3.300	16.4		3.400	24.040	22.290		12.200	19.050
BBE-0313	55.700	1.550	20.000	0.000	10.400	5.500	10.4		5.100	27.070	22.290		12.200	12.030
Average	318.000	87.566	21.701	545.050	130.200	9631.900	9.93	0	92.101	1.007	0.117		11.664	37.258
MinMax.	163-449	68.3-65.6	16.7-26.2			9000-9957	9.95 8.2-		92.101 75-98.8	0.82-1.16	0.09-0	14	9.5-13.2	28.52-51.4
CV (%)	25.500	08.3-05.0 10.400	10.7-20.2	7.700		9000-9957 2.600	8.2- 14.8		75-98.8 5.800	0.82-1.16 11.070	14.550		9.5-13.2 8.300	17.610
CV (70)	23.300	10.400	12.000	1.100	10.400	2.000	14.0	00	5.000	11.070	14.000	,	0.000	17.010

Table 5: Continue

Table 5: Cor	iiiiuc	Hatching	Larval			Yld/10000	Yld/10000	Pupa	Cocoon			Coco/100
	Fecundity	(%)	weight (g)	Tld	Vld	(No.)	(Wt)	(%)	wt.	Shell wt.	SR (%)	dfl
BBE-0314												
Average	353.364	93.990	20.238	550.136	133.227	9512.409	9.569	90.770	0.970	0.121	12.480	35.598
MinMax.	248-487	88.6-98	16.2-25.5	486-624	90-168	8267-9915	6.7-16.3	76.6-98	0.8-1.3	0.09-0.18	10.7-14.7	23.4-65.3
CV (%) BBE-0315	18.740	2.900	13.800	7.600	16.900	4.660	22.300	6.100	18.040	19.210	9.500	27.660
	347.650	95.025	21.210	545.000	129.400	9583.900	9.915	90.418	0.947	0.113	11.905	38.344
Average MinMax.	247-452	95.025 88.3-98	14.3-26.2	545.000 486-624	129.400 90-168	9383.900 8200-9936	9.915 6.3-17.2	90.418 78.6-96.3	0.947 0.78-1.17	0.08-0.18	10.05-17.4	
CV (%)	16.480	3.000	16.100	7.600	18.300	3.900	29.500	4.900	14.300	21.770	13.600	31.820
BBE-0316		5.000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5.700	27.500		1 115 00	2.117.0	151000	511020
Average	291.650	88.249	18.548	552.200	132.100	9585.850	9.065	87.876	0.930	0.102	10.760	34.818
MinMax.	184-518	78.3-97	12.1-26.5	486-624	90-168	8933-9942	7.1-11	70.7-97.3	0.73-1.17	0.06-0.16	8.0-15.0	28.5-42.17
CV (%)	28.700	7.800	23.600	8.200	18.300	2.900	13.600	8.100	17.100	33.030	19.090	12.860
BBE-0317												
Average	308.350	91.253	19.188	536.800	120.200	9557.650	7.938	90.242	0.881	0.111	12.586	28.933
MinMax.	201-428	78.6-99	15.2-36.3	486-600	90-168	8133-9964	4.8-10.5	79.3-96.7	0.66-1.21	0.08-0.22	10.12-18.5	13.15-38.5
CV (%)	22.900	7.200	23.160	6.300	20.000	4.100	18.300	5.120	19.770	32.400	16.290	22.250
BBE-0318												
Average	296.650	92.094	16.653	538.600	124.400	9657.150	8.430	93.279	0.799	0.097	11.967	30.204
MinMax.	208-415	72.1-98	13.0-26.5	480-624	90-168	9233-9955	6.1-11	86.6-97.7	0.57-1.16	0.06-0.19	10.1-18.3	17.5-44.2
CV (%)	23.900	7.800	21.700	8.700	18.200	2.200	18.600	3.500	22.500	33.900	15.960	24.740
BBE-0319												
Average	381.900	94.934	26.119	535.950	119.400	9660.500	9.725	92.661	1.058	0.137	13.015	36.791
MinMax.	330-493	90.9-98	18.3-32.3	480-624	90-168	9000-9999	7.5-11.7	84.8-99.5	0.88-1.18	0.1-0.16	10.8-15.6	27.3-46.7
CV (%)	10.940	2.200	13.600	8.800	20.500	2.650	11.200	4.300	8.700	13.330	11.500	16.660
BBE-0320	343.600	05 201	76 247		119.200	9660.050	10 215	01 6 1 0	1 000	0.140	12 720	20.150
Average MinMax.	343.600 266-432	95.201 82.6-99	26.347 19.4-32.2	535.750 480-624	90-168	9660.050 9133-9946	10.215 7.2-14.2	91.618 83.7-97	1.090 0.86-1.25	0.149 0.17-0.21	13.720 10.7-17.6	39.150 25.4-56.9
CV (%)	200-432 14.840	4.100	19.4-32.2	480-024 8.800	20.700	2.060	16.700	4.050	11.190	18.200	11.260	23.4-30.9
BBE-0321	17.070	1.100	11.000	0.000	20.700	2.000	10.700	ч.050	11.150	10.200	11.200	21.110
Average	312.850	88.678	21.296	536.100	119.300	9624.750	9.800	90.656	0.961	0.124	13.025	36.278
MinMax.	217-414	56.6-99	16.2-25.8	480-624	84-168	9300-9900	7.2-16.1	80.3-98	0.71-1.19	0.07-0.15	10.2-19.1	24.3-64.3
CV (%)	15.250	15.900	15.320	8.900	20.900	1.800	25.800	4.500	16.600	20.860	15.590	30.800
BBE-0322												
Average	315.150	88.492	19.201	547.600	130.750	9748.250	8.225	93.596	0.874	0.106	12.207	29.768
MinMax.	218-405	71.3-98	12.8-24.2	480-624	84-168	9300-9932	5.9-10.4	80.8-97	0.63-1.17	0.06-0.14	9.39-14.2	23.6-36.3
CV (%)	18.900	8.800	17.900	7.900	18.500	1.700	15.700	4.060	18.300	19.800	10.350	11.760
BBE-0323												
Average	367.950	91.863	23.549	541.000	125.400	9672.650	10.570	91.640	1.031	0.136	17.983	39.154
MinMax.	230-474	77.2-98	17.3-26.8	480-624	84-168	9200-9967	8.8-12.4	72.7-98	0.51-1.28	0.08-0.19	10.48-13.9	29.8-48
CV (%)	17.610	5.500	10.300	8.900	17.900	2.150	11.600	5.900	18.100	20.670	12.900	11.630
BBE-0331												
Average	276.200	87.113	20.165	545.750	129.550	9551.550	8.370	89.537	0.910	0.112	12.425	30.465
MinMax.	151-445	61.4-96	12.2-23.8	480-624	84-168	8533-9965	7-10.7	60-97	0.74-1.19	0.08-0.15	10.01-14.1	
CV (%)	27.870	11.800	14.300	7.800	19.000	3.800	10.700	11.200	14.700	15.900	8.750	17.180
BBE-0333	262.450	04.671	24550	5 42 500	100 100	0404 050	0 770	04454	1 0 17	0.1.11	12 (00	24.052
Average	363.150	94.671	24.559	543.500	122.100	9696.950	9.770	94.151	1.047	0.141	13.600	34.952
MinMax. CV (%)	128-530	88.8-99	19.2-28.5	480-624	84-168 19.400	9400-9967	7.6-12.3	88.5-98	0.88-1.17 10.050	0.10-0.18	8.8-17.8	11.3-49.1
BBE-0390	28.630	3.260	12.600	8.100	19.400	2.050	11.600	3.200	10.050	18.730	18.280	25.130
Average	348.667	96.348	24.795	536.000	144.000	8914.167	7.950	87.667	1.202	0.178	14.857	27.224
Average MinMax.	348.667 300-435	96.348 94-98	24.795 20.6-31.9	536.000 504-576	144.000 120-168	8914.167 8367-9233	7.950 5.1-9.8	87.667 83.6-92	1.202	0.178	14.857	27.224 16.2-30.8
CV (%)	13.260	1.500	20.0-31.9	6.100	120-108	3.500	21.200	3.900	1.370	18.000	12.7-19.2	20.670
BBE-0391						5.500	21.200	5.200				
Average	356.900	92.924	28.915	566.400	147.600	9367.100	10.405	92.120	1.167	0.189	16.326	34.434
MinMax.	306-397	89-95	23-35	504-624	120-168	8933-9935	9.4-12.1	85-98	0.95-1.26	0.15-0.22	12.4-17.9	29.8-38.5
CV (%)	7.815	2.700	16.100	9.100	13.300	3.800	8.200	4.800	10.300	14.900	13.340	8.150
BBE-0392												
Average	341.300	94.148	31.995	542.400	143.900	9354.100	11.350	91.670	1.307	0.217	16.612	35.639
MinMax.	315-374	85.3-97.8			108-168	8633-9933	9.4-12.8	83-98	1.2-1.46	0.15-0.26	13.120	30.5-41
CV (%)	4.53	3.9	15.4	8.6	16.2	4.5	11.01	5.2	7.4	15.77	18.426	12.12
Tld: Total la	rval duration	Vld: 5th Ins	star larval dur	ation, SR: SI	nell Ratio, df	l: Disease free	lavings, Min: M	Minimum, Ma	ax: Maximum			

Asian J. Applied Sci., 13 (2): 84-93, 2020

Table 6: Parameter-wise	variability a	nalysis in mean	values of 23 m	utant silkworm accessions

Parameters	Average	Minimum	Maximum	SD	SE	CV (%)
Fecundity	0333.618	0267.900	0402.150	033.889	07.225	10.158
Hatching (%)	0092.004	0087.113	0096.348	002.792	00.595	03.034
Larval Wt_10	0022.511	0016.653	0031.995	003.757	00.801	16.687
Larval duration total	0543.247	0533.850	0566.400	007.597	01.620	01.398
Larval duration 5th Instar	0127.684	0115.550	0147.600	008.566	01.826	06.709
Yield/ No.)	9568.284	8914.167	9748.250	172.017	36.674	01.798
Yld/10000(Wt)	0009.529	0007.938	0011.530	001.121	00.239	11.765
Pupa %	0091.286	0087.189	0094.151	001.890	00.403	02.071
Cocoon	0001.007	0000.799	0001.307	000.126	00.027	12.470
Shell	0000.133	0000.097	0000.217	000.031	00.007	23.490
SR %	0013.364	0010.760	0017.983	001.760	00.375	13.172
Cocoon/100dfl	0034.747	0027.224	0044.256	004.441	00.947	12.781

SR: Shell ratio, CV: Cumulative variance

Table 7: Top performing mutant silkworm accessions with cumulative evaluation index value (>50)

	Fec	Hat	Wt_10	ERR	ERR	Pupa	Cocoon	Shell	SR	Cocoon		No. of	
Acc. No.	(No.)	(%)	larvae	(No.)	(Wt)	(%)	wt. (g)	wt. (g)	(%)	yield/100 dfl	CEI	qualified traits	Rank
BBE-0306	70.22	58.51	60.52	55.69	67.85	48.02	61.79	63.57	60.75	71.41	61.83	9.00	Ι
BBE-0392	52.27	57.68	75.25	37.55	66.25	52.03	73.94	76.63	68.46	52.01	61.21	9.00	П
BBE-0307	55.20	52.22	52.52	59.26	66.43	64.56	61.07	58.69	54.08	67.05	59.11	10.00	Ш
BBE-0391	56.87	53.30	67.05	38.30	57.82	54.41	62.79	67.80	66.83	49.30	57.45	8.00	IV
BBE-0323	60.13	49.49	52.76	56.07	59.29	51.87	51.89	50.83	76.24	59.92	56.85	9.00	V
BBE-0320	52.95	61.45	60.21	55.33	56.12	51.76	56.63	55.03	52.02	59.91	56.14	10.00	VI
BBE-0319	64.25	60.50	59.60	55.36	51.75	57.27	54.08	51.01	48.02	54.60	55.64	9.00	VII
BBE-0333	58.71	59.55	55.45	57.48	52.15	65.15	53.18	52.24	51.35	50.46	55.57	10.00	VIII

SR: Shell ratio

significant variations among the mutant silkworm genotypes conserved in the germplasm (Table 6). Multiple trait evaluation method is being utilized for testing large number of silkworm germplasm and based on the performance for important economic characters and promising genotypes are selected¹⁴⁻¹⁸. In the present study also the 23 mutant accessions were evaluated based on the multiple trait evaluation to understand the better performing accessions. More than 21 traits contribute to silk yield and there exists an inter-relationship between multiple traits in silkworm¹⁹. The precision of selection of breeds among many numbers of breeds can achieved through the evaluation index method that gives priority to all yield component traits²⁰. Based on the performance of the silkworm genotypes, individual indices were calculated for each of the 10 parameters. Since in larval duration the desirability is lower values, hence this character was not considered for calculation of Evaluation Index (EI). The El values were calculated for each of the genotype in all the 10 parameters and ranking was assigned based on the qualifying average El-value>50. It was found that eight accessions such as BBE-0306 (El = 61.83), BBE-0392, 0307, 0391, 0323, 0320, 0319 and 0333 (EI = 55.57) qualified the El value >50 with 9-10 qualifying parameters in each accessions. Remaining accessions were also performed better but not qualified the bench mark of El>50. In the recent past evaluation index method developed by Mano et al.21 has been utilized for short listing better performing silkworm

genotypes/hybrids for commercial exploitation^{18,22} and the same has been utilized in the present study as well for evaluating 23 mutant silkworm *Bombyx mori* L. genotypes in respect of different traits viz., fecundity, hatching, larval weight, ERR by no. and ERR by Wt., Pupation, cocoon weight, shell weight, shell ratio, cocoon yield by number and by weight. The ranking was assigned to those genotypes which qualifies with Cumulative EI>50 (Table 7). Similar works also reported earlier wherein the identification of top performing silkworm breeds in different seasons was achieved²³. Evaluation index is one such method that increases the precision of selection of breed among an array of breeds by a common index giving due to weight-age to all the yield component traits²⁰.

Since, the rearing of mutant silkworms were conducted in two different seasons. The comparative analysis of the performance of these silkworms was made by ANOVA, which revealed significant difference between the seasons, between the accessions and between the accessions and the seasons. Highly significant values were recorded in the important commercial characters of the silkworm such as fecundity (p<0.01), survivability (p<0.01), cocoon weight (p<0.01), shell weight (p<0.05) and total cocoon yield (p<0.01). However, there was no significant difference in values were also recorded with larval duration, larval hatching and in shell ratio during the two seasons. However, the analysis of data indicates that all the genotypes utilized in the study vary

Asian J. Applied Sci., 13 (2): 84-93, 2020

			Wt_10		`	Yld/10000	Yld/10000	Pupa	Cocoon wt.	Shell wt.		Coco/100
Acc. No.	Fec (No.)	Hat (%)	larvae	Tld (h)	Vld (h)	(No.)	(Wt)	(%)	(g)	(g)	SR (%)	dfl
BBE-0306	406.2	94.64	25.922	575	130	9698	10.91	91.65	1.080	0.168	15.519	43.73
BBE-0307	357.0	93.34	23.834	584	139	9693	11.11	93.51	1.113	0.160	14.358	41.24
BBE-0308	300.9	91.13	19.483	577	132	9767	7.78	93.47	0.863	0.114	13.300	26.77
BBE-0309	354.5	93.50	20.272	570	124	9734	8.57	94.95	0.905	0.120	13.337	32.15
BBE-0310	262.6	88.54	19.666	581	136	9544	9.49	90.05	0.963	0.124	12.927	34.69
BBE-0311	306.7	92.17	22.012	573	128	9586	9.34	92.31	0.939	0.121	12.918	35.79
BBE-0312	402.6	90.74	16.771	573	128	9660	7.41	92.16	0.764	0.098	12.946	27.89
BBE-0313	323.2	87.10	21.133	577	135	9649	9.73	91.50	0.955	0.113	11.976	37.19
BBE-0314	350.9	93.41	19.830	580	137	9619	8.90	92.46	0.963	0.129	13.224	33.03
BBE-0315	347.9	94.63	20.072	576	136	9649	8.45	91.03	0.903	0.111	12.233	32.58
BBE-0316	329.5	89.78	17.910	586	134	9608	8.71	87.58	0.890	0.093	10.212	34.57
BBE-0317	338.5	91.62	17.678	562	122	9643	7.83	90.99	0.853	0.119	13.747	28.37
BBE-0318	300.9	93.28	16.916	572	128	9656	7.28	93.60	0.783	0.094	12.051	25.91
BBE-0319	385.1	95.45	25.554	571	126	9684	9.32	92.39	1.074	0.141	13.291	35.62
BBE-0320	368.7	96.37	24.931	571	126	9707	9.50	91.80	1.049	0.144	13.749	37.59
BBE-0321	304.8	89.95	20.665	572	127	9627	8.35	89.59	0.958	0.132	14.087	30.43
BBE-0322	311.8	87.56	19.370	582	137	9794	8.15	94.15	0.843	0.108	12.879	29.35
BBE-0323	407.9	92.59	22.685	578	134	9734	10.36	92.76	0.999	0.131	13.228	39.90
BBE-0331	295.7	91.10	19.517	577	136	9645	8.15	93.35	0.900	0.116	12.942	29.88
BBE-0333	408.2	94.56	24.019	572	132	9718	9.51	94.69	1.035	0.145	14.236	35.96
BBE-0390	396.5	95.20	31.846	576	144	8863	7.60	86.50	1.215	0.158	12.960	30.70
BBE-0391	367	92.81	30.325	588	156	9605	10.00	93.84	1.089	0.193	17.726	33.94
BBE-0392	351.7	92.92	32.600	588	156	9791	10.75	95.40	1.263	0.220	17.393	35.01
Mean	346.9	92.28	22.305	577	134	9638	9.01	92.16	0.974	0.133	13.532	33.58
Range	262.6-408.2	87.10-96.37	16.771-32.600	562-588	122-156	8862-9794	7.28-11.11	86.50-95.40	0.764-1.263	0.093-0.220	10.212-17.726	25.92-43.7
SD	41.891	2.501	4.515	6.363	8.763	180.772	1.134	2.201	0.127	0.031	1.622	4.612
CV	12.076	2.710	20.240	1.104	6.542	1.876	12.585	2.388	13.036	23.385	11.985	13.734

Table 9: Mean performance of silkworm mutant accessions during summer season (June-July)

			Wt_10			Yld/10000	Yld/10000	Pupa	Cocoon	Shell		Cocoon/
Acc. No.	Fec (No.)	Hat (%)	larvae	Tld (h)	Vld (h)	(No.)	(Wt)	(%)	wt (g)	wt (g)	SR (%)	100 dfl
BBE-0306	398.1	94.12	27.00	510	119	9635	12.15	90.18	1.230	0.184	14.994	44.779
BBE-0307	345.5	91.91	23.08	516	124	9762	11.63	94.57	1.178	0.161	13.806	43.395
BBE-0308	330.9	94.91	22.52	504	112	9384	8.71	88.50	0.993	0.117	11.724	31.935
BBE-0309	352.2	94.33	23.10	498	108	9330	9.06	89.59	0.978	0.123	12.760	33.372
BBE-0310	273.2	88.87	21.17	526	125	9579	10.40	84.32	0.986	0.120	12.251	36.529
BBE-0311	303.0	88.62	24.50	505	114	9661	10.57	92.65	1.047	0.122	11.644	37.207
BBE-0312	306.3	90.25	17.23	501	113	9551	8.73	91.25	0.910	0.109	11.975	30.869
BBE-0313	312.8	88.03	22.27	513	126	9615	10.13	92.70	1.060	0.120	11.353	37.327
BBE-0314	356.3	94.68	20.73	515	129	9385	10.37	88.74	0.979	0.112	11.587	38.677
BBE-0315	347.4	95.42	22.35	514	123	9519	11.38	89.80	0.991	0.115	11.576	44.106
BBE-0316	253.8	86.72	19.19	518	131	9564	9.42	88.17	0.971	0.111	11.308	35.066
BBE-0317	278.2	90.89	20.70	512	119	9472	8.05	89.50	0.909	0.103	11.426	29.492
BBE-0318	292.4	90.90	16.39	505	121	9658	9.58	92.96	0.815	0.099	11.884	34.494
BBE-0319	378.7	94.42	26.68	501	113	9637	10.13	92.93	1.042	0.133	12.739	37.962
BBE-0320	318.5	94.04	27.76	501	113	9613	10.93	91.44	1.131	0.155	13.691	40.709
BBE-0321	320.9	87.41	21.93	500	111	9623	11.25	91.72	0.964	0.116	11.962	42.128
BBE-0322	318.5	89.42	19.03	514	125	9703	8.299	93.04	0.905	0.104	11.534	30.189
BBE-0323	328.0	91.13	24.41	504	117	9612	10.78	90.52	1.062	0.141	22.737	38.409
BBE-0331	256.7	83.12	20.81	514	123	9458	8.59	85.73	0.920	0.109	11.908	31.054
BBE-0333	318.1	94.78	25.10	515	112	9676	10.03	93.61	1.059	0.136	12.965	33.938
BBE-0390	324.8	96.92	21.27	516	144	8940	8.125	88.25	1.196	0.189	15.805	25.486
BBE-0391	350.2	93.00	27.97	552	142	9209	10.675	90.97	1.220	0.187	15.392	34.761
BBE-0392	334.3	94.97	31.59	512	136	9063	11.75	89.18	1.337	0.215	16.092	36.060
Mean	321.68	91.69	22.90	512	122	9506	10.03	90.45	1.038	0.134	13.179	35.997
Range	253.80-398.10	83.12-96.92	16.39-31.59	498-552	107-144	8940-9761	8.05-12.15	84.32-94.57	0.815-1.337	0.099-0.215	11.308-22.737	25.486-44.779
SD	35.791	3.467	3.634	11.281	9.790	206.917	1.229	2.521	0.127	0.032	2.570	4.988
CV	11.126	3.781	15.865	2.205	8.045	2.177	12.253	2.787	12.193	24.198	19.499	13.856

significantly with respect to most of the parameters studied during winter and summer seasons (p<0.001, Confidence Distribution (CD) value 40.73). Higher mean values were recorded for all the parameters during winter season (Table 8) compared to the multi-trait values recorded in the summer season (Table 9). This shows the favorable

season for better expression of quantitative traits in mutant silkworm accessions. Since, these mutant silkworms are temperate in origin, the silkworm rearing performance always better due to congenial and less fluctuations in the environmental temperature during winter season (Table 10)²⁴.

Acc. No.	Fec	Hat (%)	Wt_10 larvae	Tld	Vld	Yld/10000 (No.)
Season	96208.16***	67.34 ^{NS}	73.77*	458074.46***	17868.89***	1817433.46***
Accession	14510.09***	86.99***	235.19***	553.29 ^{NS}	536.06 ^{NS}	598906.67***
Season x Accn	12239.27***	52.35 ^{NS}	35.85***	663.11 ^{NS}	203.07 ^{NS}	252284.11***
Error	4293.44	37.70	13.58	494.99	386.82	86795.71
CD (S)	12.0111	1.125	0.675	4.078	3.605	54.007
CD (A)	40.733	3.817	2.291	13.831	12.227	183.147
CD (S X A)	57.606	5.398	3.239	19.559	17.291	259.009
Acc-No.	Yld/10000(Wt)	Pupa (%)	Cocoon wt	Shell wt	SR (%)	Cocoon/100dfl
Season	153.63***	166.03*	0.73***	0.004*	2.678 ^{NS}	669.48***
Accession	16.52***	37.76 ^{NS}	0.33***	0.018***	51.28**	242.94***
Season x Accn	6.60***	71.78***	0.04*	0.002***	27.96 ^{NS}	115.969***
Error	2.47	28.49	0.02	0.001	25.05	48.05
CD (S)	0.288	0.978	0.027	0.005	0.917	1.271
CD (A)	0.976	3.318	0.091	0.017	3.111	4.309
CD (S X A)	1.381	4.692	0.129	0.024	4.400	6.094

Asian J. Applied Sci., 13 (2): 84-93, 2020

Significance level: *p<0.05, **p<0.01, ***p<0.001, CD: Confidence distribution

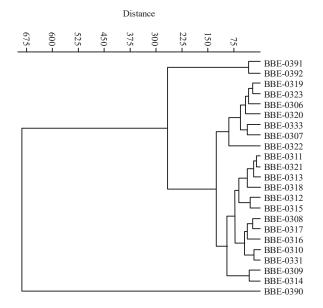


Fig. 1: Cluster analysis based on all 12 parameters for 23 silkworm mutant accessions according to grouping from multivariate PAST

A detailed analysis was undertaken to test the efficacy of hierarchical agglomerative clustering (UPGMA method) in grouping the different mutant silkworm accessions based on quantitative trait analysis (Fig. 1). The results indicate that all the mutant accessions were grouped together in two major groups. Further, sub-grouping under these 2 groups highlights genetically different association with the differentiation of various groups. The cluster analysis provides scope for adopting a re-combinational breeding program using distant cluster members. Thus, the sub-grouping of high yielding bivoltine strains offers an opportunity to exploit the genetic differences between high yielding strains^{25,26}. The clustering also indicates the possibility for recombining low and high-yielding members from genetically distant clusters. The results presented here establish its usefulness in realizing a better projection of the genetic difference between silkworm strains of different yield potentials²⁷. Recently the cluster analysis of 369 bivoltine silkworm accessions was done using Ward's minimum variance cluster analysis method for 11 economic traits revealed the diversity among the bivoltine genotypes that were grouped into 20 clusters based on the degree of variations²⁸. The maintenance of heterogeneity in the germplasm is important and is necessary for better maintenance without any inbreeding depression²⁹. The inclusion of genotypes of the same origin in different clusters clearly indicates the presence of considerable genetic diversity among the population used in this study.

The PCA was conducted for multivariate traits and analyzed for correlation of the performance of mutant silkworm accessions along with the commercially exploited silkworm races such as Bivoltine CSR-2 (BBI-0290) and Multivoltine Pure Mysore (PM) (BMI-0001) indicated that the performance of mutant accessions viz., BBE-0306, 0307, 0319, 0320, 0323 and 0333 are positively correlated with the performance of BBI-290 (CSR-2) and BMI-0001 (PM) and grouped under one group (Fig. 2). Whereas, accessions such as BBE-0308, 0310, 0314, 0316 and BBE-0317 are negatively correlated compared to the BBI-0290 and BMI-0001 and grouped separately. The grouping of silkworm genotypes indicates the higher similarity with respect to multiple traits³⁰. Similarly, 6 mutant accessions showed similarity with CSR-2 and PM silkworm races for some of the commercially important characters. This indicates the possibilities of using mutant silkworm genetic resources for commercial exploitation through crop improvement programme.

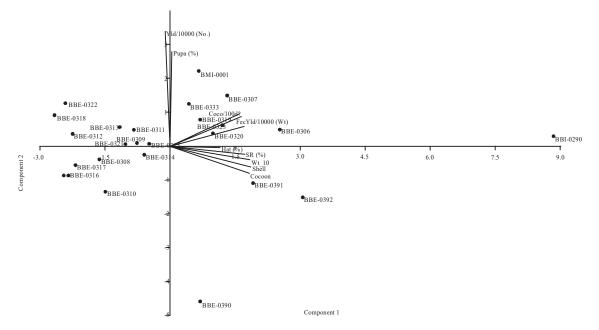


Fig. 2: Comparative (PCA) analysis of 23 mutant silkworm accessions with commercially important silkworm races

CONCLUSION

The extent of variability among different genotypes is essential and is basis for the germplasm collection for their effective utilization in the future. The concerted efforts are utmost necessary for the characterization, evaluation and identification of trait specific genotypes using standard and reliable methods. The present study is an attempt to showcase the potentialities of the mutant silkworm accessions for their utilization in the commercial exploitation. Since these genotypes were considered most suitable for basic genetic studies rather its usefulness in silk production. The correlation studies using PCA with commercially important silkworm races PM and CSR-2 revealed that some of the mutant silkworms conserved in the germplasm can be used to explore the combining ability studies for further commercial exploitation.

SIGNIFICANCE STATEMENT

This study emphasizes the importance of the mutant silkworm germplasm and its proper maintenance for their sustainable utilization in the future. This study showcases the genetic potentialities of the mutant silkworm genetic resources which can be utilized by the silkworm breeders to develop trait specific breeds. Also, this study give a light on the efficient management of silkworm germplasm and also their evaluation to understand the genetic potentialities of silkworm genetic resources to exploit for commercial silk production through appropriate silkworm breeding strategies.

REFERENCES

- Makumbi, D., F.J. Betran, M. Banziger and J.M. Ribaut, 2011. Combining ability, heterosis and genetic diversity in tropical maize (*Zea mays* L.) under stress and non-stress conditions. Euphytica, 180: 143-162.
- Awasthi, A.K., P.K. Kar, P.P. Srivastava, N. Rawat, K. Vijayan, A.R. Pradeep and S. Raje Urs, 2008. Molecular evaluation of bivoltine, polyvoltine and mutant silkworm (*Bombyx mori*L.) with RAPD, ISSR and RFLP-STS markers. Indian J. Biotechnol., 7: 188-194.
- Nagaraju, J.G., V. Klimenko and P. Couble, 2000. The Silkworm Bombyx mori, a Model Genetic System. In: Encyclopedia of Genetics, Reeve, E.C.R. (Ed.). Fitzroy Dearborn Publisher, London, UK., ISBN-13: 9781134263509, pp: 219-239.
- Yamamoto, T., 2000. Silkworm Strains. In: Strain Maintenance and Databank for Life Science, Nakatsuji, N. (Ed.). Kyoritsu Shuppan, Tokyo, Japan, pp: 45-49.
- 5. Talebi, E. and S. Bakkappa, 2013. Appraisal of eighteen silkworm (*Bombyx mori* L.) genotypes using pre and post cocoon characters. Sci. Int., 1: 118-123.
- Meng, X., F. Zhu and K. Chen, 2017. Silkworm: A promising model organism in life science. J. Insect Sci., Vol. 17, No. 5. 10.1093/jisesa/iex064.
- Doira, H., 1992. Genetical Stocks and Mutations of *Bombyx mori*. Important Genetic Resources. 1st Edn., Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan, Pages: 73.
- 8. Doira, H., 1983. Linkage maps of *Bombyx mori*–Status quo in 1983. Sericologia, 23: 245-269.

- Promboon, A., T. Shimada, H. Fujiwara and M. Kobayashi, 1995. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, *Bombyx mori*. Genet. Res., 66: 1-7.
- 10. Goldsmith, M.R., T.W. Shimada and H. Abe, 2005. The genetics and genomics of the silkworm, *Bombyx mori*. Annu. Rev. Entomol., 50: 71-100.
- 11. Kawaguchi, Y., T. Kusakabe, J.M. Lee and K. Koga, 2009. Characteristics of egg trait mutations in the silkworm, *Bombyx mori.* J. Insect Biotechnol. Sericol., 78: 113-126.
- 12. Chen, Y., 2002. Conservation status of silkworm germplasm resources in China. Proceedings of the Expert Consultation on Promotion of Global Exchange of Sericulture Germplasm Satellite Session of XIXth ISC Congress, September 21-25, 2002, Bangkok, Thailand.
- Krishnaswami, S., 1978. New technology of silkworm rearing. Central Sericultural Research & Training Institute Bulletin No. 2, Central Silk Board, Bangalore, India, pp: 1-23.
- 14. Bhargava, S.K., V. Thiagarajan and M.K. Majumdar, 1993. Impact of silkworm hybrids on reeling parameters. Indian Text. J., 104: 66-66.
- 15. Malik, G.N., A.S. Kamili, S.A. Wani, H.U. Dar, R. Ahmad and A.M. Sofi, 2002. Evaluation of some bivoltine silkworm (*Bombyx mori* L.) genotypes. SKUAST J. Res., 4: 83-87.
- Malik, G.N., S.Z.H. Rufaie, M.F. Baqual, A.S. Kamili and H.U. Dar, 2006. Comparative performance of some bivoltine silkworm (*Bombyx mori* L.) hybrids. Entomon, 31: 61-64.
- Malik, M.A., A. Shaheen, A.M. Sofi, G.N. Malik, A. Sabbat and F.A. Malik, 2010. Evaluation and identification of region/season specific bivoltine hybrids of the silkworm, *Bombyx mori* L. suitable for Kashmir climatic conditions. J. Exp. Zool. India, 13: 171-176.
- Nooruldin, S., S.A. Bhat, M.A. Malik, I.L. Khan and K.A. Sahaf, 2015. Comparative performance of some silkworm, *Bombyx mori* L., hybrids during different seasons under Kashmir climatic conditions. Green Farming, 6: 1392-1395.
- Thiagarajan, V., S.K. Bhargava, M.R. Babu and B. Nagaraj, 1993. Differences in seasonal performance of twenty-six strains of silkworm, *Bombyx mori* (Bombycidae). J. Lepidopterists' Soc., 47: 321-337.
- 20. Bhargava, S.K., E. Rajalakshmi and V. Thiagarajan, 1994. An evaluation index for silk yield contributing traits in *Bombyx mori* L. Indian Text., 105: 83-84.

- 21. Mano, Y., S.N. Kumar, H.K. Basavaraja, N.M. Reddy and R.K. Datta, 1993. A new method to select promising silkworm breeds/combinations. Indian Silk, 31: 53-59.
- 22. Maqbool, A., H.U. Dar, M. Ahmad, G.N. Malik, G. Zaffar, S.A. Mir and M.A. Mir, 2015. Comparative performance of some bivoltine silkworm (*Bombyx mori* L.) genotypes during different seasons. Scient. Res. Essays, 10: 407-410.
- 23. Ahmad, M.N., M.Z. Chishti and M.A. Khan, 2013. Studies on the identification of summer specific silkworm *Bombyx mori* L. hybrids under temperate climatic conditions of Jammu and Kashmir, India. J. Int. Acad. Res. Multidisciplin., 1: 1-14.
- 24. Yamaguchi, A., 2003. Maintenance of bivoltine silkworm races at breeders level. Proceedings of the Mulberry Silkworm Breeders Summit, July 18-19, 2003, Hindupur, India, pp: 4-5.
- Zanatta, D.B., J.P. Bravo, J.F. Barbosa, R.E.F. Munhoz and M.A. Fernandez, 2009. Evaluation of economically important traits from sixteen parental strains of the silkworm *Bombyx mori* L (Lepidoptera: Bombycidae). Neotrop. Entomol., 38: 327-331.
- Rao, C.G.P., S.V. Seshagiri, C. Ramesha, B.K. Ibrahim, H. Nagaraju and Chandrashekaraiah, 2006. Evaluation of genetic potential of the polyvoltine silkworm (*Bombyx mori* L.) germplasm and identification of parents for breeding programme. J. Zhejiang Univ. Sci. B., 7: 215-220.
- 27. Kumari, A., N.K. Tripathi and R. Bano, 2015. Agglomerative hierarchical clustering to study the diversity in *Bombyx mori* L., races on the basis of weight gain characteristics. Int. J. Recent Scient. Res., 6: 8005-8008.
- Maheswari, M., G. Lokesh, G.N. Murthy, S. Sekar, D.S. Somaprakash and R.K. Mishra, 2019. Evaluation of bivoltine silkworm genetic resources through cluster analysis and identification of better performing bivoltine accessions. Int. J. Genet., 11: 601-603.
- 29. Kumaresan, P., R.K. Sinha and S.R. Urs, 2007. An analysis of genetic variation and divergence in Indian tropical polyvoltine silkworm (*Bombyx mori*L.) genotypes. Caspian J. Environ. Sci., 5: 11-17.
- Reddy, K.S., C.A. Mahalingam, K.A. Murugesh and S. Mohankumar, 2009. Exploring the genetic variability in *Bombyx mori* L. with molecular marker. Karnataka J. Agric. Sci., 22: 479-483.