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Abstract: In recent years constraint based methods such as Flux Balance Analysis
(FBA) has widely applied for computation of flux distributions in the metabolic
networks. Tn this study, the effects of changes in the intercellular concentration on
the Gibbs free energy of the system and subsequently on the model’s fluxes have
studied. This method which makes a correlation between the flux directions and
metabolite concentrations, has applied to large scale metabolic networl,
Escherichia coli iAF1260. The biomass and succinate fluxes have selected as
objective functions and the multi objective genetic algorithm has used to
optimization of the E. coli i4F1260 network. The obtained results revealed that a
living system such as E. coli and its mutants are not stable from thermodynamic
point of view before reaching to the cellular threshold concentrations. Also the
behavior of the mutants of microorganism mvolving their return to the wild type
phenotypes could be justified.

Key words: Biochemical network, flux balance analysis, in-silico model,
thermodynamic constraints, cellular concentration

INTRODUCTION

Reconstructed metabolic networks in living organisms are going to be a powerful tool
m the prediction of the phenotypes and analyzing their semsitivity to the imposed
environmental changes and mternal stimulus. Genome-scale metabolic networks which have
reconstructed for some microorganisms such as Escherichia coli and Saccharomyces
cerevisiae and their high abilities for predicting several phenotypes (in agreement with
experimental data) have previously demonstrated (I.ee ef al., 2002; Salgado et al., 2004;
Shen-Orr et al., 2002; Guelzim et al., 2002). For example, Genome-scale metabolic networks in
Escherichia coli and saccharomyces cerevisiae have predicted 86 and 88% of their genes
deletion phenotypes, respectively (Natalie et al., 2004). Flux Balance Analysis (FBA) is one
of the most important tools in order to study of the metabolic networks. It should be noted
that the FBA 1s a fair steady state approximation for estimating the behavior of the cells when
there is not enough kinetic information about the reactions of the metabolic networks
(Varma et al., 1993; Varma and Palsson, 1993; Edwards ef al., 2001 ;, Dien and Lidstrom, 2002;
Kayser et al., 2005). Genome-scale metabolic networks can be reconstructed through the
defimition of the stoichiometry of matrix from mass balance equations and then imposing
biological and systemic constraints into the networlk, determining the objective functions,
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energy requirements and other cell demands (Covert et al., 2004; Price et al., 2004). In this
regard, the constraint-based analysis is a conventional method to analyse the metabolic
networks and provide a framework to compute the cellular functions (Palssorn, 2000). In this
method that based on the convex analysis by sequential imposing the biological and
systemic constraints in the network, the allowable solution space of phenotypes is gradually
shrinks. This modeling method considers cellular, biochemical and systemic functions limits
1n the allowable solution space.

The important point mn the of use of the constraint base analysis 1s that the results of
such analysis let us know what the networks could do rather than determining the exact
network phenotypes with respect to the specific external environment. Tmposing additional
constraints (physiologic, metabolic and thermodynamic constraints) in FBA restrict the
number of possible solutions. These solutions are more compatible with real accessible
solutions in metabolic networks.

Also, the Energy Balance Analysis (EBA) which incorporates the second law of the
thermodynamics in the metabolic networks helps to find the cyclic reactions (that should be
elimmated) which led to infeasible fluxes (Pirt, 1965). Formulization of the thermodynamic
constraints in the Thermodynamic based Metabolic Flux Analysis (TMFA) requires the
Gibbs free energy values of reactions which could be determined by an estimation using
group theory or from experimental data (Henry et al., 2007).

Thermodynamic constraints for determining the direction of reactions was firstly used
in the reconstruction of the E. coli metabolic network. It should be noted that the
thermodynamic constraints illustrate the feasibility and direction of the reactions
(Kummel et af., 2006a, b, Henry et al., 2006). The reference concentration, 1 M, 1s considered
for all internal metabolites in which the standard Gibbs free energy values of the reactions
are calculated in this concentration. Since the real inside cellular concentration is about
1 mM, therefore, this concentration (1 M) does not demonstrate the real cellular
concentration. The real values of the intracellular metabolite concentrations are between
5 uM<C<2 mM and also, it has to be noted that there is no any metabolite concentration
from biochemical point of view if the intracellular metabolite concentrations are not at the
mentioned range (Henry et al., 2007).

Interestingly, our method makes a correlation between the flux directions and metabolite
concentrations. In this study, the effect of the metabolite concentration variations in the
mentioned range on the Gibbs free energy wvalues of the metabolic reactions and
subsequently on the objective fluxes has investigated. The method has used in Genome-
Scale metabolic network of Escherichia coli iAF1260. E coli iAF 1260 metabolic network
was able to more accurately predict the phenotypes of E coli MG1635 rather than the
previous version of E. ¢oli metabolic network reconstruction which has not involved the
thermodynamic considerations. The biomass and the succinate production fluxes which have
selected as the objective functions are simultaneously optimized using multi objective
Genetic Algorithm in MATLAB environment. The calculations showed that the
concentration and also Gibbs free energy changes could affect the objectives fluxes.

MATERIALS AND METHODS

Method Formulation

The study was carried out at the department of Chemical Engineering-Biotechnology,
Islamic Azad University, Science and Research Branch during 2007-2009. The reconstructed
networks could be resulted the BIGG (Biochemical, genomic and genetically) formation data
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banks (Covert et al, 2003; Price et al, 2003; Reed and Palsson, 2003). The better
understanding of the phenotype and also the objective functions in the cell for development
of the In-silico models which apply m the metabolic engmeering, 1s the goal of the
computational models. As previously mentioned, the Flux Balance Analysis (FBA) 1s a very
good approximation for the estimation of the intracellular behaviors. The FBA which could
be obtained from the steady state mass balance equations, is expressed as the following
equation:

SV=0 (1)

where, 3 is the stoichiometry matrix and V is the reactions fluxes. The numbers of reactions
considerably are more than the number of metabolites, therefore, there are many possible
solutions to solve the mass balance equations. In order to find a definite solution for
problem, the constraint based analysis method used to confine the solution space. After
umposing constraints, the metabolic network 1s optimized with respect to a certain objective
functions. This optimization problem is a classical Linear Programming (LP) problem that
could be solved using the simplex algorithm. Also, the system is limited by —a<V,<p
inequality, in which « and b are the lower and upper boundaries of the flux of each reaction.
The constraints for the reversible and irreversible reactions are —w<V<p and 0<V <,
respectively. The constraint of the exchange reactions which lets the metabolite be
discharged out of the cellular space is 0 = V,<f. According to the second law of the
thermodynamics, the fluxes should move from the reactions with higher to the lower chemical
potentials, which involved increased entropy (Maskow and von Stockar, 2005). Based on this
law, many fluxes resulted from FBA are impossible. We have the chemical potential difference
(Ap,) for each intemal network flux (V}). The second law of thermodynamic for each of these
fluxes are defined as V. Ap<0. As above mentioned, according to the second law of
thermodynamics, the relation between the net direction of the biochemical reactions and
Gibes free energy changes could be defined as follows:

Sgn (V,) = -Sgn (AGn) 2

where, Sgn() is the sign function, AG; is the Gibbs free energy changes and V. is the flux of
the reaction. The Gibbs free energy is obtained from the follow equation:

AG, =AG +RTY Lo[M]-RT3 Ln[M] (3)

MMeFP el

where, M 1s the active concentration (activity) of metabolite M, S and P are the substrate and
the products, respectively, R 1s the global constant of Gas and T is the definite temperature
of the reaction (298°%)

Also, there 1s a direct relation between the Gibbs standard free energy changes and the
equilibrium constant of reaction as follow:

AGr=-RTLnK,, (4

where, K_, is equilibrium constant of the reaction.
We reorganize the Eq. 3 as follows:
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86 2% L sc ®)
RT RT

where, AG: is the column vector demonstrater of AG, for all the reactions, x5, is the column

vector demonstrator of AG* for all the reactions, C is column vector of natural logarithm of

concentration for all the metabolites and S 1s the transposition of the stoichiometry matrix.
The optimization procedure 1s expressed as follow:

Maximize Objectives
Subjectto 3.V =10

OSVJJradJia, 1=j=n
OS-AGJJranga, l<j<n

4G, A% sc
RT RT

where, V is the vector of the fluxes, d, is binary parameter with the amounts of O and 1, «
determines the upper boundaries and also 3 refers to the stoichiometry matrix, in which the
columns of exchange reactions are eliminated.

By considering two above mentioned boundaries, it can be demonstrated easily that the
Sgn(V;) = -Sgn(AG) 1s always dominant (from second law of thermodynamic).

Model

Escherichia coli, the negative gram bacteria, is a significant choice for reconstruction
of the metabolic networks which is too controversial for the metabolic studies and has the
best specifications of a microorganism in the field of genome, the objective function
specifications and growth behavior information. Since 1990 the reconstruction of the E. coil
metabolic network has been started and also 1s presently under investigation (Almaas ef af.,
2004, Edwards and Palsson, 2000; Flores ef al., 1996, Covert and Palsson, 2002, Price et af.,
2004; Feist et al., 2007). In the current study, the reconstructed genome scale metabolic
network of the Z. coli idFI1260. This metabolic model also mcludes thermodynamic
considerations. The changes of Gibbs Free Formation Energy (GFFE) and the Standard Gibbs
Free Energy (SGFE) of reaction n E. coli i4F1260 has been already estimated for most of the
metabolites and reactions (e.g., 96% of metabolits and 84% reations). The GFFE and the SGFE
values of the reactions are calculated by the group contribution theory (Feist et af., 2007).

The E. coli iAF1260 includes of 1972 metabolites and 2382 reactions. However, 300
exchange reactions are eliminated from the model and ultimately, the network includes of 2082
reactions and 1972 metabolites. Among the 2082 internal reactions of the network, there are
near 81 lumped reactions in which the equilibrium state hypothesis has applied and also for
which SGFE = 0. Smce the concentrations of the metabolites can affect the SGFE and
ultimately the range of feasibility of the reaction flux vector, the effects of metabolite
concentration changes on E. coli i4F1260 metabolic network and the objective functions
have investigated. The real values of the intracellular metabolite concentrations are between
5 uM<C<2 mM and also, it has to be noted that there is no any metabolite concentration
from biochemical point of view if the intracellular metabolite concentrations are not at the
mentioned range (Henry et al., 2007). In this worlk, by choosing a definite step size in this
range, the effects of concentration on the fluxes and the objective functions are studied. The
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Table 1: Concentrations of nutrients in media

Molecules Concentration
Phosphate 0.056 M
Sulfate 0.0030 M
Ammonium 0.019 M
Sodium 0.16 M
Potassium 0.022 M
Fe* 0.062 M
CO, 0.00010 M
Oxygen 8.2x107°M
Glucose 0.020 M
H*, el pH 4-11

production of succinate has studied as a by-product in the TCA cycle of the E. coli (the wild
type and the mutant types of this bacterium) are as objective functions alongside with
maximizing of producing of the Biomass. Finally, the effects of the concentration changes in
these two objective functions and in both wild type and the mutant types have showed. In
this model, growth media contains Glucose, ammomum, sulfate, oxygen and phosphate have
selected for the microorgamsm according to the biomass formation formula. The
concentrations of these nutrients which obtained from experimental data are given in
Table 1 (Henry et al., 2007).

THE optimization problem was solved using multi objective Genetic Algorithm accessed
by the MATLAB (The MathWorks Inc., http://www.mathworks.com) modeling environment.

RESULTS AND DISCUSSION

The SGFE of the reaction of £. coli i4F1 260 metabolic network have obtained from the
data bases. For lumped reactions in which the Gibbs free energy cannot be calculated
through the ordinary methods, it was assumed that the reactions are in the equilibrium state
and their SGFE has set to zero (Henry et al., 2007; Feist et al., 2007, Mavrovouniotis, 1990,
1991; Maskow and von Stockar, 2005). The physiological concentration range for the
intercellular metabolites has considered 5 uM to 2 mM. By selecting a specific step size
0.0002, the effects of the metabolite concentration on the objective functions fluxes of the
wild type and the mutant types of E. coli idF1260 (in which some reactions (genes) have
been knocked out) have studied (Datta, 1992; Emmerling et al., 2002; Stols and Domelly,
1997, Varma and Palsson, 1994). Selecting the biomass and succinate fluxes simultaneously
as the objective functions and optimizing the model using the multi objective Genetic
Algorithim, have applied. In order to study the changes of succinate yields in this range, five
Mutant E. coli i4dF1260 have selected and the reactions (genes) of the byproducts which
have the least effect on the system biomass have knocked out. Succinate and biomass
production of wild type E. coli and the mutants are listed in Table 2 in which the biomass and
succinate production vields are provided on a basis of 10 mmol h™" glucose and 1 g DW of
cell. Our results represent in Fig. 1a-1 which shows how biomass and succinate production
fluxes of wild type and mutants of E. coli in Table 2 are changed versus concentration
changes in 5 pM<C<2 mM range.

Figure 1 represents the effect of cellular concentrations changes on optimal growth as
well as succinate production rate. As it 1s shown, until reaching a threshold concentration,
the increase of cellular concentration yields the increase of the rate of both biomass and
succinate production. Tt should be noted that by reaching to the threshold concentration,
the mcrease of overall concentration of metabolites in the cell has no more effect on biomass
and succmate production rates. This observation indicates that there i1s a defimite cellular
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Fig. 1: (a-1) Biomass and succinate fluxes changes for wild type and mutants types of E. coli
versus concentration in 5 pM<C<2 mM range

concentration in E. coli metabolic network, in which some cellular phenotypes like growth
and succinate production rates are not sensitive to the cellular concentrations of metabolites.
The obtained results demonstrated that the metabolites are in the average concentration of
1 mM in the cell. However, the results of this study indicated that by reaching to the
threshold concentration, the metabolic reactions become insensitive to the cellular
concentrations from thermodynamic point of view.

In addition, the obtamned results revealed that there 1s a difference between the
phenctype behaviors of wild and mutant types. When a gene (genes) is (are) knocked out
from the genome of the organism like E. coli, the system shows different behavior before
reaching to the threshold concentration. Interestingly, the obtained result in the current
study confirms the previous studies which have been performed on the metabolic network
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Table 2: Wild type E. coli i4Fi260 and the selected mutants for succinate production

D Knock outs Enzyme
Wild type Complete network
Mutant. 1 atp + coa + suce === adp + pi + succoa Succinyl-CoA synthetase
Mutant 2 coa+ nad + pyr - accoa + co2 + nadh Pyruvate dehydrogenase
atp +tp —~ adp+fdp +h Phosphatiuctokinase
g3p +nad + pi <=—> 13dpg + h + nadh Glyceraldehyde-3-phosphate dehydrogenase
Phosphoglycerate kinase
3pg + atp <—>= 13dpg + adp Phosphoglycerate mutase
2pg <=> 3pg Malate dehy drogenase
mal-L + nad <=—>h + nadh + oaa Succinyl-CoA synthetase
atp + coa + suce === adp + pi + succoa
Mutant 3 coa+ pyr -~ accoa + for Pyruvate formate lyase
lac +nad <==h + nadh + pyr TLactate dehydrogenase
Mutant 4 lac + nad <=>h + nadh + pyr Lactate dehydrogenase
coa + pyr — accoa + for Pyruvate formate lyase
acald + coa + nad <> accoa+ h + nadh Acetaldehyde dehydrogenase
Mutant 5 adp +h—+ pep ~ atp + pyr Pyruvate kinase
ac + atp <—> actp + adp Acetate kinase
accoa + pi <= actp + coa Phosphotransacetylase
glc + pep-g6ptpyr Phosphotransferase system

The reactions and corresponding enzymes for each knock outs are listed and the biomass and succinate production yields
are provided on a basis of 10 mmol h™! glicose and 1 gDW of cell

of E. coli (as experimental work) by Palsson and co-workers which provided some mutants
from E. coli, however, they have found that all mutants return into the biomass increasing
phenotype after some generations as the cell metabolism objective function. They concluded
that this finding demonstrates the stability of gene regulatory and transcriptomic network of
E. ¢oli in proportion to the imposed perturbation.

In addition, the obtained results showed that the mutant types of an organism not only
tend to turn back mto the wild type phenotype because of its transcriptomic stability,
however, another factor is accessing to the thermodynamical stability which has evolved
during the ages in the wild type. One of the most important factors in the evolutionary
process of the mutant types is achieving thermodynamical stability in the non equilibrium
conditions of living cells.

Also, the results showed that there are unsteady metabolite concentrations, in which
we could analyze them from the metabolic engineering point of view. One of the problems of
metabolic engineering is achieving types of the engineered strains which have fewer
tendencies to return mnto the wild type behaviors. Obviously, if the orgamsm returns into the
wild type behavior, the efforts of the metabolic engineering will be wasted and the cell will
use the sources in the ways other than the main aim of the strain. It 13 possible that the
genetically engineered strains could not set their metabolite concentrations in the level of
the steady state concentration. The findings resulted from the above diagrams demonstrate
that the most serious result of this inability may be the problem of the cell in establishing the
thermodynamical equilibrium state.

CONCLUSION

The major finding in the present study showed that there is a threshold cellular
concentration in which before reaching to this concentration phenotypic behavior of cellular
systems are not stable from thermodynamic pomt of view. This finding 1s a further emphasize
on the significant of thermodynamic analysis of living systems in order to better understand
the mechanisms of their functioning from the system engineering point of view. In other word
in order to understand underlying interactions in the living systems and also how they affect
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the cellular behaviors, the study of biochemical networks and development of the
experimental procedures and computational tools is so important.
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