Asian Journal of Applied Sciences

ISSN 1996-3343 DOI: 10.3923/ajaps.2023.64.71

Research Article

Relevance and Consequences of COVID-19 Pandemic From 7th-13th December, 2021 Across Different Countries

¹Joseph Oyepata Simeon, ²Joseph Opeyemi Tosin and ³Sabastine Aliyu Zubairu

Abstract

Background and Objective: The COVID-19 have affected millions and killed more than 5 million people globally. Recently, a various variant of the virus has been identified which has complicated the success achieved in containing it. Several approaches have also been taken to understand and manage the virus, while vaccines development has been of great value. Because of a complete lack of knowledge of the virus, shortage in vaccine supply etc., understanding how the virus spreads per country may determine relativity in infectivity and vaccine emergency. This study aimed to analyse and understand the progress, trend and consequences of the COVID-19 pandemic over seven days and across different countries of the world: 7th to 13th of December, 2021. **Materials and Methods:** Data from one hundred and forty-two countries were studied based on continents, countries and cases of infection. Data were obtained from the United Nations geo scheme and WHO. They were analyzed and compared to values obtained from United State of America (USA). **Results:** Data analyzed showed that the USA has made progress in containing the virus compared to previous months and years. Most African countries are relatively unaffected while Americans and Europeans appear to be most affected. **Conclusion:** The result from the study shows that the African system may have developed various mechanisms to cope and survive the virus pandemic compared to other regions of the world. Hence, vaccination may be Africa's least problem.

Key words: Omicron, COVID-19, transmissibility, severity, vaccination, shortage, health complications, global pressure

Citation: Simeon, J.O., J.O. Tosin and S.A. Zubairu, 2023. Relevance and consequences of COVID-19 pandemic from 7th-13th December, 2021 across different countries. Asian J. Appl. Sci., 16: 64-71.

Corresponding Author: Joseph Oyepata Simeon, Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Federal University, Oye-Ekiti, Ekiti, Nigeria.

Copyright: © 2023 Joseph Oyepata Simeon *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Federal University, Oye-Ekiti, Ekiti, Nigeria

²Department of Pharmacy, University College Hospital, Agodi 200285, Ibadan, Oyo, Nigeria

³Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Gombe University, 760214, Gombe, Nigeria

INTRODUCTION

Coronaviruses (CoV) is from a family of viruses that causes a different form of illness ranging from the common cold to more severe diseases. On 30th January, 2020¹ Dr. Tedros Adhanom Ghebreyesus, WHO Director-General declared the novel coronavirus outbreak a Public Health Emergency of International Concern (PHEIC), WHO's the highest level of alarm². At that time there were 98 cases and no deaths in 18 countries outside China. On 11th March 2020, the rapid increase in the number of cases outside China led the WHO Director-General to announce that the outbreak could be characterized as a pandemic³. By then more than 118,000 cases had been reported in 114 countries, and 4291 deaths had been recorded. By mid-March, 2020, the WHO European Region had become the epicentre of the epidemic, reporting over 40% of globally confirmed cases⁴. As of 28th April, 2020, 63% of global mortality from the virus was from the region⁵. Several possibly variant of the COVID virus, particularly Delta and Omicron variant has been identified. This has complicated the progress so far achieved.

The Omicron variant of COVID-19 has been called a variant of concern by WHO based on the evidence that it has several mutations that may have an impact on how it behaves⁶. There is still substantial uncertainty regarding Omicron and a lot of research is underway to evaluate its transmissibility, severity and reinfection risk. It is not currently known if the Omicron variant is more or less severe than other strains of COVID-19, including Delta.

The different waves of the disease have been of concern which may be due to changes in weather and mutated strain of the virus identified in some countries⁷. There is a need to understand this surge per country with the virulent and spreading ability of the newly mutated strain of the virus. Also, several studies have been carried out on the demographic strength and nature of the virus, but analyzing updated information per time is very essential in managing the trend⁸. This study aims to analyze and understand the progress, trend and consequences of the COVID-19 pandemic from the 7th to 13th of December, 2021 across different countries of the world.

MATERIALS AND METHODS

Study area: Data from 7th December-13th December, 2021, were obtained from the United Nations geo scheme and WHO (WHO 2021).

Methodology: A total of one hundred and forty-two countries across different regions of the world was selected based on COVID-19 incidences. The listed countries and territories with their continental regional classification were based on the United Nations geoscheme and WHO. Data obtained for each country over 7 days per 1000000, respective populations were analyzed and directly compared to that of the United States of America (USA).

The USA was used as a Comparison Factor (CF) also referred to as Oyepata Factor (OF), because it has one of the best healthcare systems and still the highest cumulative COVID-19 cases with a relatively large population in the world. All data used in these analyses are from publicly available data sets.

Statistical analysis: Parameters such as seven days incidences and deaths per 1000000 of the respective country population were compared against factors obtained for the USA. Bivariate analysis was done with a Chi-square Test to compare proportions for variables. In reporting these results, country-level characteristics are scaled to represent a comparison of two countries similar in all other respects. Thus, rate ratios greater than one means that higher levels of a given characteristic are associated with higher rates of COVID-19 cases or deaths, while rate ratios less than one means that lower levels of a given characteristic are associated with lower rates of COVID-19 cases or deaths.

RESULTS

Compared to other parts of the world and previous analyses, the USA has made tremendous progress in infectivity and mortality rate. Europe appears to be most affected, while most African countries except for South Africa have progressive control of the situation. Also, it was observed that most African countries have lower mortality compared to cases of infection (Table 1). The data in Fig. 1 and 2 shows comparison factors of different countries as compared with that of the USA.

Figure 1-2 obtained for the USA were used as the Comparison Factor (CF) or Oyepata Factor, which is a ratio of the figure obtained to the respective country population divided by the value obtained for the USA.

Values of CF1 (or OF1) and CF2 (or OF2) represent the case/incidence and mortality index.

Factor of more than 1 = Very high infection and mortality index. Factor of approximately 1 = High infection and mortality index. Factor of ≤ 1 but $\geq 0.5 = Moderately$ high

Table 1: Infectious and mortality rate of COVID-19 based on country

	Cases in the	Cases in the last 7		Deaths in the	Deaths in the last	
Country	last 7 days	days/1M pop (A)	B A/2138	last 7 days	7 days/1M pop©	D C/23
USA	713,768	2,138	1.00	7,814	23	1.00
UK	355,660	5,200	2.43	834	12	0.52
Germany	351,073	4,171	1.95	2,727	32	1.39
France	341,428	5,214	2.44	896	14	0.61
Russia	215,283	1,474	0.69	8,205	56	2.43
Poland	156,825	4,150	1.94	2,804	74	3.22
Turkey	139,062	1,624	0.76	1,321	15	0.65
South Africa	135,803	2,249	1.05	171	3	0.13
Netherlands	128,472	7,474	3.50	444	26	1.13
Italy	116,436	1,930	0.90	636	11	0.48
Vietnam	103,959	1,054	0.49	1,579	16	0.70
Spain	98,530	2,106	0.99	250	5	0.22
Czechia	93,257	8,685	4.06	714	66	2.87
Belgium	87,011	7,461	3.49	280	24	1.04
Switzerland	63,530	7,264	3.40	126	14	0.61
Ukraine	61,615	1,421	0.66	2,747	63	2.74
India	56,299	40	0.02	2,099	1	0.04
Hungary	48,053	4,993	2.34	1,307	136	5.91
Brazil	46,776	218	0.10	1,267	6	0.26
Slovakia	45,382	8,306	3.88	528	97	4.22
Denmark	45,278	7,777	3.64	68	12	0.52
S. Korea	44,237	862	0.40	401	8	0.35
Greece	36,656	3,542	1.66	650	63	2.74
Jordan	34,077	3,293	1.54	221	21	0.91
Malaysia	32,867	997	0.47	265	8	0.35
Norway	32,394	5,909	2.76	43	8	0.35
•			1.52	366	40	1.74
Austria	29,556	3,255				
Ireland	29,373	5,854	2.74	81	16	0.70
Zimbabwe	28,094	1,851	0.87	28	2	0.09
Portugal	27,501	2,708	1.27	121	12	0.52
Thailand	27,405	391	0.18	227	3	0.13
Canada	25,861	677	0.32	146	4	0.17
Georgia	23,993	6,031	2.82	387	97	4.22
Croatia	23,165	5,694	2.66	401	99	4.30
Iran	20,348	238	0.11	522	6	0.26
Argentina	17,779	388	0.18	125	3	0.13
Mexico	17,068	130	0.06	1,466	11	0.48
Colombia	12,470	241	0.11	327	6	0.26
Sweden	11,914	1,169	0.55	5	0.5	0.02
Bulgaria	11,528	1,677	0.78	684	100	4.35
Lithuania	11,280	4,229	1.98	131	49	2.13
Lebanon	11,253	1,659	0.78	73	11	0.48
Australia	11,088	428	0.20	54	2	0.09
Belarus	10,910	1,155	0.54	114	12	0.52
Serbia	10,384	1,195	0.56	261	30	1.30
Chile	10,257	530	0.25	185	10	0.43
Slovenia	9,888	4,755	2.22	106	51	2.22
Finland	9,825	1,769	0.83	61	11	0.48
Bolivia	9,727	817	0.38	90	8	0.35
Azerbaijan	8,092	788	0.37	121	12	0.52
Peru	7,612	226	0.11	271	8	0.35
Romania	7,113	373	0.17	528	28	1.22
Egypt	6,036	57	0.03	333	3	0.13
Trinidad and Tobago	5,473	3,892	1.82	145	103	4.48
Sri Lanka	5,220	242	0.11	153	7	0.30
Kazakhstan	4,334	227	0.11	83	4	0.17

Table 1: Continue

	Cases in the	Cases in the last 7		Deaths in the	Deaths in the last	
Country	last 7 days	days/1M pop (A)	B A/2138	last 7 days	7 days/1M pop©	D C/23
Singapore	4,151	702	0.33	35	6	0.26
Israel	4,109	441	0.21	12	1	0.04
Cyprus	4,019	3,294	1.54	9	7	0.30
Ecuador	3,841	213	0.10	74	4	0.17
Venezuela	3,765	133	0.06	46	2	0.09
Iraq	3,491	84	0.04	93	2	0.09
Moldova	3,403	846	0.40	151	38	1.65
Bosnia and Herzegovina	3,384	1,041	0.49	234	72	3.13
Estonia	3,286	2,475	1.16	29	22	0.96
Libya	3,116	445	0.21	60	9	0.39
Namibia	3,053	1,171	0.55	3	1	0.04
Nigeria	2,859	13	0.01	1	0	0.00
Myanmar	2,254	41	0.02	42	0.8	0.03
Pakistan	2,224	10	0.00	63	0.3	0.01
Palestine	2,122	402	0.19	27	5	0.22
Albania	2,057	716	0.33	24	8	0.35
Bangladesh	1,882	11	0.01	27	0.2	0.01
Philippines	1,832	16	0.01	894	8	0.35
Armenia	1,815	611	0.29	119	40	1.74
Mongolia	1,810	540	0.25	17	5	0.22
Mozambique	1,750	54	0.03	3	0.1	0.00
Panama	1,728	392	0.18	12	3	0.13
Nepal	1,630	55	0.03	13	0.4	0.02
Uruguay	1,584	454	0.21	11	3	0.13
Indonesia	1,458	5	0.00	69	0.2	0.13
Uzbekistan	1,414	41	0.02	18	0.5	0.02
DRC	1,388	15	0.01	5	0.1	0.02
Algeria	1,379	31	0.01	42	0.9	0.00
Tunisia	1,143	95	0.04	31	3	0.04
Qatar	1,143	403	0.19	2	0.7	0.13
Sudan	1,040 994	23 35	0.01	44	1	0.04
Madagascar			0.02	8	0.3	0.01
Maldives	908	1,638	0.77	4	7	0.30
Ethiopia	900	8	0.00	29	0.2	0.01
Kenya	898	16	0.01	13	0.2	0.01
Morocco	891	24	0.01	8	0.2	0.01
Iceland .	885	2,569	1.20	0	0	0.00
Japan	861	7	0.00	9	0.1	0.00
Botswana	788	326	0.15	2	0.8	0.03
Zambia	765	40	0.02	3	0.2	0.01
New Zealand	689	138	0.06	2	0.4	0.02
Mali	676	32	0.01	11	0.5	0.02
Isle of Man	654	7,633	3.57	1	12	0.52
Syria	653	36	0.02	37	2	0.09
Ghana	627	20	0.01	34	1	0.04
Malta	612	1,381	0.65	2	5	0.22
El Salvador	593	91	0.04	12	2	0.09
Cuba	538	48	0.02	4	0.4	0.02
China	537	0.4	0.00	0	0	0.00
Mauritius	523	410	0.19	86	67	2.91
UAE	474	47	0.02	3	0.3	0.01
Faeroe Islands	456	9,281	4.34	0	0	0.00
Costa Rica	432	84	0.04	15	3	0.13
Cameroon	401	15	0.01	19	0.7	0.03
Paraguay	383	53	0.02	27	4	0.17
Burkina Faso	334	15	0.01	4	0.2	0.01

Table 1: Continue

Country	Cases in the	Cases in the last 7	B A/2138	Deaths in the last 7 days	Deaths in the last 7 days/1M pop©	D C/23
	last 7 days	days/1M pop (A)				
Saudi Arabia	328	9	0.00	9	0.3	0.01
Uganda	318	7	0.00	14	0.3	0.01
Jamaica	296	99	0.05	15	5	0.22
Malawi	284	14	0.01	1	0.1	0.00
Honduras	251	25	0.01	8	0.8	0.03
Mauritania	248	51	0.02	9	2	0.09
Bahrain	234	131	0.06	0	0	0.00
Haiti	234	20	0.01	11	0.9	0.04
Kuwait	220	50	0.02	1	0.2	0.01
Rwanda	220	16	0.01	1	0.1	0.00
Monaco	209	5,272	2.47	0	0	0.00
Burundi	193	16	0.01	0	0	0.00
Eritrea	188	52	0.02	2	0.6	0.03
Afghanistan	179	4	0.00	16	0.4	0.02
CAR	170	34	0.02	0	0	0.00
Angola	145	4	0.00	2	0.1	0.00
South Sudan	115	10	0.00	0	0	0.00
Gabon	114	50	0.02	2	0.9	0.04
Congo	96	17	0.01	5	0.9	0.04
Togo	96	11	0.01	0	0	0.00
Taiwan	85	4	0.00	0	0	0.00
Ivory Coast	81	3	0.00	0	0	0.00
Niger	81	3	0.00	7	0.3	0.01
Senegal	62	4	0.00	0	0	0.00
Yemen	44	1	0.00	17	0.6	0.03
Tanzania	39	0.6	0.00	4	0.1	0.00
Benin	34	3	0.00	0	0	0.00
Sierra Leone	19	2	0.00	0	0	0.00
Liberia	9	2	0.00	0	0	0.00
Chad	0	0	0.00	0	0	0.00

Sources and data used were provided under latest updates from WHO/World meters from 25th-31st October, 2021

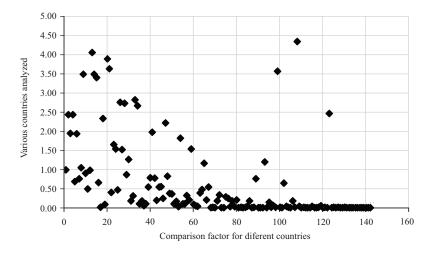


Fig. 1: Graph showing 7 days of infection cases per country relative to the USA

X-axis represents Comparison Factor for different countries and Y-axis represents various countries analyzed

infection and mortality index. Factor of \leq 0.5 but \geq 0.1 = Low infection and mortality index. Factor of \leq 0.1 = Very low infection, mortality and recovery index. Oyepata Factor = Data

was obtained from a particular country divided by that of another country with a significant or most prevalent case (in this case USA).

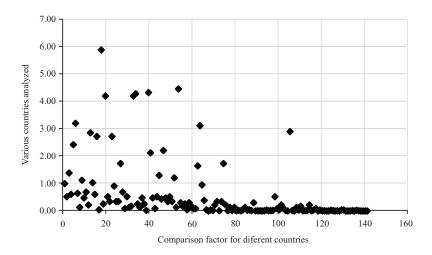


Fig. 2: Graph showing death over 7 days caused by COVID-19 per country relative to the USA X-axis represents Comparison Factor for different countries and Y-axis represents various countries analyzed

DISCUSSION

The result emphasized a relationship between a virus that ravaged the West and a seemly undisturbed Africa. There are many factors to be made out and understood from the result. There is currently a gradual surge in cases of COVID-19 in several regions of the world. Introduction vaccination has been of tremendous gain in the fight against the virus9. But the recent emergence of a mutant strain, called Omicron^{10,11} appears to take the world back from the steady progress been made. Although, current studies and information seem to favour the idea that the new strain is less severe 12, particularly in those previously vaccinated¹³. This, therefore, emphasizes the need and global pressure for whole global vaccination. Vaccination seems to be in short supply in any part of the world. This necessitated consideration of regions or countries based on relative incidences and death. To date the best approach in combating the virus rampage is vaccination.

Based on the above result, the USA has made a tremendous stride in preventing the spread of the virus and lowering mortality when compared to the previous studies^{14,15}. Western countries, particularly, Europe is experiencing an upsurge in cases and mortality. This may be due to the winter season. Coronaviruses die very quickly when exposed to UV light in sunlight and like other enveloped viruses, SARS-CoV-2 survives longest when the temperature is at room temperature or lower. Infections caused by many respiratory viruses, which includes corona viruses, swell in winter and drop in summer. Researchers believe it's too early in the COVID-19 pandemic to ascertain if SARS-CoV-2 becomes a seasonal virus^{15,16}. But growing evidence suggests that a small seasonal effect will probably contribute to bigger

outbreaks in winter, based on what is known about how the virus spreads and how people behave in colder months ¹⁷.

Africa seems to be least affected by the health effect of COVID-19. This success report remains steady with researchers works 18,19. Also, Africans showed lesser mortality relative to the case of the infection. This means Africa is less symptomatically affected, and when they are exposed to the western lethal virus, their immune system seems to respond strongly to prevent further health complications. Africa is classified as a third world or an underdeveloped continent 20-24. The reason for the lesser tragedy of the pandemic in Africa has been a medical mystery. Most African communities exist as a community and in dense clusters which is an obvious contrast to most developed countries that are more solitary in nature²⁵⁻²⁸. Therefore, there is a higher probability that most individuals in Africa may have been exposed to the virus without knowing or developing major symptoms. It has been reported, that because of poor health and lack of environmental hygiene, the immune systems of African children develop faster than those of Dutch children²⁹⁻³¹. Exposure to bacteria, viral and fungi pathogens in childhood may have contributed to the strengthened immune system and protected children from developing asthma allergies and other infectious diseases, on subsequence exposure to the likely similar allergen/pathogen³¹⁻³³. This view is also supported by data and comparison factors obtained from Haiti. Haiti is still the poorest country in the Latin America and Caribbean Region and among the poorest countries in the world³⁴. They have one of the least cases of infection and mortality with regards to COVID-19, resulting in little to no significant value of Comparison Factor. Thus, poor environmental condition, which increases the possibility of early exposure to some diseases in Africa and Haiti may have resulted in a more robust innate and/or adaptive immune response. As a result countries in Africa are both vulnerable and potentially more resilient to the corona virus.

CONCLUSION

Africa needs a vaccine, but in an emergency when compared to the western world, its survival may not be desperately dependent on vaccination, because most individuals in African countries may have been naturally and unconsciously immune. More studies and surveys need to be conducted to understand the virus infectivity and its significance to Africa and maybe the rest of the world.

SIGNIFICANCE STATEMENT

The study discovered that America and Europe, two of the most developed continent in the world are ironically the most affected by the pandemic. While Africa, popularly referred to as an underdeveloped continent has shown little sign of being affected by the virus. This may be due to cradle environmental exposure or vaccination against related microorganisms, which may have resulted in some kind of immunity that was beneficial against subsequent exposure. The study also revealed that Africa, like every other continent needs vaccines but is not in relatively desperate demand.

ACKNOWLEDGMENTS

The authors wish to appreciate and thank everyone who has contributed to the success of this study. Special appreciation to the United Nations Geo scheme and WHO for access to raw data per country was gotten.

REFERENCE

- 1. Rosen, F.S., 2004. Isolation of poliovirus-John Enders and the nobel prize. N. Engl. J. Med., 351: 1481-1483.
- Gover, A.R., S.B. Harper and L. Langton, 2020. Anti-Asian hate crime during the COVID-19 pandemic: Exploring the reproduction of inequality. Am. J. Criminal Justice, 45: 647-667.
- 3. Fan, Y., K. Zhao, Z.L. Shi and P. Zhou, 2019. Bat corona viruses in China. Viruses, Vol. 11. 10.3390/v11030210.
- Islam, M.A., S. Kundu, S.S. Alam, T. Hossan, M.A. Kamal and R. Hassan, 2021. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 17515 patients. PLoS ONE, Vol. 16. 10.1371/journal.pone.0249788.

- Simeon, S.A. Zubairu and J.O. Tosin, 2021. Clinical evaluation of the potential benefits of taking *Moringa oleifera* on blood triglyceride and cholesterol level in patient taking tenofovir/lamivudine/efavirenz (TLE) combination. J. Pharm. Sci. Res., 13: 623-629.
- Hauser, A., M.J. Counotte, C.C. Margossian, G. Konstantinoudis, N. Low, C.L. Althaus and J. Riou, 2020. Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modeling study in Hubei, China and six regions in Europe. PLoS Med., Vol. 17. 10.1371/journal.pmed.1003189.
- Simeon, J.O., B. Modupe, J.O. Tosin and S.A. Zubairu, 2020.
 Assessing differential impacts of COVID-19 on African countries: A comparative study. Int. J. Res. Innovation Appl., 5: 197-203.
- 8. Simeon, J.O., M.T. Lubo, J.O. Tosin and I. Irabor, 2020. The dynamics of differential impacts of COVID-19 on African countries compared to other parts of the world. Int. J. Multidiscip. Res. Anal., 3: 185-198.
- Simeon, J.O., B. Modupe, J.O. Tosin, F.T. Ibukun, O.J. Ogwuche, M.F. Daniel and M.T. Lubo, 2021. Effect of the demographic of COVID-19 on different countries; using the USA for comparism. Int. J. Multidiscip. Res. Anal., 4: 193-203.
- 10. Wertheim, J.O., D.K.W. Chu, J.S.M. Peiris, S.L.K. Pond and L.L.M. Poon, 2013. A case for the ancient origin of coronaviruses. J. Virol., 87: 7039-7045.
- Romiti, G.F., B. Corica, G.Y.H. Lip and M. Proietti, 2021.
 Prevalence and impact of atrial fibrillation in hospitalized patients with COVID-19: A systematic review and meta-analysis. J. Clin. Med., Vol. 10. 10.3390/jcm10112490.
- 12. Almeida, J.D., D.M. Berry, C.H. Cunningham, D. Hamre and M.S. Hofstad *et al.*, 1968. Virology: Coronaviruses. Nature, 220: 650-650.
- 13. Gao, Z., Y. Xu, C. Sun, X. Wang, Y. Guo, S. Qiu and K. Ma, 2021. A systematic review of asymptomatic infections with COVID-19. J. Microbiol. Immunol. Infect., 54: 12-16.
- 14. Lai, C.C., Y.H. Liu, C.Y. Wang, Y.H. Wang and S.C. Hsueh *et al.*, 2020. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immun. Infect., 53: 404-412.
- 15. Saniasiaya, J., M.A. Islam and B. Abdullah, 2021. Prevalence of olfactory dysfunction in coronavirus disease 2019 (COVID-19): A meta-analysis of 27,492 patients. Laryngoscope, 131: 865-878.
- Puntmann, V.O., M.L. Carerj, I. Wieters, M. Fahim and C. Arendt *et al.*, 2020. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from corona virus disease 2019 (COVID-19). JAMA Cardiol., 5: 1265-1273.
- 17. Wang, L., Y. Wang, D.Ye and Q. Liu, 2020. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, Vol. 55.10.1016/j.ijantimicag.2020.105948.

- Oyebadejo, S.A., O.S. Joseph, S.O. Adesite and A.O. Omorilewa, 2019. Effect of citrus limon juice and tamoxifen on the tumour growth mass indices, cell proliferation, cell viability and cytogenetic (mitotic index) of sprague dawley rats induced MCF-7 breast cancer cells. Saudi J. Biomed. Res., 4: 216-225.
- 19. Builders, M.I., O.S. Joseph and A.R. Vhriterhire, 2019. Effect of *Parkia biglobosa* extract on open skin wound healing in dexamethasone-induced hyperglycaemia and histological assessment in rats. Afr. J. Pharm. Pharmacol., 13: 84-89.
- 20. Oran, D.P. and E.J. Topol, 2021. The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Ann. Intern. Med., 174: 655-662.
- Islam, M.A., S.S. Alam, S. Kundu, T. Hossan, M.A. Kamal and C. Cavestro, 2020. Prevalence of headache in patients with coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of 14,275 patients. Front. Neurol., Vol. 11. 10.3389/fneur.2020.562634.
- 22. Pansini, R. and D. Fornacca, 2021. Early spread of COVID-19 in the air-polluted regions of eight severely affected countries. Atmosphere, Vol. 12. 10.3390/atmos12060795.
- 23. Blomberg , B., K.G.I. Mohn, K.A. Brokstad, F. Zhou and D.W. Linchausen *et al.*, 2021. Long COVID in a prospective cohort of home-isolated patients. Nat. Med., 27: 1607-1613.
- 24. Greenhalgh, T., J.L. Jimenez, K.A. Prather, Z. Tufekci, D. Fisman and R. Schooley, 2021. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet, 397: 1603-1605.
- 25. Baruah, C., P.Devi, B. Deka and D.K. Sharma, 2021. Mucormycosis and aspergillosis have been linked to COVID-19-related fungal infections in India. Advancements Case Stud., Vol. 3. 10.31031/AICS.2021.03.000555.
- 26. Miller, S.L., W.W. Nazaroff, J.L. Jimenez, A. Boerstra and G. Buonanno *et al.*, 2021. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 31: 314-323.

- 27. Götzinger, F., B. Santiago-García, A. Noguera-Julián, M. Lanaspa and L. Lancella *et al.*, 2020. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc. Health, 4: 653-661.
- 28. Huang, C., Y. Wang, X. Li, L. Ren and J. Zhao *et al.*, 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395: 497-506.
- Torres-Castro, R., L. Vasconcello-Castillo, X. Alsina-Restoy, L. Solis-Navarro, F. Burgos, H. Puppo and J. Vilaró, 2021. Respiratory function in patients post-infection by COVID-19: A systematic review and meta-analysis. Pulmonology, 27: 328-337.
- 30. Jiang, S., S. Xia, T. Ying, L.Lu, 2020. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cell. Mol. Immunol., 17: 554-554.
- 31. Shaw, B., M. Daskareh and A. Gholamrezanezhad, 2021. The lingering manifestations of COVID-19 during and after convalescence: Update on long-term pulmonary consequences of coronavirus disease 2019 (COVID-19). Radiologia Med., 126: 40-46.
- 32. Vabret, N., G.J. Britton, C. Gruber, S. Hegde and J. Kim *et al.*, 2020. Immunology of COVID-19: Current state of the science. Immunity, 52: 910-941.
- 33. Wang, Z., F. Muecksch, D. Schaefer-Babajew, S. Finkin and C. Viant *et al.*, 2021. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 595: 426-431.
- 34. Builders, M. I., J.O. Simeon, T.O. Ogundeko and P. Builders, 2020. Antimalarial drugs and COVID-19. Sumerianz J. Med. Healthcare, 3: 111-116.