Asian Journal of

Biotechnology

http://knowledgiascientific.com

ISSN 1996-0700

Knowled&ia
SCIENTIFIC

A Place to Publish Outstanding Research




Asian Journal of Bictechnelogy B (1): 1-20, 2013
ISEN 1996-0700 / DOI: 10.3923/ajbkr.2013.1.20
© 2013 Knowledgia Review, Malaysia

Using Statistical Tools for Improving Bioprocesses

"Eutimio Gustavo Fernandez Nufez, “Rodolfo Valdés Veliz, 'Bruno Labate Vale da

Costa, *Alexandre Gongalves de Rezende and 'Aldo Tonso

'Departamento de Engenharia Quimica, Universidade de Sdo Paulo, Sdo Paulo, SP, Brazil

*Monoclonal Antiboedy Department, Center for Genetic Engineering and Biotechnology (CIGR), Ave. 31 /158
and 190, Cuabanacan, Playa, P.O. Box 6162, CP 10600, Havana, Cuba

Laboratdric de Imunclogia Viral, Instituto Butantan Sdo Paulo, SP, Brazil

Corresponding Author: Eutimio Gustavo Ferndndez Nifiez, Departamento de Engenharia Quimica, Universidade de
Sdo  Paulo, Av. Prof Luciano Gualberto, trav. 3, 380 Butantd, 05508-900, Sdo Paulo, SP, Brazil
Tel: (65)-11-3091 2282

ABSTRACT

In this review most of statistical tools currently applied in the bioprocess area were discussed
and classified. The main three categories were: fair comparison of results, mathematical modeling
for little studied systems and taking advantage of large volume of data for enhance robustness and
efficiency. For each statistical technique, an example from literature was commented to demonstrate
its utility in bicprocess problems. Besides, others statistical tools without a wide application, at the
moment, 1in bioprocess were also discussed, taking into consideration the near future use of them.
As a conclusion, a chart was constructed for guiding researchers to select the correct statistical
technique according to the specific bioprocess problem.
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INTRODUCTION

Bioprocesses are currently used to produce a wide variety of chemieals from alechols, organic
compounds and amino acids, to antibiotics and therapeutically active recombinant proteins
{Clementschitsch and Bayer, 2008). This kind of processes is characterized by the industrial
application of biological pathways or reactions mediated by living cells of animal, plants and
microorganisms or enzymes under controlled conditions for the biotransformation of raw material
into products (Nair, 2008). Bioprocess technology 1s typically made up of three parts: upstream
process, bioreactions and downstream processing (Nair, 2005),

In the upstream step or pretreatment, the raw material from biclogical or non-biclogical origin
is first converted to a form suitable for processing. Subsequently, one or more bioreaction stages are
performed. The biochermeal reactors or bioreactors are the core of the bioreaction step. In this stage,
the following operations are carried out: production of biomass, metabolize biosynthesis and
biotransformation. Finally, the material produced in bioreactors must be further processed in the
downstream section. Downstream processing consists of basically physical separations in order to
purify and concentrate the product of interest (Jana, 2008).

Bioprocess goeals are influenced by several parameters, being the definition of best values for
them, an important and complex task for biochemical engineers. For economic reasons, large-secale
established bioprocess should not be disturbed and any modification to any parameter may be not
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considered (Najafpour, 2008). Thus, on lab-scale 1s performed an intensive experimental work for
understanding and optimizing the individual operation units and the process as a whole, both novel
and established bioprocesses (Najafpour, 2006; Dubey and Behera, 2011). At the same time a high
amount. of data is stored from bioprocesses on large-scale equipped with sophisticated control, data
logging and archiving systems; these could be also used to improve them (Charaniya et al., 2008).

The statistical tools have demonstrated that are useful to solve this task, decreasing time and
resource. The aim of this review 1s to expose the principal statistical techniques with applications
in bioprocesses through the examples extracted from literature as well as a philesophy of work
without mathematical details in order to 1dentified what statistical method should be used as the
classification of the problem under study.

DEFINING KEY TERMS

The definitions of three key statistical terms (factors, levels and responses) are necessary to
facilitate the readership understanding of this text, mainly for poor trained professionals in
statistical tools. This 1s the first step of the stair for helping bioprocess researchers to choose by
themselves with a minimal statistical knowledge, the right technique for their specific problem.

Factors correspond to the independent variables of the system which we are interested in
knowing as they influence the process outputs. The levels are some values in the study range of
factors, when factor is a numerie variable or different categories, in the case of qualitative variable.
For instance, the pH and nitrogen scurce could be studied for improving the yield of a fermentative
process. The range of interest. for factor pH (6.0-8.0), a numeric variable, could be explored at three
levels: 6.0, 7.0 and 8.0. On the other hand, for nitrogen source, a qualitative variable, nitrate and
urea could be two levels for this factor.

Respenses are the properties of the system that are being measured and they are modified as
a consequence of changes in factor values. They are also defined as dependent variables. Retaking
the previous example, yield would be the response in this study case.

PROBLEM DEFINITION

Once defined the basic statistical vocabulary, we have the primary elements to understand
what kind of problem we need to resolve in statistical terms. This 1s the first question to answer in
order to choose the right statistical tool in any scientific work and as a consequence in bioprocesses
too. In general, problems in bioprocesses might be statistically classified in three categories:

«  Fair comparison of results
+ Mathematical modeling for little-studied systems or processes
+ Take advantage of large volume of data for enhance robustness and efficiency

The first one is used to determine whether or not one or more factors can affect the system
outcomes (responses). The main goal 1s to define in qualitative way the effects of variables and
levels of them on responses of a well-know system (control) or among their own responses for
non-established systems. In other words, as a result of this statistical problem are identified
relationships of equality, superiority or inferiority amoeng alternatives or treatments considered
{Boos and Brownie, 1995).

Statistical modeling or design of experiment methodology for little-studied systems or processes
is useful when a mathematical function which connects individual factors under study and their
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Fig. 1: Classification of variables and most frequently types of factors and response in bioprocesses

interactions with responses of the system, 1s desired. This is used for rapid variable screening,
understanding and optimization of systems without phenomenclogical models associated. This
general statistical tool has been boosted by Food and Drug Administration through Process
Analytical Technology (PAT). PAT aims to enhance the necessary deeper understanding of the
manufacturing bioprocess in the pharmaceutical field, with the purpose of adjusting manufacture
online and eliminating delays in product release. However, the applications of PAT might be helpful
in any other bioprocess application, beyond pharmaceutical industry (Mandenius and
Brundin, 2008).

For first two types of problems, it is eritical the definition of factor levels (values of independent,
variables) under study (Ryan, 2007). The correct definition of them can be performed by a previous
revision of literature about the systems of interest or similar, through theoretical considerations or
preliminary experiments. When this step is done correctly, time and resources are saved and
properly results can be achieved.

Another important moment (for problems type 1 and 2) when researchers are programming
their experimental work in bioprocess on lab-scale is the definition of variable types included in the
system under study. The type of variable defines the appropriated statistical design and data
analysis technique. Variable classification is divided in two large groups: qualitative and numeric
variables (Mendenhall ef al., 2009). Most of the problems in bioprocess include numeric variables
for process responses, either continuous or discrete (e.g., yield, productivity and variables related
with final product quality) and for independent variables, qualitative factors are also included, for
instance: types of carbon and nitrogen sources in culture medium (Fig. 1).

Nowadays, bioprocesses are well automated and they have a comprehensive data collection and
archiving. These archives represent an encrmous opportunity for using multivariate methods and
artificial neural networks in order to enhance the robustness and efficiency of manufacturing
processes (Charaniya et al., 2008, 2010; Albert and Kinley, 2001).



Asian J. Biotechnol., 5 (1) 1-20, 2015

FAIR COMPARISON OF RESULTS

This kind of statistical problem could be classified according of the number of factors under
consideration that could have impact in outcome parameter(s), their number corresponding levels
and if levels (samples) are independent or paired. Independent samples belong to different
populations; no connection exists among experimental units. On the other hand, paired samples
are samples which each data point in the first sample is uniquely matched to a data point in the
subsequent samples (Gerstman, 2008).

When one independent wvariable is being investigated, the proper experimental design to
detect difference among levels 1s completely randomized (one-way) design (Michelson and
Schofield, 1996). As a rule the sample size (IN) for assessing each level or treatment is the same and
N is greater or equal to three. Larger sample size is better but this will depend on cost criteria and
time. These problems with one variable are subdivided according to number of levels, because they
define statistical technique to analyze experimental data. If only two levels are assessed two-sample
t-test or its equivalent non-parametric Mann-Whitney test could be used. Problems with
three or more levels are solved by one-way Analysis of Variance (ANOVA) or the Kruskal-Wallis
non-parametric test (Michelson and Schofield, 1996; Aleman et al., 2007). In bioprocess
experimentation, parametric test are more frequently used (Table 1). If statistical differences are
detected (dispersion caused by levels is higher than dispersion caused by experimental errors or
naise) the other step 1s for determining which levels or treatments differ from each other. For this
purpose a multiple comparison procedure (multiple range tests) must be applied. Among the
existing methods are: least significant difference test, Bonferrom t-statistics, Tukey Honest
Significant Difference (HSD) and Duncan’'s multiple range test (Hinkelmann and
Kempthorne, 2008). Tukey HSD test is one of the most conservative methods and produces more
reliable results (Compton, 2011); this makes it one of the most used multiple range test in
bioprocesses. For paired samples, paired t-test and two-way ANOVA are useful to perform fair
comparisens with two and three or more levels, considering only one variable as (Rao, 2007).

In problems which are influenced by two or three factors with several levels each one,
randomized complete blocks and Latin squares and related designs are used (Kowalski and
Montgomery, 2011). In principle, these experimental strategies assume that interactions among
variables are nonexistent. The data analysis using these statistical tools could be carried out by two,
three-way ANOVA (Henderson, 2011; Tanegja, 2009) (Table 1). If any factor significantly modified
the response under study, a multiple range test must be performed to detect differences among
levels of this factor.

Over the course of last decade, several papers in the bioprocess field have used any of these
statistical techniques for fair comparison of results. For instance, a completely randomized design
was performed to define the effects of three levels of one independent variable, tween 80

Table 1: Main experimental designs for fair comparison of results used in bioprocess experimentation

Experimental design Parametric methods for data analysis Tspe of samnple No. of factors No. of levels
Completely randomized t-student test Independent 1 2
Paired t-test Paired
One-way ANOVA Independent. 3 or maore
Two-way ANOVA Paired
Randomized complete blocks Two-way ANOVA Independent 2 2 or more
Latin squares Three-way ANOVA Independent m n
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Table 2: Latin square designs (3 factors and 3 levels) used to optimize medium composition in RB 5 decolorization by Funalia trogii

X, X, Xs
Y, Zi (1 Za(2) Z; (3)
Y. Zs (@) 71 (B) Z (6)
Y Zs (T Z:(8) Z: (@)

X, Y and Z are independent variables (factors), for first experiment: Carbon, nitrogen and phosphate sources and for the second one:

Concentration of each selected ingredient from the first Latin square, RRB 5: Reactive black 5

percentage (0, 0.1, 1.0%) on growth, lipid accumulation and fatty acid composition in
Thraustochytrium aureum (response variables), Sample size for each assessed tween 80 percentage
was 3. Data were statistically compared using one-way analysis of variance (ANOVA) and
significant differences were identified by Tukey's test (Tacka ef al., 2011).

As another example, a completely randomized block design was utilized to determine effects of
two factors in pulse ultraviclet light technology (distance from the central axis of the lamp and
exposition time) on major allergens mitigation. Both variables were studied at 2 levels each,
10.8,14.6 and 18.2 cm and 2, 4 and 6 min, respectively. Comparison of level for each variable was
done by the Tukey's test. It was demonstrated that reduction of the protein band intensity for
peanut allergens increased with treatment time but decreased with increased distance from the
pulse ultraviolet light lamp (Yang ef al., 2011).

In one of the papers where Latin square method was used, two applications were performed
in order to define the better medium composition for decolorizing of reactive black 5 (RB 5), a
wastewater contaminant from textile industry, by Funalia trogit. Firstly, it was carried out a Latin
square design to optimmze three media components (carbon, nitrogen and phosphate source) at three
levels of them (carbon: fructose, glycerol, starch; nitrogen: ammonium tartrate, yeast extract,
peptone and phosphate: KH,PO,, KHFPQ,, Na,HPO,)). The concentration of each element rescurce
was kept constant. Secondly, another Latin square design was performed to optimize concentrations
of selected medium ingredients from first experimental plan. The variables were fructose, peptone
and Na,HPO, concentrations at three levels each. The response variable in both cases was
decolorization percentage of B 5. Nine combinations in both designs were done (Table 2). Authors
did not consider interactions among components for reducing the experimental work and aveid
inaccurate results, this justify Latin square design choice. No statistical data analysis technique was
performed to define better ingredient sources and their concentrations; Latin square design was just.
employed for programming experimentation {(Park et al., 2007),

STATISTICAL MODELING OF LITTLE KNOWN SYSTEMS

When we are interested in getting a rapid mathematical modeling of little known systems in
bioprocess field in order to screen or optimize factors which are suspected to be important, design
of experiment methodology (DoE) have been extensively used. DoK is a collection of predetermined
setting of the process variables of interest which provides an efficient procedure for programming
experiments (Lee and Gilmore, 2008). This general approach after experimentation allows
definition of mathematical relationships between input (factors) and output (response) variables
of a given system. Besides, with Dol the effects of input variables interactions can be studied as
considered factors can change simultaneously and experimental biases are avoided (Mandenius and
Brundin, 2008).
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As a rule when it 1s trying to optimize a new system, firstly it is carried out experimental
designs for factors screening and after that it is performed experimental plans for optimizing the
most significant factors (Xu ef al., 2010; Arutchelvi ef al., 2011). This strategy reduces the required
number of experiments and as consequence experimentation cost and time. Below, it will be
addressed the experimental designs for screening and optimizing process variables in theory and
their applications in bioprocesses.

SCREENING

Among the most used experimental designs for screening process variables in bioprocesses are:
two-level factorial, fractional factorial and Flackett-Burman designs. The first design allows for the
estimation of all factor effects and all interaction effects among factors. The application of two-level
factorial design is lirmted for high number of independent variables because the experimentation
could require a considerable time and financial rescurces (Sower, 2011). The number of
experimental runs is defined by all combinations among factor levels (2%, where k is the number
of factors, 2 is the number of levels. Generally, this experimental plan is used up to b independent,
variables, where the runs number associated with this design is 32 (2°) (Eriksson et al., 2008). The
response 1s described as a polynomial function which is defined according to the selected design and
the exploration of experimental domain is peripheral (Fig. 2).

Both experimental designs for screening and optimizing variables, the actual values of levels
are usually changed to a scale from -1 (minimum value) to 1 (maximum value), in order to
eliminate effects of different variable ranges; facilitate the data analysis and inferences
(Mills ef al., 2010). Besides, repetitions of experimental points included in statistical design or in the
central point of the experimental domain are performed to evaluate the statistical significance of
model and parameters (Brue and Howes, 2005; Santos ef al., 2011).

When the number of factor to asses is large, two-level fractional factorial or Plackett-Burman
designs are applied. Fractional factorial design is a fraction of an original two-level full factorial
design for a defined number of factors. The reduction of experimental runs with these experimental
plans sacrifice the non-confused effects determination of individual factors and their interactions.
Therefore, they are applied when it is assumed that some interactions between factors are not
significant. Two-level fractional factorial designs are classified in resolution III, IV or V, according

® X, Y=ot B XX BX X,

N
Ll

® Y= BB XA X XA X X

1 ﬂ HB XXX AP XXX,

Fig. 2(a-b); Experimental domains and runs distribution for two-level full factorial design as well

as their corresponding polynomial model with (a) Two factors and (b) Three factors
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Table 3: Resolutions of two-level fractional factorial design and their respective grades of confusion among interactions

Resolution Aliasing of interactions

111 Evaluate the main effects, which are confounded with two-factor interaction

v Evaluate the main effects and confounded two-factor interactions (there is aliasing of the two-factor interactions)

v Evaluate the main effects and two-factor interactions independently (there is aliasing of the two-factor with three-factor
interactions)

the confusion among interactions (Table 3) (Breyfogle, 1992). In general fractional factorial designs
with resclution V are widely used because rarely interactions of three-factors have significant
influence on system responses.

Plackett-Burman design is another experimental plan where factors are studied at two-levels.
It 1s also useful for sereening factors, when the number of them is fairly large. This experimental
strategy shows resclution I11. The number of experiment is a multiple of four. Hence, designs exist
for 4, 8, 12, 16, 20 and 24 ete., experiments. The number of experiments exceeds the number of
factors, k, by one. Standard Flackett-Burman designs exist for 7, 11, 15, 19 and 25 factors. In cases
where the number of experimental factors i1s less than number defined for standard design
{a multiple of 4 minus 1), the final factors are dummy ones (Brereton, 2003).

After experimentation for screening variables and also for optimizing (next section), polynomial
models are adjusted by matrix calculations. In order to demonstrate and improve the quality of
statistical model, four tests are mainly performed:

+  Goodness of fit

+ Lack of fit

+  GStatistical significance of model coefficients
*+ Residues analysis

Goodness of fit test describes how well current runs can be reproduced in the proposed
polynomial model. Lack of fit allows for determining whether or not errors associated to model for
experimental points not included in basic design are similar to experimental errors or noise
{Onsekizoglu et al., 2010). On the other hand, the significance of model coefficients is useful to
identify the independent variables with real effects on responses, to reduce the polynomial equation
and to facilitate the inferences about the system under study (Deming and Morgan, 1993). Finally,
residues analysis should be performed to confirm ne patterns as well as if they are normally
distributed to ensure that residuals are randomly placed around the model (Harry ef al., 2011),
otherwise a mathematical transformation response values could be necessary in order to improve
model fit to experimental data.

Screening experimental designs are applied in bioprocess area as first step in two-stage
methodology for optimizing culture media (ingredient concentrations), process variables
(temperature, time, agitation, linear flow, ete.) or a combination of both, The other remarkable
apphcability of this type of experimental plans 1s to demonstrate process robustness or to validate
process 1n the biopharmaceutical industry (Jakobsson et al., 2005). In general, more than three
factors are included in these two-level designs when they are used in bioreactions or downstream
procedures.,

As example: Plackett-Burman design was utilized during the first step for optimizing production
of lipases from a newly isclated Penicillium sp. Six variables at two-levels were considered in
12 experiments, three repetition on the center of the experimental domain were added.
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Independent variables were temperature (28-38), incculums (25-126 ml L™,
peptone (20-80 g L), yeast extract (5-30 g L™}, NaCl (5-30 g L™") and olive oil (10-30 g L™"). The
response variables were lipase activity after 48, 72 and 96 h of fermentation. Temperature, olive
oil concentration and NaCl concentration, were the significant factors on lipase activity, with
negative effects for first variables and positive for the last one. In optimization step, temperature
was set at 28°C because previous results confirmed similar cptimal temperatures. Olive o1l and NaCl
concentration were studied deeply in the optimization design according to physiological critena
(Wolski et al., 2009),

Another example of screening experimental design was the application of a fraction factorial
design (Resolution I1I) as a first stage to optimize culture media for production of phycobiliprotein
by Swynechocystis sp. PCC 6701, Seven factors (KINO,, NaNO,, Na H,FO, Na,HFO,, Ca(lNO,),,
FekEDTA, MgSO, concentrations) with two levels were studied. Addition two central point replicates
were included to original design (8 runs in duplicates = 16 runs), 18 runs were performed. The
response variable was specific growth rate. Nitrate and phosphate were identified as significant
factors. The other factors were discarded for the optimization step (Hong and Lee, 2008),

SURFACE RESPONSKE METHODOLOGY

Full factoral three-level, Central composite and Box-Behnken designs for symmetrical domains
have been extensively used as surface response methods of choice in bioprocess. The central goal
in these methods is to find the best combination of factors values in order to optimize the system
response(s).

Full factorial three-level are used for investigating two or three factors. In the case of many
factors the same problem as with a two-level design arises, the number of experiments becomes
high. They can be represented in the same way as previous described for two-level designs, 3, k
means number of factors and 3 1s the number of levels (Otto, 2007; Fernandez-Nunez ef al., 2011).
The number of experiment. is 3%, For instance, in problem with 3 factors, 27 experimental runs must
be carried out (Fig. 3).

When high number of factors is required for system statistical modeling with optimizing
purposes or the experimentation cost is elevated, central composite and Box-Behnken design should
be used.

(b)
X
X ,
4 ) X (C)
Vamury R
Y oy ®)
" /" o & ®
@), X, ®
X /Q ) ®
O‘ CJ A4 Xl
X, X 9 .
A
Xx

Fig. 3(a-c): Geometrical representations of experimental points arrange for (a) Full three-level, (b)

Central composite and {(c) Box-Behnken designs with three factors
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Central composite design is generated from full factorial two-level design link to a star design.

The number of run (n) is calculated by the following equation:
n=22k+n,

where, n, is the number of runs in the geometrical center of the experimental domain. For three
factors, the number of experiments is 15, when repetitions number of the central point 1s 1 (Fig. 3).
Most, of the composite central designs with applications in bioprocesses are circumscribe, the
distance of the star points (¢) from the center can be calculated by this equation: ¢ = 2¥*
{Anderson and Whitcomb, 2004). The experimental disadvantage of this design is the position of
star point outside the hypercube, as a consequence the number of levels is higher than 3 (Fig. 3).
The alternative of solution for this drawback is the Box-Behnken design.

The experimental points in Box-Behnken experimental plan lie on a hypersphere equidistant,
from the center point. The total number of experiment is even lower than those required in central
composite designs because need few factor combinations (Otte, 2007) (Fig. 3).

Fuadratic polynomials are adjusted for data provided by these experimental plans, for this
reason quadratic terms for each factor are included in equation describing response(s)
{Anderson and Whitcomb, 2004). This allows the local maximum and minimum detection.

Several works using three levels factorial design for two or three factor in bioprocess have been
published. As example a 3% full factorial design was conducted to locate the optimum concentrations
of yeast extract (2.5-10 g L™ and peptone (2.5-10 g L™ for the maximum cell growth of
Baetllus fusiformis CICC 20463, used to transform 4’-demethyl epipodophyllotoxin (DMEF) into
4’-demethyl epipodophyllic acid (DMEPA), at the same DMEP consumption and DMEPA
accumulation were considered as response variables (y) too. Three v variables were modeled by
quadratic polynomial, the number of experimental points was 10, one central point was added to
9 initial runs for a 3*design. Kach model was statistically analyzed and non-significant coefficients
were eliminated. As example: the DMEP consumption was defined by the following Eq. 1. Then,
each combination for maximum cell growth, DMEP consumption and DMEPA accumulation were
defined (Tang et al., 2010):

Yo = 23.64X,-1.83X7 (1)

where, Yomp 18 the DMEP consumption response and X, is the yeast extract concentration.
Central composite designs are frequently used in bioprocess problems too. Exemplifying, this
type of experimental plan was applied to model the purification of ¢-amylase from the cultivation
of Bactllus subtilis in a polyethylene glycol-citrate aqueous two-phase system. The PEG3350,
citrate and sodium chloride concentrations were selected as variables to evaluate partition
coefficients of -amylase, total protein, purification factor and «-amylase wyield. Value of «
for this problem (k = 3) was 1.68 (2¥* = 2%Y). The experimental plan was composted by 8 runs
associated to the factorial design, 6 runs associated to the star points and 5 repetitions of the central
point of the experimental domain. At the end of the work, the optimal values for three factors
determined by the statistical models were confirmed experimentally (Zhi et al., 2005), This is an
important step when the results on small scales based on empiric models are going to be used on

large-scale in order to decrease risks in scale-up decisions.
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In general the Box-Behnken designs are suggested in bioprocess field when experiments
are costly or there is not much time for alarge number of experimental runs. For instance,
Box-Behnken design was used to optimize the levels of four factors (maltose, beef extract,
MgS0, concentrations and incubation time) for chitosanase production by Bacillus sp. REKY3
{(Wee et al., 2009),

MIXTURE DESIGN

Mixtures designs constitute a category within the experimental designs, specifically fitted to
problems where factors are proportions or fractions (mass, volumetric and molar). They have found
applications in different areas of knowledge. However, the number of papers with this statistical
tool for optimizing pharmaceutical formulations is significant (Gabrielsson et al., 2002). In
bioprocess, mixture designs have been also utilized for optimizing proportion of components of
culture media, mainly in bioremediation processes (Prakasham et al., 2009) and they could be also
utilized to seek best composition of liquid mixtures for metabolites extractions or chromatographic
mobile phases in downstream steps. It 1s prudent to clarify that mixtures design cannot be applied
for optimizing culture media if components are expressed in concentrations units, in these cases
experimental designs with process variables (screening and surface response) are suitable,

The factors in this type of problems are not totally independent hke those discussed for problems
with process variables. Fractions (x) must sum to unity and then the effective number of variables
is the total number minus 1 (Cornell, 2002). This has implications in the demains under
investigations. The geometrical domains in mixture problem are different to those for process
variable problem with the same number of factors, for this reason the experimental point arrange
discussed in previous sections cannoct be used in mixture problems. For instance, mixtures with
three components are represented as equilateral triangle whereas a problem with three process
variables defines a cube (Fig. 4) (Fernandez et al., 2008a).

Problems with mixtures are divided in two main categories: without constrains and with

constrains. The first one encompasses mixtures in which all components (factors) are studied in

Geometrical Domains
No. of factors Mixture Process variables
2
3
Mixfure problem
with constrains

Fig. 4. Geometrical domains related to two or three factors for problems with mixture and process
variable. Arrow indicates a mixture problem with constrains, describing no similar

experimental area respect to original domain without constrains

10
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0-1 range. They are defined by symmetric geometrical areas (Fig. 4). Nevertheless, mixtures with
ingredients constrains (a<x;<b; a=0 or b#1) could generate irregular experimental areas (Fig. 4),
as a consequence different statistical design must be applied in each case. Simplex lattice designs
and simplex centroid designs are utilized in problems without constrains whereas D-optimal designs
are the experimental plans of choice for modeling response in mixtures studies with constrains
describing irregular areas (Fernandez et al., 2008a). When formulation with component constrains
lead to an experimental area being analogous to original (O<x;<1), simplex lattice and simplex
centroid designs can be used.

The mathematical models for responses in mixtures could be linear, quadratic, special cubic and
cubic. The linear models are usually employed for screening mixture ingredients and the cthers are
used to find the best combination of factors which satisfy the response(s) goal (Cornell, 2002). The
decision among quadratic, special cubic and cubic model is taken balancing the level of precision
for describing response and the experimental time and cost.

In bioprocess, non-constrains problems have been the most discussed. As example, an
augmented simplex-centroid design for three components was used to improve glutaminase
production in sclid-state fermentation by isolated Baeillus sp. RSP-GLU. Wheat bran, Bengal gram
and Palm seed fiber were de ingredients under study and the response variable was glutaminase
activity. A quadratic model described satisfactorily glutaminase activity. Two combinations of factors
were 1identified in order to maximize glutaminase production, 100% of Bengal gram husk or a
mixture of Bengal gram husk and wheat bran (66:34%) (Sathish et ai., 2008),

Sometime, bioprocess professional need to define a polynomial equation for describing a
response as a function of ingredients proportions and process variables. In this case, crossed
experimental design is recommended (L.ee and Gilmore, 2006). Cn the other hand, there exist
problems where a mixture inside another mixture should be optimized; in this situation crossed
mixture design must be applied (Delaroza and Scarminio, 2008). Recently, the last statistical tool
was used for improving a recombinant protein in continuous culture (Didier et al., 2009),

In near future, mixture design could be more utilized in bioprocess because there are many
challenges involving optimization of ingredient proportions like definition of culture media and

composition of liquid phase in bioseparations.

UNIFORM DESIGN

Uniform designs were created by Fang at the end of 70's to sclve an industrial problem where
6 factors with at least 12 levels each should be considered. Nevertheless, the experimental runs
could not exceed 50 because of cost limitations. Using, the classical experimental designs for
polynomial modeling of systems described in previous sections, the number of runs generated by
these techniques would have been impossible for carrying out. Then, this problem was overcome
using Uniform design with only 31 experiments and each factor with 31 levels (Liang et al., 2001).
This experimental plan preduces uniform scattering of the design points over the experimental
domain {(Fang and Chan, 2006). If point distribution in screening and surface response
experimental designs inside experiment domain is observed, it will be noticed that most of the points
are placed on the periphery of experimental domain. Therefore, the sample to be experimented for
generating inferences could be not representative. Classical experimental designs show uniform

scattering of designs point in their dimensions but not in the geometrical area defined by factor and
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their levels. One of the most important advantages of Uniform design over traditional experimental
design is that, even when factors number and their corresponding levels are large, the experiment
can be performed in a relatively small number of runs (Fang and Chan, 2006},

Most. of experimental designs are based on model assumptions. However, experimental plans
insensitive to this assumption are desired. In other words, changes in the underlying distribution
ar model should cause small change in the performance of the design (Liang ef al., 2001). Uniform
designs do not have a mathematical model associated, thus it 1s particular suitable for studying
systems with an unknown underlying model. Artificial neural networks and multiple linear
regressions could be used to model non-linear and linear systems, respectively, after
experimentation and data collection with uniform designs.

For programming experimentation (point arrange) in common problems by means of uniform
design, softwares and tables (http://'www math.hkbu.edu hk/UniformDesignf) are available
(Sun et al., 2010; Zhou et al., 2011). The choice of particular experimental [U, (q%] is defined by
number of runs (n), number of factors (s) and number of levels {g). Both process and mixture
variables can be studied through this kind of experimental design (Fang and Chan, 20086).

Uniform design is very attractive for statistical system modeling in bioprocess where the
experimentation is very expensive. In general, it has been used for optimizing concentration of

culture medium components and process variables related to bioreactions step (Hua and Xu, 2011;

Wei ef al., 2009; Xu ef al., 2006).

Asg example: A uniform design was used to optimize medium composition in order to improve the
ethanol tolerance of self-flocculating veast. Seven component were studied at 6 levels each
in experimental plan with 12 runs [U, (79]. The ingredients were vitamins (x base),
(NH,,S0,(g LY, K,HPO, (g LY, MgS0,.7TH,0 (g ™Y, CaCl,.2H,0 (g 'Y, ZnS0O,. TH,O (mg L.,
CoCl,.6H,0 (mg .Y and the response variables were viability and ethanol concentration. The
statistical model was adjusted by means a linear-regression method. The optimization of medium
component led to 90.2% of cell viability which demonstrated noteworthy improvement of ethancl
tolerance of the self-floccul ating yeast (Xue et al., 2008),

MULTIPLE RESPONSE OPTIMIZATIONS

Finding optimal values of factors 1s a major goal in statistical modeling of little known systems,
in general research and therefore in bioprocess field too. However, in most of the cases systems need
to be evaluated by more than one response variable (Hendriks ef al., 1992). Sometimes meodels for
response differ greatly and then optimal values could be quite different for each particular
response. Besides, outcome parameters could have dissimilar positive criteria on the system, for
instance: in group of response variable, one of them would need to be maximized and another
could need minimized or set. in a range to guarantee the best system performance comprehensively.
Thus, professicnals in bioprocess research and development area must be trained in
multiresponse optimization. The main issue related to this kind of optimization is to make a
selection out of a set of factor values that result in a compromise solution of a multicriteria problem
{(Hendriks et al., 1992).

A large number of statistical techniques with this purpose are now available. These include:

overlay plots, pareto optimality, utility functions, desirability functions and methods based on the
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standardized Fuclidian distance between the predicted value of each response and the optimum one
that was obtained individually (Hendriks ef al., 1992; Sivakumar et al., 2007, Takayama ef al.,
2003). Among them, the most employed in bioprocesses 1s the desirability function.

Desirability function includes all the response variables into a single function in order to
consider all of them simultaneously. This method requires minimum and maximum acceptable
values for each outcome variable. The individual response can be normalized to the desirability
funetions (d,, k =1, 2, 3,..., n) with values inside the interval [0,1] using the distance between
minimum and maximum acceptable values. The d; functions are then combined to obtain a global
desirability function DD which should be maximized choosing the best conditions of the designed
variables. D is calculated by the following equation (Takayama et al., 2003; Moreira et al., 2007):

D — (dlﬂ xdzrzxdsﬂx o .xdnm)ll(rlﬁ-r2+r3 -

where, r; is the relative importance assigned to each response.

The application of this method for multiresponse optimization is performed mainly in bioprocess
for defining best values of factors associated to bioreaction step (Moreira ef al., 2007; Liu and
Tang, 2010). For instance: Desirability function was used to find the best combination of four
medium component concentrations (sucrose, yeast extract, peptone, Mg?) in order to maximize
three response variables: dry cell weight, extracellular and intra cellular polysaccharides. The
relative importance for three outcome variables was the same. The optimal values were 73, 11,
8 g L' and 46 mM of sucrose, yeast extract, peptone and Mg?", respectively. Under these conditions
the predicted values for dry cell weight, extracellular and intra cellular polysaccharides were
24.50, 4.10 and 3.20 g L™, respectively {(Liu and Tang, 2010).

HOW TO TAKE ADVANTAGE LARGE VOLUME OF DATA

The statistical techniques included in categories: fair comparison of results and statistical
modeling of little known systems are apphed almost always on lab scale, for further application on
large-scale, scale-up criteria should be considered. However, nowadays modern bioprocess plants
are equipped with proper automation systems for capturing and recording material input, process
output, control action as well as physical parameters (Charaniya et al., 2008, Alford, 2006). These
data might provide the cause of process response variables fluctuations. Besides, industrial
bioprocess data allows for improving process robustness and efficiency (Charaniya et al., 2008).

To identify novel and useful relations and patterns that associate process factors with different
process response, a methodology involving four interactive steps is commonly used. These steps are:
data processing, feature selection and/or dimensionality reduction, data mining and expert
analysis for interpretation of the results. Multivariate methods and artificial neurcenal networks
have been extensively used in dimensionality reduction and data mining steps (Charaniya et al.,
2008, 2010).

Among multivariate methods for improving bioprocesses from production plant data, Principal
Component Analysis (PCA) and Partial Least Squares (PLS) are the most used (Charaniya et al.,
20103,

Specifically, PCA is applied to get a quick overview and to detect deviations from the desired
bioprocess behaviar. Its main purpose is to reduce the dimension of the space of the inter-correlated

variables to a lower dimensional representation space with less correlated variables. The PCA 1s
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Fig. 5. Principal component analysis: representation of matrix X decomposition in principal

components (PC), K: Matrix containing residuals

applied to bi-dimensicnal data structures (matrix-X) defined by p columns (number of variables)
and n rows (number of observations), Matrix-X is discomposed into a number of principal
components that maximize explained variance in data on each successive component under the
constraint. of being orthogonal to the previcus principal components (Nuccal ef al., 2010). A bilinear
maodel is the result of this latent variable projection method, a product of scores T and the loadings
P matrices (Fig. 5). Two main graphics are generated from PCA, score and loading plots. Each
observations gets a score value on each principal compoenent, then observations can be represented
in scores plots. This graph reveals clusters, trends and outliers in data. Similarly, variables are
represented in loading plots, allowing to detect correlations among variables and to interpret
patterns observed in the score plot (Rajalahti and Kwalheim, 2011). For instance: PCA was
applied to identify key variables from cell culture data related to a fed-batch culture of mouse
hybridoma by reducing their dimensionality. For each observation was defined: cell density,
concentration of amino acids, major carbon sources and by-products. PCA identified three major
clusters characterized by a particular amino acids consumption/production rates (Selvarasu et al.,
20103,

Regression method based on PLS in bioprocess has been used to identify predictive
correlations between cutput parameters (Y) and factors (X) as well as detect process abnormalities
{(Charaniya et al., 2008), PLS takes PCA one step further, as it deals with two matrixes X and Y).
Each cbservation is represented in both spaces X and Y. In PLS, firstly a PCA is carried out for both
the descriptive (X) and the response (Y) variables. Then, the best correlation between X and Y is
calculated using least square technique. Therefore, the resulting PLS model is not always the best
description of X and Y but rather of the relation between them. Summarizing, the emphasis in PLS
is both on the correlation between X and Y and a good description of X and Y (Gabrielsson ef al.,
2002). As a bioprocess example: a PLS regression was used to calibrate models in order to predict
volatile fatty acid concentrations from near infrared spectra obtained in biogas test plants. These
Volatile Fatty Acids (VFA) should be well controlled to guarantee a stable biogas production. The
model displayed acceptable to very good prediction performances for total VEA as well as for three
other essential individual acids based on test set validations. This PL5 application was useful for

improving the bioreaction control (Holm-Nielsen and Esbensen, 2011).
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Another predictive approach used to analyze bioprocess data i1s Artificial Neural Networks
{ANN). Especially, it has been applied to predict the output of a fermentation process as a nonhnear
funetion of the process inputs. This artificial intelligence approach can be used together with
optimization methods to identify the optimal factor values to maximize the desire process response
(Charaniva ef al., 2008). The inputs to the model are process measurements, then data are
weighted individually or in groups, after that combined using a nonlinear activation function at
a node referred to as a neuron. A process ANN model 15 often composed of an input layer, an output,
layer and one or more hidden layers of nodes (Komives and Parker, 2003). There are many types
of ANN, the most often used ANN 1is a fully connected, supervised network with
backpropagation learning rule. This type of ANN is excellent at prediction and classification tasks
{Agatonovie-Kustrin and Beresford, 2000). A concrete example of ANN application in bioprocess for
taking advantage large volume of data was the satisfactory dynamic modeling of biochemical
oxygen demand, chemical oxygen demand, suspended solid and total nitrogen removal in a Waste
Water Treatment Flant (WWTP) using a data set collected from a full-scale WWTF (Lee ef al.,
2011).

COMBINING STATISTICAL MODELING OF LITTLE EKNOWN SYSTEMS AND
MULTIVARIATE METHODS

To finish this review, it 1s appropriated to note that a useful statistical tool with wide
applications in pharmaceutical industry, it has not found the same application in bioprocess, the
multivariate designs. They are a combination of classical methods for modeling of little known
systems and multivariate methods (PCA and PLS). In pharmaceutical formulation, this
experimental strategy has been used to optimize type of ingredients and their concentrations
(Fernandez et al., 2010). Ingredient types for the same purpose were characterized by several
descriptive variables and then PCA was applied to turn this categorical variable into numeric
variables (scores) (Gabrielsson et al., 2002). Subsequently, a higher number of ingredients could
be considered, even for new ones non evaluated, the developed models could estimate the responses
associated to the system under study. This application would be interesting for culture media
optimization where most of the time different resources of nutrients are assessed.

Another application of the multivariate design is related to multi-stages processes which has
not frequently used in bioprocesses. In general, most of the time just one system unit 1s optimized
and it 1s not considered the system as a whole. Multivariate design allows for considering the
previous step by means of latent variables generate from PCA and integrate them to the own
variables of the system unit being optimize (Bergman et af., 1998). This would be very useful to
connect bioreaction and dewnstream steps. Specially for connecting bioreaction with the first
downstream operation unit.

INFERENCE

In this review, the statistical tools were classified so that professionals with low statistics
expertise involved in bioprocess research can choose the correct technique for a similar investigation
problem. Figure 6 is a graphical guide for this purpose. Examples from literature were also
commented in order to help the understanding of theoretical issues of each statistical technique.
Besides, some statistical tools without wide application at the moment in bioprocess were also

discussed, taking into consideration the near future use of them.

15



Detect qualitatively the
statistical significances of
factors and their levels

Number of factors

Asian J. Biotechnol., 5 (1) 1-20, 2015

Bioprocess problem

Define a mathematical function
for describing and optimizing +
little studied systems

volume of data from estal

Take advantage of large

Optimization of multi-stages

processes for enchancing
robustness and efficiency

P or il types and
concentration (or proportions) in
physical mixtures

' | Process variable

Proportions

Crossed '
experimental design|

Number of bi-dimansional
data matrixes

R TR EEE LD M l l Descriptors « Matrix of factors
o F_“I_’e_ll_ﬂfﬂt_ﬂ{ ‘_53_51_3-{1 _____ il Screening “Mixture of samples « Matrix of response
. + b variables experimental design
\ 4
Compl | Randomized | Latin squares | # =5 " ' - « PCA
randomized complete blocks ; |+ Experfmental ,
. degign H < ANN
..... SLEPRE
« Two level factorial

No. of
levels

« Fractional factorial
« Plackett-Burman

Multi-way ANOVA « Un 0 +_ 1 Experimental desigr A E
v v
« D-Optimal | + Simplex-Lattice
H + Uniform « Simplex-Centriod
..... PR 3
| t-student | | One-way ANOVA | . Experfmental
design H
h 4 A Ahhhi v
Multiple range test, » Three levels factorial Multiple responses optimization, if
if ANOVA is « Central posi p| twoormore must be
significant (Tukey's + Box-Behnken "| taking in to account (Desirability
test) + Uniform function)

Fig. 6: Guide for choosing statistical tools in bioprocess problems

ACKNOWLEDGMENTS

First author gratefully acknowledges his wife and daughter, Relma and (Glovanna as well as
Ph.D. students: Bruno Oliva Oishi and Hector Aguilar Vitorino, for the inspiration to write this
study.

REFERENCES

Agatonovie-Kustrin, 8. and K. Beresford, 2000. Basic concepts of Artificial Neural Network (ANIN)
modeling and its apphcation in pharmaceutical research. J. Pharm. Biomed. Anal., 22: 717-727.

Albert, S. and R.D. Kinley, 2001. Multivariate statistical monitoring of batch processes: An
industrial case study of fermentation supervision. Trends Biotechnol., 19: 53-62,

Aleman, M.D.R., E. Noa, A. Tamayo, M. Dubed and S. Padilla ef al., 2007, Downstream processing:
A revalidation study of wiral clearance in the purification of monoclonal antibody CB.Hep-1.
BioPharm Int., 20: 46-55,

Alford, J.5., 2006. Bioprocess control:
30: 1464-1475.

Anderson, M.J. and F.J. Whitcomb, 2004. RSM Simplified: Optimizing Processes Using
Response Surface Methods for Design of Experiments. TUSA.,
ISBN-13: 9781563272974, Pages: 292.

Arutchelvi, J., C. Joseph and M. Doble, 2011. Process optimization for the production of
rhamnolipid and formation of biofilm by Pseudomonas aeruginosa CPCL on polypropylene.
Biochem. Eng. J., 56: 37-45,

Bergman, R., M.E. Johansson, T. Lundstedt, E. Seifert and J. Aberg, 1998, Optimzation of a
granulation and tabletting process by sequential design and multivariate analysis. Chemometr.
Intell. Liab., 44: 271-286.

Advances and challenges. Comput. Chem. Eng,

Productivity Press,

16



Asian J. Biotechnol., 5 (1) 1-20, 2015

Boos, D.DD. and C. Brownie, 1995. ANOVA and rank tests when the number of treatments is large.
Stat. Probab. Lett., 23: 183-191.

Brereton, R.GG., 2003. Chemometrics Data Analysis for the Laboratory and Chemical Flant. John
Wiley and Sons Ltd., USA., ISBN-13: 9780470845745, Pages: 504,

Breyfogle, F.W., 1992, Statistical Methods for Testing, Development and Manufacturing. John
Wiley and Sons Inc., USA,, [ISBN-13: 9780471540359, Pages: 516,

Brue, GG, and R. Howes, 2005, The MeGraw-Hill 36-Hour Course Six Sigma. The MceGraw Hill
Companies, USA., ISBN-13: 9780071430081, Pages: 304,

Charaniya, 5., H. Le, H. Rangwala,, K. Mills, K. Johnson, G. Karypis and W.5. Hu, 2010. Mining
manufacturing data for discovery of high productivity process characteristics. J. Biotechnaol.,
147: 186-197.

Charaniva, S., W.5. Hu and G. Karypis, 2008, Mining bioprocess data: Opportunities and
challenges. Trends Biotechnol., 26: 690-699.

Clementschitsch, F. and K. Bayer, 2006. Improvement of bioprocess monitoring: Development of
novel concepts. Microb. Cell Factories, Vol 5. 10.11856/1475-2859-5-19

Compton, M.E., 2011, Elements 7rn vitro Research. In: Plant Tissue Culture, Development and
Biotechnology, Trigiano, R.N. and D.J. Gray (Eds.). CRC Press/Taylor and Francis Group,
USA., pp: B7-74,

Cornell, J.A., 2002, Kxperiments with Mixtures: Designs, Models and the Analysis of Mixture Data.
3rd Edn., John Wiley and Sons Litd., New York, UUSA., ISBN-13: 9780471393672, Pages: 649,

Delaroza, F. and 1.S. Scarmmnio, 2008, Mixture design optimization of extraction and mobile phase
media for fingerprint analysis of Bauhinta variegata L. J. Sep. Seci., 31: 1034-1041,

Deming, 5.N. and S.L.. Morgan, 1993, Experimental Design: A Chemometric Approach. 2nd Edn.,
Elsevier Science Publishers, USA., ISBN-13: 9780444891112, Pages: 437.

Didier, C., G. Forno, M. Etcheverrigaray, R. Kratje and H. Goicoechea, 2009, Novel chemometric
strategy based on the appheation of artificial neural networks to crossed mixture design for the
improvement of recombinant protein production incontinucus culture. Anal. Chim. Acta,
650: 167-174.

Dubey, K K. and B.K. Behera, 2011. Statistical optimization of process variables for the production
of an anticancer drug (colchicine derivatives) through fermentation: At scale-up level. New
Biotechnol., 28: 79-85.

Eriksson, L., K. Johansson, N. Kettaneh-Wold, C. Wikstrom and 5. Wold, 2008, Design of
Experiments: Principles and Applications. 3rd KEdn., Umetries Academy, UBSA,
ISBN-13: 9789197373043, Pages: 459.

Fang, K.T. and LY. Chan, 2006, Uniform Design and its Industrial Applications. In: Springer
Hanbook Engineering Statistics, Pham, H. (Ed.). Springer-Verlag, USA., pp: 228-248,

Fernandez, K.G., M. Fernandez, R.T. Oliveira, B. Bermudez and 1. Perez ef al., 2008a. Disenos de
experimentos en tecnologia v control de los medicamentos (Design of experiments 1in technology
and medication management). Lat. Am. J. Pharm., 27: 286-296.

Fernandez, E.G., R. Valdes, J.A. Montero, A. Figuerca and T.A. Alvarez et al., 2008b. Application
of the partial least square technique to identify critical variables in the immunosorbent
manufacturing. Chormatographia, 68: 375-380,

Fernandez, E.(G., M. Fernandez, H. M. Hoang, 1. Perez and D. Guerra et al., 2010. A multivariate
strategy for tablet manufacturing optimization. Latin Am. J. Pharm., 29: 15336-1344,

17



Asian J. Biotechnol., 5 (1) 1-20, 2015

Fernandez-Nunez, E.G., B.L.. Faintuch, K. Teodoro, D.P. Wiecek and N.G. da Silva ef al., 2011.
Parameters optimization defined by statistical analysis for cysteine-dextran radiolabeling with
technetium tricarbonyl core. Applied Radiat. Isot., 69: 663-669,

Gabrielsson, J., N.O. Lindberg and T. Lundstedt, 2002, Multivariate methods in pharmaceutical
applications. J. Chemom., 16: 141-160.

Gerstman, B.B., 2008. Basic Biostatistics: Statistics for Public Health Practice. Jones and Bartlett
Publishers Inc., USA., ISBN-13: 9780763735807, Pages: b57,

Harry, M.J., P.8. Mann, O.C. De Hedgins, R.L. Hulbert and C.J. Lacke, 2011. Practitioner’s Guide
to Statistics and Lean Six Sigma for Process Improvements. John Wiley and Sons Ine., TUSA.,
ISBN-13: 9781118210215, Pages: 800.

Henderson, G.B., 2011. 8ix Sigma Quality Improvement with Minitab. 2nd Edn., John Wiley and
Sons Ltd., USA., ISBN-13: 9781119976189, Pages: 528,

Hendriks, MM W.B., J.H. de Boer, A.K. Smilde and D.A. Doornbos, 1992, Multicriteria decision
making. Chemom. Intell. Lab. Syst., 16: 175-191,

Hinkelmann, K. and O. Kempthorne, 2008, Design and Analysis of Experiments Volume 1.
Introduction to Experimental Design. 2nd Edn., John Wiley and Sons, USA.,
ISBN-13: 9780471727569, Pages: 631.

Holm-Nielsen, J.B. and K.H. Esbensen, 2011. Monitoring of biogas test plants: A process analytical
technology approach. J. Chemom., 25: 357-365.

Hong, S.J. and C.G. Lee, 2008, Statistical optimization of culture media for production of
phycobiliprotein by Synechocystis sp. PCC 6701, Biotechnol. Bioprocess. Eng., 13: 491-498,
Hua, D. and P. Xu, 2011. Recent advances in biotechnological production of 2-phenylethanol.

Biotechnol. Adv., 29: 654-650.

Jakobsson, N., M. Degerman and B. Nilsson, 2005. Optimisation and robustness analysis of a
hydrophobic interaction chromatography step. J. Chromatogr. A., 1099: 157-166.

Jana, A K., 2008, Chemical Process Modeling and Computer Simulation. Prentice Hall of India
Private Limited, New Delhi, India, [SBN-13: 9788120331969, Pages: 273,

Komives, C. and E.8. Parker, 2003. Bioreactor state estimation and control. Curr. Opin. Bictechnol.,
14: 468-474.

Kowalski, 3.M. and D.C. Montgomery, 2011. Design and Analysis of Experiments. 7th Edn., John
Wiley and Sons Ine., USA.

Lee, JW. C. Buh, Y.5.T. Hong and H.S. Shin, 2011. Sequential modelling of a full-scale
wastewater treatment plant using an artificial neural network. Bioprocess. Biosyst. Eng.,
34: 963-973.

Lee, K.M. and D.F. Gilmore, 2006. Statistical experimental design for bioprocess modeling and
optimization analysis: Repeated-measures method for dynamic biotechnology process. Applied
Biochem. Biotechnal., 135: 101-115.

Liang, Y.Z., K.T. Fang and Q.8. Xu, 2001. Uniform design and its applications in chemistry and
chemical engineering. Chemom. Intell. Lab. Syst., 58: 43-57,

Liu, R.5. and Y.J. Tang, 2010. Tuber melanosporum fermentation medium optimization by
Plackett-Burman design coupled with Draper-Lin small composite design and desirability
function. Bicresour. Technol., 101: 3139-31486.

Mandemus, CF. and A. Brundin, 2008. Bioprocess optimization using design-of-experiments
methodology. Biotechnol. Prog., 24: 1191-1203.

Mendenhall, W., R.J. Beaver and B.M. Beaver, 2009, Introduction to Probability and Statistics.
13th Edn., Brooks/Cole, USA.,

18



Asian J. Biotechnol., 5 (1) 1-20, 2015

Michelson, 5. and T. Schofield, 1996. The Biostatistics Cookbook: The Most User-Friendly Guide
for Bio/Medical Scientist. Springer, New York, USA., ISBN-13: 9780792341055, Pages: 176,

Mills, K.L., J.dJ. Filiben, D.Y. Cho, E. Schwartz and D. Genin, 2010, Study of proposed internet
congestion control mechanisms. National Institute of Standards and Technology Special
Publication No. 500-282. http://www.nist.govfitl/antd/upload/P1-5P-500-282-Cover-FPages. pdf

Moreira, G.A., G.A. Micheloud, A.J. Beccaria and H.C. Goicoechea, 2007. Optirmzation of the
Bacillus thuringiensis var. kurstaki HD-d-endotoxins production by using experimental
mixture design and artificial neural networks. Biochem. Eng. J., 35: 48-55.

Nair, A.J., 2005, Basics of Biotechnology., Laxmi Publications (F) Ltd,, India,
ISBN-13: 9788170086123, Pages: 302.

Nair, A.J.,, 2008. Principles of Biotechnology. Laxmi Publications (P) Ltd., India,
ISBN-13: 9788131800621, Pages: 886.

Najafpour, G., 2006. Biochemical FKngineering and Biotechnology. Elsevier, USA,,
ISBN-13: 9780444528452, Pages: 421.

Nucei, ER., AJ.G. Cruz and R.C. Giordano, 2010. Monitoring bicreactors using principal
component analysis: Production of penicillin G acylase as a case study. Bioproe. Biosyst. Eng.,
33: Bb7-564.

Onsekizoglu, P., K.S. Baheeci and J. Acar, 2010. The use of factorial design for modeling membrane
distillation. J. Membr. Sa., 349: 225-230.

Otto, M., 2007, Chemometrics-Statistics and Computer Application in Analytical Chemistry.
2nd Edn., Wiley-VCH, Weinheim, Germany, Pages: 328..

Park, C., J.8. Lim, Y. Lee, B. Lee, SW. Kim, J. Lee and S. Kim, 2007. Optimization and
morphology for decolarization of reactive black 5 by Funalia trogii. Knzyme. Microb. Technol
40: 1758-1764.

Prakasham, R.S., T. Sathish, P. Brahmaiah, C. Subba Rao, R. Sreenivas Rac and P.J. Hobbs, 2009,
Biohydrogen production from renewable agri-waste blend: Optimization using mixer design.
Int. J. Hydrogen Energ., 84: 6143-6148,

Rajalahti, T. and O.M. Kvalheim, 2011. Multivariate data analysis in pharmaceutics: A tutorial
review. Int. J. Pharm., 417: 280-290.

Rao, K. V., 2007. Distribution Free Statistical Tests of Inference. In: Biostatistics, A manual of
statistical methods for use in health, nutrition and Anthropology, Rao, K.V., (Ed.). Jaypee
Brothers Medical Publishers (P) Ltd., New Delhi, India, pp: 631-657..

Ryan, T.F., 2007, Modern Experimental Design. John Wiley and Sons, New York, USA.,
Pages: 593,

Santos, V.C., F.A. Hasmann, A. Converti and A. Jr. Pessoa, 2011, Liquid-hquid extraction by mixed
micellar systems: A new approach for clavulanic acid recovery from fermented broth. Biochem.
Eng. J., 56: 75-83.

Sathish, T., G.S. Lakshmi, Ch.S. Rao, P. Brahmaiah and R.S. Prakasham, 2008, Mixture design
as first step for improved glutaminase production in solid-state fermentation by isolated
Bacillus. Lett. Appl. Microbiol., 47: 256-262,

Selvarasu, 5., Y. Kim do, LA, Karimi and D.Y. Lee, 2010. Combined data preprocessing and
multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for
rational medium design. J. Biotechnol., 150: 94-100.

Sivakumar, T., R. Manavalan, C. Muralidharan and K. Valliappan, 2007, Multi-criteria decision
making approach and experimental design as chemometric tools to optimize HFLC separation
of domperidone and pantoprazole. J. Pharmaceut. Biomed. Anal., 43: 1842-1848,

19



Asian J. Biotechnol., 5 (1) 1-20, 2015

Sower, V.|, 2011. Essentials of Quality With Cases and Expernmental Exercises. John Wiley and
Sons, New York, USA., Pages: 416,

Sun, L., C. Wang, C. Ma and L. Shi, 2010. Optimization of renewal regime for improvement. of
polysaccharides production from Forphyridium cruentum by uniform design. Bioproc, Biosyst.,
Eng., 33: 309-315.

Takayama, K., M. Fujikawa, Y. Obata and M. Morishita, 2003, Neural network based optimization
of drug formulations. Adv. Drug. Delivery Rev., 55: 1217-1231.

Taneja, H.C., 2009, Statistical Methods for Engineering and Seciences. LK. International
Publishing House Pvt, Litd., East Bangalore, India, ISBN: 9789380026664, Pages: 368,

Tang, Y.J., XL Xu and JJ. Zhong, 2010. A novel biotransformation process of
40-demethylepipodophyllotoxin to 4-demethylepipodophyllic acid by Bacillus fusiformis CICC
20463, Part II: process optimization. Bioproe. Biosyst. Eng., 33: 237-2486,

Tacka, Y., N. Nagano, Y. Okita, H. [zumida, 5. Sugimoto and M. Hayashi, 2011. Effect of Tween
80 on the growth, lipid accumulation and fatty acid composition of Thraustochyirium aureum
ATCC 34304. J. Bioseci. Biceng., 111: 420-424.,

Wee, Y.J., LV.A Reddy, K.C. Chung and HW. Ryu, 2009, Optimization of chitosanase production
from Bacillus sp. RKY3 using statistical experimental designs. J. Chem. Technaol. Biotechnol .,
84: 1356-1363.

Wei, G, X. Yang, T. Gan, W. Zhou, J. Lin and D. Wei, 2009. High cell density fermentation of
Gluconobacter oxydans DSM 2003 for glycolic acid production. J. Ind. Microbiol. Biotechnol.,
36: 1029-1034.

Wolski, E., E. Rigo, M. Di Luccie, J.V, Oliveira, D. de Oliveira and H. Treichel, 2009, Production
and partial characterization of lipases from a newly isolated Penicillium sp. Using experimental
design. Lett. Appl. Microbiol., 49: 60-66,

Xu, C.P,, J. Sinha, J.T. Bae, 8 W. Kim and J.W. Yun, 2008. Optimization of physical parameters
for exo-biopolymer production in submerged myeelial cultures of two entomopathogenic fungi
FPaectlomyces japonica and Faecilomyces tenuip. Lett. Appl. Microbiol., 42: 501-5086.

Xu, L.J, Y.S. Liu, L.G. Zhou and J.Y. Wu, 2010, Optimization of a liquid medium for beauvericin
preduction in fusarium redolens Dzf2 mycelial culture. Biotechnol. Bioprocess Eng.,
15: 460-466.

Xue, Ch., X.Q. Zhao, W.J. Yuan and F.W. Bai, 2008. Improving ethanol tolerance of a
self-floccul ating yeast by optimization of medium composition. World J. Microbiol. Biotechnol.,
24 2257-2261.

Yang, W.W., N.E. Mwakatage, K. Goodrich-Schneider, K. Krishnamurthy and T.M. Rababah,
2011. Mitigation of major peanut allergens by pulsed ultrawviolet light. Food Bioprocess
Technol., 10.1007/511947-011-0615-6

Zhi, W., J. Song, F. Ouyang and J. Bi, 2005, Application of response surface methodology to the
modeling of ¢-amylase purification byaqueoustwo-phase systems. J. Biotechnol., 118: 157-165.

Zhou, Y., 8. Lakshminarayanan and R. Srinivasan, 2011. Optimization of image processing
parameters for large sets of in-process video microscopy images acquired from batch
crystallization processes: Integration of uniform design and simplex search. Chemometr. Intell.

Lab. Syst., 107: 200-302.

20



	1-20_Page_01
	1-20_Page_02
	1-20_Page_03
	1-20_Page_04
	1-20_Page_05
	1-20_Page_06
	1-20_Page_07
	1-20_Page_08
	1-20_Page_09
	1-20_Page_10
	1-20_Page_11
	1-20_Page_12
	1-20_Page_13
	1-20_Page_14
	1-20_Page_15
	1-20_Page_16
	1-20_Page_17
	1-20_Page_18
	1-20_Page_19
	1-20_Page_20
	Asian Journal of Biotechnology.pdf
	Page 1


