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Abstract: Tf we have a function defined on the real line we cannot approximate this function using a radial bases
function neural networks to get an example. Tt mean we cannot find a radial base forward neural network to
approximate a continuous function f. To make this possible we shall put some limits on f. In this study, we shall
study approximation of functions in Lp spaces for p>1 defined on the real line using radial base neural network.
The weights are fixed in the radial bases functions neural networks to have facilities in practical applications
and prove direct theorem using radial basis function neural networks for functions in Lp spaces for p>1.
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INTRODUCTION

Tn order to draw a meaningful picture in our minds for
approximation by neural network and prepare the
background for our reserach and motivate our results, we
have torecall some definitions and results related to basic
concepts of our reserach.

The origin point of artificial intelligence can be traced
to 1930-1940’s For a half century it has achieved very
good achievements and 1t has little difficulties, we a table
mtroduce for a brief lustory of the improvement of the
artificial neural networks. The main aim of the artificial
intelligence is to make a computer model to simulate the
intelligent of the human brain and even animals brain and
behavior. The main tasks of the artificial intelligence can
be summarize in the following:

¢  Representing and storing knowledge
¢+  Solving many kinds of problems with storing
knowledge

A acquiring new knowledge at the system running.
The above tasks need 50 years for developing and it has
many and widely applications such as for expert systems,
machine learning, logic reasoning natural language and
theorem proving

First let us turn the light to the biological neuron. The
bramn 18 a complicated connected networks, consists of
billions nerve cells (neurons). The human brain has
10'%-10" neurens each one connected with 10°-10° other
neurons. The neuron structure divided in to three parts as
described in Fig. 1.

To cne side of the soma, we find dendrites and to the
other side, we find the axon By dendrites of the axons,

/

Dendrites Synapses Axon

Fig. 1: Biological neuron

the neurons can be connected, the connection places of
two neuwrons dendrites called synapses. The output
places of the electrical transmission is the branches of the
axon and the other dendrites of the neuron is the input
places. The synapses make a weighted processes at the
input signal. Then, each input signal undergoes a
summation and nonlinear activation at the back of the
soma of newons. Under a condition for example, the
intensity of the summeucl signals a certain level, it output
signal. Then, this signal transferred to other neurons and
then to the next processing. The deity of synapses in the
neurons 18 not only the transformation of signals but it
have experience memory fimction and can carry out
weighted processing on the mput signal according to
memory. Let us now summarize, the differences between
the processing of biological brain system and neumann
architecture (Xingui and Shachua, 1995). The biological
brain does not have arithmetic unit, the neuron combines
the function of the arithmetic umt. Some mformation are
stored in the synapses, while some of the mformation are
processed by numerous neurons.

The biological brain does not need a model and
program for solving practical problems but it by learning,
directly changes the connection weights what we called
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the synapses to get the knowledge for solving problems.
The mformation (a processing object) processed by the
biological brain 1s not completely certain and accurate but
has obvious fuzziness and randomness. The processing
object is either continuous or discrete quantum.

The biological brain using analog method, a
digital/analog method or mixed m addition to the random
method in processing the information. While computer
use all those methods in addition to that its process is
complex and non-reparable. The biological brain can a
certain response to an activation mn less than one second
Let us describe, mathematical model of artificial neuron
(Xingu and Shachua, 1995) (Fig. 2).

x; 18 the input signal toaneuronj, 1=1, 2, 3, .., nw,
1s the connection weight between the ith newron and the
neuron j; 6; is the activation threshold of the neuron j, f is
the effect function. Y; is the output of the neuron. We can
relate the input and the output of the neuron by the
following 1dentity:

yi _f[znlw1jx1_ejj
1=1

The simulation above has two disadvantages:

*  There 1s no time delay between the inputs and the
output information

¢ The outputs information only depends on the input
mformation. And not on the earlier input in formation

Radial functions are a special class of function.
Their characteristic feature is that their response
decreases (or increases) monotonically with distance
from a central point, for example, Funahashi (1989) and
Hornik et al. (1989).

The centre, the distance scale and the precise shape
of the radial function are parameters of the model all fixed
if 1t 15 linear. A typical radial function is the Gaussian
which in the case of a scalar input is:

h(x) = e[rx;—;]

Its parameters are its center ¢ and its radius r . A
Gaussian RBF monotonically decreases with distance
from the Centre. Tn contrast, a multiquadric RBF which in
the case of scalar input 1s:

i wix-6) >
Fig. 2: Artificial neuron model
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Fig. 3: a) Gaussian left and b) Multiquadric RBFs

more commonly used than multiquadric-type RBFs which
have a global response. They are also more biologically
plausible because their response 1s finite (Fig. 3a and b) a
radial basis function network is an artificial neural network
that uses radial basis functions as activation functions.
The output of the network is a linear combination of radial
basis functions of the mputs and neuron parameters.
Radial basis fimction networks have many uses, including
function approximation, time series prediction,
classification and system control.

Radial functions are simply, a class of functions. In
principle they could be employed in any sort of model
{(linear or nonlinear) and any sort of network (single layer
or multi-layer) (Fig. 4).
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Fig. 4: The radial basis finction network

Artificial neural network have many applications in
various types of sciences fields and engineering for
example. There are many papers introduced about the
direct and mverse theorem for the approximation by
neural networks called the upper and lower bounds of the
rate of approximation. For example, Bhaya and Sammal
(2016), Scarselli and Tsoi (1998), Hormk e al. (1989),
Leshno et al. (1993) and Mhaskar and Micchelli (1992), we
call the degree of the asymptotically identical upper and
lower bounds, the essential rate of approximation. If
we have a contmmuous function with multivariable and
compact domain subset of R" there exist a feed
Forward Neural Networks (FNNs) as an approximation
for it.

Artificial forward neural networks are nonlinear
parametric expressions representing multivariate numerical
functions. In connection with such paradigms there arise
mainly three problems: a density problem, a complexity
problem and an algorithmic problem. The density problem
deals with the following question: which functions can be
approximated and in particular can all members of a certain
class of functions be approximated in a suitable sense.
This problem was satisfactorily solved in the late 1980°s
(Bhaya and Sammalk, 2016; L1, 2008; Hommik et al., 1989).
The forward neural network with 3 layers and d input
units, 1 hidden and one output units can be written
mathematically as:

where, 1<I<n, 0, ¢ R is the threshold:
T d
@ = (), O -y @) ER

are comnection weights of neuron i in the hidden layer
with input neurons, ;R are the connection strength of
neuron i with the output neuron and o is the sigmoidal
activation function used m the network. There are many
papers introduced about approximation using radial
basis function neural network function, for example,
Bateman and Erdelyi (1974), Bhaya and Sammak (2016),
Liuw and Si (1994), Chw and Li (1992), Li (2008),
Scarselli and Tso1 (1998), Funahashi (1989), Hornik et al.
(1989), Leshno et al. (1993), Li (1998), Mhaskar and
Micchelli (1992), Hahm and Hong (2004), Park and
Sandberg (1991) and Kurkova (1995).

By Bhaya and Sammak (2016), Eman introduced an
operator called modified Dunkl transform, then she used
itto infroduce a version of K-functional and a modulus of
smootlness of function using these moduli Eman studied
the regular neural network approximation.

By Liu and Si (1994), Binfan and Jennie showed
that for any function have two continuous derivative,
there exists a radial basis function neural network as a
best approximation with distance equal to zero on
[O1]=

By Funahashi (1989) Li proved that for any
multivariate function with its all derivatives we can find a
radial basis function neural network as a simultaneous
best approximation. Also, he proved that the degree of
best approximation was inversely proportional to the
number of hidden neurons.

MATERIALS AND METHODS

Approximation by rbf neural networks with a fixed weight
in L' (K): If we have a function defined on the real line we
cannot approximate this function using RBF neural
network. By Chen and Chen (1995) you can find an
example:

f(x)=x,xeRand|f(x)|>wcas|x|>w©

It mear, we cammot find a radial base forwarded neural
network to approximate a continuous function f. To make
this possible we shall put some himits on f. In this study,
we shall study approximation of functions in L, spaces for
pzl defined on the real line using real base neural
network. L° (K} denote to the collection of all functions
feL (K) such that f(x) converge to O as |x| = .
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Theorem a: Let ¢ be an RBF on R and given £>0,
if feL° (K then there exist a constants 6,cR and W, M, K
positive integers satisfying:

o M1 1
|If (x)- E Aé(f,xi)G(Wx—ei)|p<c(p){e+(2M)p mk(f,M)pj

Proof//: Smce, feL°,(K), so that, we can find a positive
integer M, K satifying [f(x)|=<c/2M for [x|=K. Let [-M, M] be
a closed interval. Define a portion to the interval [-M, M],
that divide it in to into 2M* equal segments each of length
1/M.

M=x <x<.., X a = M

and:
ei:%’“l,(ogs PIVERY

Since, 0 1s an RBF then, we can find a positive integer:
1
L 3| o(x)|< —for[x[>L
2M
Then, we can choose a positive integer W such that
W/2M=L. Now, let us define a neural network as :
1

N{x)= > Ai(f,xl)G(W(X-ﬁl)

1=0 W
Since [x|>M, so that, [W(X-8,)|>1, therefore:

1
-y _
lo(W(x-8)|< M

wheni=1, 2, .., 2M*1. Which implies:

| £{x)-N{ ) <] £+ [N(x) |

<
<|=

+

S (fx Jo(W(x-8,)

M

Ak;(f,m)
<= M M
2 " 2M
Then:
4 1 ) b4
f N P sS4 M AE (p
NG = (5 S A )

So:
. uf e 1 W IME L . °
j_M|f(x)-N(x)rdxsj_M[5J dx+(2M)p I, ZD: Aﬁ(f, x) dx

Therefore:
1

(170 )
[IEGT dXT {(21\1/1)" M Zlmz? 8 (5,%)

e {2ap

Which mmplies:

()N <c(1\/1){8+2Mz'1 A (£, x)

M

(2Mm)'

J

by taking supermom for two sides of the mequality, we

get:
f(x)-wx);c(w[ﬁzw'l o.[r. 1ﬁ

(any LN

RESULTS AND DISCUSSION

Approximation by
convolution: Using our theorem in the previous section
and convolution, we introduce an RBF neural networks
approximation of function direct theorem. The
convolution of two functions f and g defined by:

RBF neural networks using

(Fg)(x)=[ o (v)(xv)dy M

For areal x define:

iff] <1
f(x) = 197 )
0 if|x[>1

we choose d to make the mtegration of F on R equal to 1.
So, Fel’=(K) where, L, +*K) referee to the space of
functions in L.°, and have any derivatives. k.

Let us define:

E,(x) = KF(kx) (3
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Therefore, the integration of F, on R equal to 1 and F,
(x)eL’ =(K). Now using the convolution to get:

Theorem b: If fel’ (R), p=1. Then:

|F ml(f,ﬁ)p

i <c(k)

Proof//: and since, (k<M) k and any integer xeR for any:

IRFk (y)dy=1
we have:
HFk *f_f”LP(IR): IRFk (y)f(x—y)dy-jRFk y)f(x)dy Lp(IR)
using the property that:
F, (x)=kF(x)
we have:
[F. * €8], )= ok PO ) (33} ()],
If we assume:
kv
o
then:
_ &
T
and:
dy =dz
then:
[Pk ], = IRkF(z)(f{x— Ej— f(x)dz
» k L, (R)

kF(z)(f[x-E}f(x)dz

L, ()

jRF(z)A1 f, z)dz]

Lp(IR)

g

dz

<c(p )j
= c(p)e)1

L.(R)

Nt
(r.8),

Theorem c: If fel. [a, b] and 0 is a RBF. Then, there
exist a constant v,eR and W, M, KeZ’ satisfying:

20 -1

f(x)-B Y A% (f,

%, )ok(xy,)

=

Proof //: We construct the function f onR as follows

fa)x+(a-1)f(a) if xe[a-l, a]
f(x) _ f(x) ifxe[a, b]
f(b)x+{b+))f(b)  ifxe[b, bH]
0 ifxe(-oo, a-1) b+, o)

From theorem B, we have:

B *£-£], <e(p)o,(£.8),
We know that, since:
[= B (xy)f(y)dy <o
(Fk*f)(x)

can be approximated by a Riemarm sum. So that, for any

natural k, we can find reals, M, and y,, ¢, fori=1, 2, ..., M,
satisfying:
Fk * f ZC E: _Y1 1)
P
<c(k)ol(f.8), h

From Eq. 2 and 3, we get:

Fel,
If we assume:

"o f

1=1 "1

2

(v.)=B

our first theorem mmplies:

M1

Fk(x-yi)- > Ai(f,xl)G(WX-Bl) <

1=0 M

i
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C(M)[a%@k(n ﬁj} 5)

Using theorem B, we get:

|F. £

|, sclk)a,(f,8)

From above we have:

M, M2 -1

f(x)—Zcf(yl) ; A%(f,xl)G(W(x-yl)

i=1

i

+
P

<c(M,1<)[Fk *ff

M, _
Fk*f_zc1 Fk(X_Y1)f(y1) J
i=1 M

which is true for any 0. So:

2m2.1

f(x)-B Z Ai(f,xl)cs(k(x—yl) 1<

M3 1
C(M,k)[m1 (f,B)p + mmk [f, M]J

CONCLUSION

We can not approximate a function in Lp spaces for
p=1, using a radial bases function neurl network. Tf we put
limits on the target function f in Lp, p>1, we can find a
radial base neural network.
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