Asian Journal of Biotechnology

ISSN 1996-0700 DOI: 10.3923/ajbkr.2018.1.10

Research Article In silico Molecular Docking and ADME/Tox Study on Benzoxazole Derivatives Against Inosine 5'-Monophosphate Dehydrogenase

Pratibha Teotia, Surya Prakash Dwivedi and Neeraja Dwivedi

Department of Biotechnology, IFTM University, Moradabad, Uttar Pradesh, India

Abstract

Background and Objective: *Cryptosporidium parvum* (*C. parvum*) is a microscopic parasite that causes cryptosporidiosis in human. Accessible medications to treat cryptosporidiosis are ineffective and there is yet no immunization against *C. parvum*. So there is an urgent need to develop a suitable synthetic drug from available databases for suitable targets using computer aided drug designing and quantitative structure activity relationship. Present study was conducted to screen the best compound suitable for binding 5-Monophosphate dehydrogenase (IMPDH) target having optimum binding energy. **Materials and Methods:** In this regards, 38 benzoxazole derivatives were screened from PubChem compound database and docked with inosine 5-Monophosphate dehydrogenase (IMPDH) of *Cryptosporidium parvum* using the program AutoDock 4.2 from docked compound. **Results:** Four best predicted compounds CID 649646, CID 1318080, CID782217, CID1385213 with optimal binding energies -9.48, -9.39, -9.07 and -9.13 kcal moL⁻¹ were found with IMPDH, respectively. The biological activity of docked compounds in terms of pIC₅₀ was predicted based on 2D QSAR model built in our previously published work. The docked complex structures were optimized by molecular dynamics simulation with the CHARMM-22 force field using NAMD and evaluated the stability of complex structures by calculating RMSD. *In silico* ADME/Tox properties of best predicted derivatives of IMPDH were evaluated. **Conclusion:** The screened compounds showed satisfactory results for oral administration. Compounds have HIA in the range of well absorbed compounds and P_{Caco}, value in standard range. Skin permeability of derivatives showed negative values. Derivatives lightly bind to plasma proteins. The Ames test showed compounds were mutagenic and carcinogenicity showed negative value in mouse and positive value in rat.

Key words: Benzoxazole derivatives, *Cryptosporidium parvum*, inosine 5-Monophosphate dehydrogenase (IMPDH), molecular docking, ADME/Tox, AutoDock 4.2

Citation: Pratibha Teotia, Surya Prakash Dwivedi and Neeraja Dwivedi, 2018. *In silico* molecular docking and ADME/tox study on benzoxazole derivatives against inosine 5-Monophosphate dehydrogenase. Asian J. Biotechnol., 10: 1-10.

Corresponding Author: Neeraja Dwivedi, Department of Biotechnology, IFTM University, Lodhipur Rajpoot, Delhi Road, 244102 Moradabad, India Tel:+91-9411027695

Copyright: © 2018 Pratibha Teotia *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

INTRODUCTION

Cryptosporidiosis is the most widely recognized food and waterborne infections with worldwide spread, going about as a typical reason for diarrhoea in human¹. Among the five common Cryptosporidium species in people, C. parvum and *C. hominis* are in charge of over 90% of human instances of cryptosporidiosis². Cryptosporidium is a standout amongst the most essential parasitic diarrheal ailments among youthful kids in developing countries and is dangerous as a sharp co-contamination with HIV because of expanded morbidity and mortality^{3,4}. At present accessible medications are not successful for treating cryptosporidiosis and vaccine therapy is inadequate with regards to, so new medications are required. Genome sequencing of Cryptosporidium parvum revealed different choke points that might be used in drug design⁵. One such vulnerability lies in the pathway that supplies purine nucleotides for the synthesis of DNA and RNA. 5-Monophosphate dehydrogenase catalyzes the transformation of inosine 5'-Phosphate to xanthosine 5'-Phosphate, the principal conferred and rate-limiting step in the *de novo* synthesis of quanine nucleotides and in this manner assumes a vital part in the regulation of cell growth⁶.

Inosine monophosphate dehydrogenase (IMPDH) is an important enzyme in biosynthetic pathway of purine nucleotide. It is a key target for drug discovery in course of antibacterial, antiviral and anticancer therapeutics⁷. IMPDH is also an attractive and potent TB drug target⁸. On the basis of pharmacophore mapping, docking score, binding energy and binding interactions with the active site residues of the target protein IMPDH with potent inhibitors of PfDXR have the ability to bind with other *Plasmodium falciparum* drug targets⁹.

In this study, 38 benzoxazole derivatives, screened from PubChem compound database were docked with IMPDH protein of *C. parvum* using AutoDock 4.2¹⁰. The pIC₅₀ value of docked compounds was predicted using a built 2D QSAR model having correlation coefficient r² of 0.7948¹¹. Stability of docked complexes was validated by Molecular dynamics simulation. Further, predicted benzoxazole derivatives were subjected to The ADME/Tox studies. best predicted derivatives evaluated from ADME/TOX study optimized. The compound shows significant value for oral administration was selected for the development of new drua compound.

MATERIALS AND METHODS

The study was carried out at Bioinformatics Lab at Department of Biotechnology, IFTM University, Moradabad and Department of Biotechnology, Noida International University, Noida, India.

Protein target structure: Crystal structure of the catalytic domain of the inosine 5-monophosphate dehydrogenase from *Cryptosporidium parvum* (PDB Id: 4IXH) was retrieved from protein databank¹². This is utilized as a target model for docking. 3D structure of catalytic domain of IMPDH protein was optimized by the chimera tool¹³.

Inhibitors dataset: About 38 benzoxazole derivatives screened from PubChem compound database¹⁴. The 3D structures of known 38 derivatives were downloaded in SDF format and later converted in PDB format with the help of open babel tool¹⁵. All the compounds were subjected to energy minimization using the HyperChem software (HyperChem (TM) Release 7.5).

Molecular docking: Docking of 38 benzoxazole derivatives screened from database against *C. parvum* IMPDH structure were done using molecular docking program AutoDock4.2¹⁰. Gasteiger charges and maximum 32 numbers of active torsions were given to the lead compounds using AutoDock tool (http://autodock.scripps.edu/resources/adt). Kollman charges and the solvation term were added to the IMPDH protein structure. The Lamarckian genetic algorithm implemented in AutoDock 4.2 was utilized for docking.

2D QSAR: The pIC₅₀ value of docked compounds was predicted using built QSAR model having correlation coefficient r^2 value 0.7948¹¹:

 $\begin{array}{ll} Predicted \ pIC_{50} \\ of \ compound \end{array} = \begin{bmatrix} 1.0291\text{-}26.7693 \ (Binding \ energy)+25.9634} \\ (Intermolecular \ energy)+0.7866 (Internal \ energy)+25.9788 (Torsional \ energy)-0.0536 \\ (vdW+Hbond+desolv \ energy)-1.7919 \\ (Electrostatic \ energy) \end{bmatrix}$

Molecular dynamics simulations: Molecular dynamics simulations were done using the NAMD¹⁶ graphical interface module joined in VMD¹⁷. The protein-compound complex was immersed in the center of a 50 Å box of water molecules where all water molecule atoms were nearer than 1.5 Å and a CHARMM22 parameter file for proteins and lipids was used in

the force field for protein-compound complexes. The PSF was created from the initial PDB and topology files utilizing PSF gen package of VMD, which generated protein, PDB and protein PSF and by accessing these files, NAMD produced the trajectory DCD file.

ADME and toxicological properties of compounds: The predicted inhibitors were subjected for calculation of absorption, distribution, metabolism, excretion and toxicological properties. Physicochemical properties like molecular weight, XLogP, hydrogen bond donor count and hydrogen bond acceptor were calculated for predicted inhibitors. ADME properties like percentage of human intestinal absorption, cell permeability, skin permeability, blood brain barrier, plasma protein binding and toxicological properties like mutagenicity and carcinogenicity were calculated using PreADMET tool 18,19.

RESULTS AND DISCUSSION

Molecular docking: Based on R1 group, 38 benzoxazole derivatives were screened from PubChem compound database was shown in Table 1. In docking studies of benzoxazole derivatives with IMPDH protein, lower binding affinity was used as criteria to select best conformation among 30 generated conformations by AutoDock 4.2. Results of docking between compounds and IMPDH protein were shown in Table 1. Docked complexes were visualized by Python Molecular Viewer²⁰ software for their interaction studies and best docked confirmation of compounds with protein was shown in Fig. 1-4. Compounds CID 649646 and CID 1318080 had no hydrogen bond with IMPDH protein. Compounds CID 782217 and CID 1385213 had one hydrogen bond with residue ASP217 and ASP252 of IMPDH protein, respectively (Fig. 3 and 4).

Prediction of inhibitory concentration: Thirty eight screened benzoxazole derivatives were selected for calculation of biological activity on the basis of QSAR model²¹ and result was shown in Table 1.

Molecular dynamics simulation: Root mean square deviation (RMSD) of protein-compound complex store in RMSD dat a were accessed in Microsoft office excels. RMSD, a crucial parameter to analyze the equilibration of MD trajectories, is estimated for backbone atoms of the compounds CID649646,

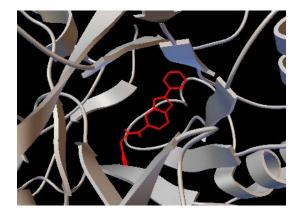


Fig. 1: Docked complex of compound CID 649646 with IMPDH protein

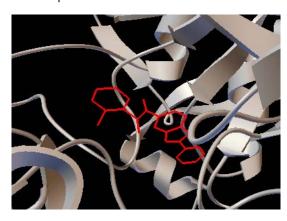


Fig. 2: Docked complex of compound CID 1318080 with IMPDH protein

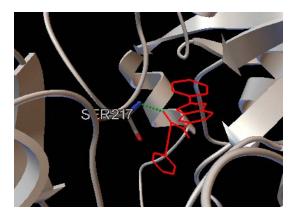


Fig. 3: Docked complex of compound CID782217 with IMPDH protein. One H-bond formed between compound and residue ASP217 of IMPDH protein. H-bond represented by green dotted sphere. Bonded residue of protein is represented by sticks and balls. Compound CID782217 is represented by red lines

Table 1: Docking results of benzoxazole derivatives with IMPDH structure with activity ($pIC_{50} = -logIC_{50}$)

Tuble 1. Docking	Benzoxazole derivatives Benzoxazole derivatives Benzoxazole derivatives								
	$\begin{array}{c c} & & & \\ \hline \end{array}$								
Derivative	R1 groups	PubChem CID	Predicted pIC ₅₀	BE	IME	 IE	TorE	VdwE	 EE
1		649646	8.87	-9.48	-10.38	-0.32	0.89	-10.30	-0.08
2		659689	7.70	-8.07	-9.27	-0.26	1.19	-9.19	-0.07
3	F	659778	9.36	-8.60	-9.19	-0.24	0.60	-9.09	-0.10
4	F	675056	8.49	-8.59	-9.19	-0.17	0.60	-9.08	-0.10
5		699259	8.48	-8.60	-9.19	-0.35	0.60	-9.18	-0.02
6		3713194	6.72	-7.29	-8.19	-0.48	0.89	-8.18	0.00
7	/	1849635	7.18	-7.52	-9.01	-0.62	1.49	-8.98	-0.04
8		652465	7.09	-7.55	-8.74	-0.61	1.19	-8.77	0.02
9	\ \\	659819	7.37	-7.94	-9.73	-0.70	1.79	-9.76	0.03
10		921484	8.31	-8.44	-9.04	-0.41	0.60	-9.05	0.01
11		699256	8.15	-8.81	-9.41	-0.56	0.60	-9.44	0.03
12		739163	7.27	-7.43	-8.32	-0.42	0.89	-8.26	-0.07
13	CH ₃	744279	7.60	-7.99	-8.59	-0.43	0.60	-8.59	0.00
14		970723	7.82	-8.65	-9.55	-0.63	0.89	-9.51	-0.03
15		1112725	7.22	-8.36	-9.85	-1.50	1.49	-9.80	-0.05

	Benzoxazole derivatives										
	RI	RI N N									
Derivative	R1 groups	PubChem CID	Predicted pIC ₅₀	BE	IME	IE	TorE	VdwE	EE		
16	N groups	1318080	8.74	-9.39	-9.99	-0.46	0.60	-10.01	0.02		
17	H	1727025	7.43	-8.39	-9.58	-1.20	1.19	-9.54	-0.03		
18	H	1975688	8.01	-8.78	-10.27	-0.91	1.49	-10.24	-0.03		
19		2880603	9.04	-8.05	-8.64	-0.35	0.60	-8.55	-0.09		
20		5345989	7.06	-8.02	-8.92	-0.93	0.89	-8.88	-0.04		
21		71662586	7.87	-8.84	-10.03	-1.02	1.19	-10.05	0.02		
22	\	6457248	7.38	-8.06	-8.96	-0.48	0.89	-8.96	0.00		
23	H	782217	8.51	-9.07	-10.26	-0.51	1.19	-10.26	0.00		
24		782265	7.85	-8.28	-9.47	-0.61	1.19	-9.42	-0.06		
25	H	782267	7.70	-8.09	-9.28	-0.60	1.19	-9.22	-0.06		

	Benzoxazole derivatives R1 N O N N N N N N N N N N N								
Derivative	R1 groups	PubChem CID	Predicted pIC ₅₀	BE	IME	IE	TorE	VdwE	 EE
26		921482	8.12	-8.61	-9.21	-0.42	0.60	-9.22	0.01
27		1362353	8.46	-8.98	-10.47	-0.70	1.49	-10.38	-0.09
28		1362355	7.93	-8.85	-10.35	-0.72	1.49	-10.34	-0.01
29		1385213	9.18	-9.13	-9.73	-0.28	0.60	-9.45	-0.28
30	H	1600325	7.53	-8.49	-9.68	-0.99	1.19	-9.74	0.06
31		1983747	8.72	-8.94	-9.53	-0.39	0.60	-9.53	-0.01
32		5063740	7.61	-8.48	-9.37	-0.65	0.89	-9.52	0.15
33		8081249	7.84	-8.35	-9.24	-0.54	0.89	-9.24	0.00
34		8082264	7.07	-7.26	-8.15	-0.50	0.89	-8.07	-0.08
35	F	9203582	6.86	-7.16	-8.05	-0.56	0.89	-8.03	-0.03
36	F	17078851	7.83	-8.38	-8.98	-0.37	0.60	-9.06	0.09

Table 1: Continue

Benzoxazole derivatives

Derivative	R1 groups	PubChem CID	Predicted pIC ₅₀	BE	IME	ΙΕ	TorE	VdwE	EE
37		30308174	7.68	-9.00	-10.19	-1.42	1.19	-10.22	0.03
38	N H	118261924	7.79	-8.06	-9.26	-1.29	1.19	-8.20	-1.05

BE: Binding energy, IME: Intermolecular energy, IE: Internal energy, TorE: Torsional, energy, VdwE: vdW+Hbond+desolv energy, EE: Electrostatic energy

Table 2: Physicochemical properties of 4 best predicted compounds

Derivative	PubChem CID	Molecular weight (g moL ⁻¹)	Donor	Acceptor	XLogP
1	649646	329.359	1	4	3.1
2	1318080	441.228	1	4	3.8
3	782217	341.370	1	4	3.6
4	1385213	441.228	1	4	3.8

Table 3: Absorption properties of 4 best predicted compounds

		Absorption			
Derivative	PubChem CID	HIA (%)	P_{CaCO_2}	MDCK	Skin permeability
1	649646	96.242002	38.1994	3.966980	-3.31018
2	1318080	97.765126	27.5722	0.378139	-3.46741
3	782217	96.427923	43.7072	2.973880	-3.09312
4	1385213	97.765148	27.5032	0.408973	-3.48735

HIA: Percentage of human intestinal absorption, P_{CaCO_2} : Cell permeability (CaCo₂ in nm sec⁻¹), MDCK: Cell permeability Maden Darby Canine Kidneyin (nm sec⁻¹)

Fig. 4: Docked complex of compound CID 1385213 with IMPDH protein. One H-bond formed between compound and residue ASP252of IMPDH protein. H-bond represented by green dotted sphere. Bonded residue of protein is represented by sticks and balls. Compound CID1385213 is represented by red lines

CID1318080, CID782217 and CID1385213 with IMPDH protein complex (Fig. 5a-d). Result of simulation shows that compounds were stable.

ADME and toxicological properties: Best predicted compounds satisfied the Lipinski rule of five to evaluate oral absorption and was shown in Table 2. Predicted compounds CID102080317 and CID16215157 have human intestinal absorption (HIA) values in the range of 96.242002-97.765148 are belong to the range of well absorbed compounds (HIA: 70 ~100%) was shown²² in Table 3. The cell permeability *in vitro* CaCO₂ is an important test to assess intestinal absorption of drug compounds. It was found that the P_{CaCO_2} (nm sec⁻¹) value of compounds were ranging from 27.5722-44 nm sec⁻¹ was shown in Table 3 and categorized in standard range (P_{CaCO_2} >70 nm sec⁻¹)²². *In vitro* in MDCK system is used as a tool for the rapid analysis of cell permeability. MDCK value of compounds was in range of 0.378139-3.96698 nm sec⁻¹ (Table 3). These values had lower MDCK value than mean

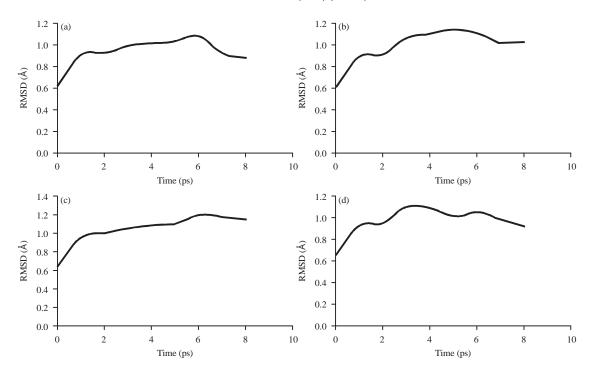


Fig. 5(a-d): RMSD of docked protein complex versus time (in Ps) (a) RMSD of compound CID 649646-IMPDH protein complex versus time (in Ps), resulted in highest peak at 1.08 Å, (b) RMSD of compound CID 1318080-IMPDH protein complex versus time (Ps), resulted in highest peak at 1.13 Å, (c) RMSD of compound CID 782217-IMPDH protein complex versus time (in ps), resulted in highest peak at 1.20 Å and (d) RMSD of compound CID 1385213-IMPDH protein complex versus time (in ps), resulted in highest peak at 1.10Å

Table 4: Distribution properties in percentage of plasma protein binding (PPB) and penetration of the blood brain barrier (BBB) for 4 best predicted compounds

		Distribution	
Derivative	PubChem CID	PPB (%)	BBB
1	649646	91.880449	0.0226817
2	1318080	100.00000	0.0440191
3	782217	93.449146	0.0366843
4	1385213	91.947869	0.0674035

Table 5: Toxicological properties of mutagenicity and carcinogenicity for 4 best predicted compounds

			Carcinogenicity		
Derivative	PubChem CID	Ames test	Mouse	Rat	
1	649646	Mutagenic	Negative	Positive	
2	1318080	Mutagenic	Negative	Positive	
3	782217	Mutagenic	Negative	Positive	
4	1385213	Mutagenic	Negative	Positive	

range²³. Predicted compounds had negative permeability values were shown in Table 3. Skin permeability parameter is used in the pharmaceutical industry to assess the risk chemical products in case there is accidental contact with skin²⁴. The binding of drug to blood and plasma proteins can alter the half-life of the drug in the body of the individual^{25,26}. All the best predicted compounds strongly bind with plasma

protein as shown in Table 4. Identified derivatives were belonging to inactive compound range (blood-brain barrier <1)²⁷. The Ames test²⁸ calculated mutagenicity of the compounds. Test predicted compounds mutagenicity are enlisted in Table 5. Carcinogenicity of compounds showed negative value in mouse and positive in rat was shown in Table 5.

CONCLUSION

Four best predicted compounds CID649646, CID1318080, CID782217, CID1385213 were found having lower binding energies -9.48, -9.39, -9.07 and -9.13 kcal moL⁻¹ with IMPDH protein. Inhibitory concentration in terms of pIC₅₀ of compounds CID649646, CID1318080, CID782217 and CID1385213 were 8.87, 8.74, 8.51 and 9.18, respectively. Molecular dynamics simulations showed that predicted compounds were stable. In silico ADME and toxicological properties of predicted compounds showed satisfactory results. Therefore it is predicted that benzoxazole derivatives CID649646, CID1318080, CID782217 and CID1385213 could be promising drug like compounds for IMPDH protein as drug target yet experimental studies have to confirm it. The present study may provide the information about potential derivatives of Benzoxazole for synthetic medicinal chemist as chemotherapeutic agents to fight against the increasing burden of Cryptosporidiosis infections.

REFERENCES

- 1. Rossle, N.F. and B. Latif, 2013. Cryptosporidiosis as threatening health problem: A review. Asian Pac. J. Trop. Biomed., 3: 916-924.
- 2. Xiao, L. and U.M. Ryan, 2004. Cryptosporidiosis: An update in molecular epidemiology. Curr. Opin. Infect. Dis., 17: 483-490.
- 3. Parsons, M.B., D. Travis, E.V. Lonsdorf, I. Lipende and D.M.A. Roellig *et al.*, 2015. Epidemiology and molecular characterization of *Cryptosporidium* spp. in humans, wild primates and domesticated animals in the greater gombe ecosystem, Tanzania. PLoS Neglect. Trop. Dis., Vol. 9, No. 2. 10.1371/journal.pntd.0003529.
- 4. Kotloff, K.L., J.P. Nataro, W.C. Blackwelder, D. Nasrin and T.H. Farag *et al.*, 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (The Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet, 382: 209-222.
- Sharling, L., X. Liu, D.R. Gollapalli, S.K. Maurya, L. Hedstrom and B. Striepen, 2010. A screening pipeline for antiparasitic agents targeting *Cryptosporidium* inosine monophosphate dehydrogenase. PLoS Neglect. Trop. Dis., Vol. 4, No. 8. 10.1371/journal.pntd.0000794.
- 6. Hedstrom, L., 2009. IMP dehydrogenase: Structure, mechanism and inhibition. Chem. Rev., 109: 2903-2928.
- 7. Shu, Q. and V. Nair, 2008. Inosine monophosphate dehydrogenase (IMPDH) as a target in drug discovery. Med. Res. Rev., 28: 219-232.

- 8. Trapero, A., A. Pacitto, V. Singh, M. Sabbah and A.G. Coyne *et al.*, 2018. A fragment-based approach to targeting inosine-5'-Monophosphate dehydrogenase (IMPDH) from Mycobacterium tuberculosis. J. Med. Chem., 61: 2806-2822.
- Wadood, A., M. Ghufran, S.F. Hassan, H. Khan, S.S. Azam and U. Rashid, 2017. *In silico* identification of promiscuous scaffolds as potential inhibitors of 1-Deoxy-d-xylulose 5-Phosphate reductoisomerase for treatment of *Falciparum* malaria. Pharm. Biol., 55: 19-32.
- Morris, G.M., R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, 2009. AutoDock4 and AutoDock Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30: 2785-2791.
- 11. Teotia, P., S.P. Dwivedi and N. Dwivedi, 2016. A QSAR model of benzoxazole derivatives as potential inhibitors for inosine 5-Monophosphate dehydrogenase from *Cryptosporidium* parvum. Bioinformation, 12: 119-123.
- 12. Berman, M.H., J. Westbrook, Z. Feng, G. Gilliland and T.N. Bhat *et al.*, 2000. The protein data bank. Nucl. Acids Res., 28: 235-242.
- Pettersen, E.F., T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, 2004. UCSF chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 25: 1605-1612.
- 14. Wang, Y., E. Bolton, S. Dracheva, K. Karapetyan and B.A. Shoemaker *et al.*, 2009. An overview of the PubChem BioAssay resource. Nucl. Acids Res., 38: D255-D266.
- O'Boyle, N.M., M. Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, 2011. Open Babel: An open chemical Toolbox. J. Chemoinform, Vol. 3. 10.1186/ 1758-2946-3-33.
- 16. Phillips, J.C., R. Braun, W. Wang, J. Gumbart and E. Tajkhorshid *et al.*, 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem., 26: 1781-1802.
- 17. Humphrey, W., A. Dalke and K. Schulten, 1996. VMD: Visual molecular dynamics. J. Mol. Graph., 14: 33-38.
- Lee, S.K., I.H. Lee, H.J. Kim, G.S. Chang, J.E. Chung and K.T. No, 2003. The PreADME Approach: Web-Based Program for Rapid Prediction of Physico-Chemical, Drug Absorption and Drug-Like Properties. Blackwell Publishing, Massachusetts, pp: 418-420.
- Lee, S.K., G.S. Chang, I.H. Lee, J.E. Chung, K.Y. Sung and K.T. No, 2004. The PreADME: Pc-based program for batch prediction of adme properties. EuroQSAR 2004: 9.5-10, Istanbul, Turkey.
- 20. Sanner, M.F., 1999. Python: A programming language for software integration and development. J. Mol. Graph. Mod., 17: 57-61.

- 21. Yee, S., 1997. *In vitro* permeability across CaCO₂ cells (colonic) can predict *in vivo* (small intestinal) absorption in man-fact or myth. Pharm. Res., 14: 763-766.
- 22. Yazdanian, M., S.L. Glynn, J.L. Wright and A. Hawi, 1998. Correlating partitioning and CaCO₂ cell permeability of structurally diverse small molecular weight compounds. Pharm. Res., 15: 1490-1494.
- 23. Irvine, J.D., L. Takahashi, K. Lockhart, J. Cheong, J.W. Tolan, H.E. Selick and J.R. Grove, 1999. MDCK (Madin-Darby Canine Kidney) cells: A tool for membrane permeability screening. J. Pharm. Sci., 88: 28-33.
- 24. Singh, S. and J. Singh, 1993. Transdermal drug delivery by passive diffusion and iontophoresis: A review. Med. Res. Rev., 13: 569-621.

- 25. Godin, D.V., 1995. Pharmacokinetics: Disposition and Metabolism of Drugs. In: Principles of Pharmacology: Basic Concepts and Clinical Applications, Munson, P.L., R.A. Mueller and G.R. Breese (Eds.). Chapman and Hall, New York, pp: 39-84.
- 26. Pratt, W.B. and P. Taylor, 1990. Principles of Drug Action: The Basis of Pharmacology. 3th Edn., Churchill Livingstone, New York.
- 27. Ma, X.L., C. Chen and J. Yang, 2005. Predictive model of blood-brain barrier penetration of organic compounds. Acta Pharm. Sin., 26: 500-512.
- Ames, B.N., E.G. Gurney, J.A. Miller and H. Bartsch, 1972.
 Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-Acetylaminofluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci., 69: 3128-3132.