Australasian Journal of

Computer Science

ISSN: 2251-3221

science
alert http://scialert.net/ajcs

Australasian Journal of Computer Science 1 (1): 9-16, 2014
ISBN 2251-3221 / DOIL 10.2923/aujes. 2014.9.16
© 2014 Science Alert

Software Architecture Design Using Service Oriented on Quality
Metrics

C.K. Gomathy and S. Rajalakshmi
SCSVMYV Univeristy, Enathur, Tamil Nadu, India

Corresponding Author: C.K. Gomathy, SCSUMU University, Enathur, Tamil Nadu, India

ABSTRACT

Software architecture has the possible to vastly improve organization’s potency. The firm wants
technology and method know-how: Kspecially, Service Oriented Architecture (SOA) implies
completely different stress of project management. Trendy software industry more and more rely
heavily on evidence keep and processed in circulated varicus information sources and services to
create vital, high-value quality decisions. Service-oriented systems are dynamic in nature and are
becoming ever a lot of advanced architecture of systems. In such systems, knowing however a
knowledge set was derived is, of serious importance in essential its validity and dependability.
Today’s analytical data systems demand innovative design i1deas. So, as to address necessities like
flexibility and quicker time-to-market. This study presents service oriented-bound design as a
pattern based and platform independent to solve the quality 1ssues. The study conjointly mentions
the present problems, technical realization sector which require being researched a lot of with this
design.

Key words: Quality architect in SOA, quality management in architecture, service oriented
computing, patterns of SOA, software architect management

INTRODUCTION

The software architecture of a program or computing system is the structure or structures of
the system which comprise software elements, the externally visible properties of those elements
and the relationships among them (Rasool and Asif, 2007). Software has been used in every walk
of life, playing increasingly important role. The ever-increasing expansion of applications and users
requirements make a steep rise in the scale and complexity of software which results in the decrease
in the software quality. So, it is a great challenge in software engineering to understand, measure,
manage, control and even to low the software complexity (Pan, 2011). Software Product Line
engineering aims at improving productivity and decreasing realization times by gathering the
analysis, design and implementation activities of a family of systems. Variabilities are
characteristics that may vary from a product to another. The main challenge in the context
of the Software Product Lines (PL) approach is te model and implement these variabilities
(Abdelmoez ef al., 2009). Software Architecture (SA) is considered of highest importance to the
software development hife-cycle. It is used to represent and communicate the system structure and
behavior to all of its stakeholders with various concerns. Additionally, SA facilitates stakeholders
in understanding design decisions and rationale, further promoting reuse and efficient evolution.
One of the major issues in software systems development today is systematic SA restructuring to

Australasian J. Comp. Set., 1(1): 9-16, 2014

accommodate new requirements due to the new market opportunities, technologies, platforms and
frameworks (Dobrica et al, 2011). The ultimate goal of software engineering is tobe able to
automatically produce software systems based on their requirements. For the time being, we pass
the synthesis of executable programs and concentrate on the automated derivation of architectural
designs of software systems. This is possible because architectural design largely means the
application of known standard solutions in a combination that optimizes the quality properties of
the software system (Raiha et al., 2009).

The software architecture of a system is the set of structures needed to reason about. the system
which comprises software elements, relations among them and properties of both. The term also
refers to documentation of a system'’s software architecture. Documenting software architecture
facilitates communication between stakeholders, documents early decisions about high-level design
and allows the reuse of design components and patterns between projects (Ludik ef «l., 2011).
Software programming 1s a hard design task, mainly due to the complexity involved in the process.
Nowadays this complexity 1s increasing to levels in which reuse of previous software designs are
very useful to short cut the development time (Sharma et al., 2007).

The various benefits of the software architecting are as given below:

* Architecting helps manage complexity

* Architecting ensures architectural integrity

+ Architecting reduces maintenance costs

* Architecting provides a basis for reuse (Eeles, 2009)

Popular geals of software engineering are to develop and use techniques and tools for creating
high quality applications. Applications that have high quality and modularity are more stable and
maintainable (Al Dallal, 2009). The major design task in building enterprise applications 1s to
design good software architecture. During recent years, the notion of software architecture has
emerged as the appropriate level for dealing with software quality. One of the major issues in
software systems development today 1s quality. A quality attribute is a nonfunctional characteristic
of a compoenent or a system (Gumuskaya, 2005). The usability of software can have a considerable
impact on the total cost of ewnership through factors such as training, productivit and technical
support. As a result, organizations planning to acquire new software (or upgrades) often evaluate
software usability as part of their software acquisition decisions. However, evaluating software
usability can be a challenging proposition from the perspective of striking a balance between costs
{(in time and effort), validity and objectivity (Sobiesiak and Diao, 2010).

Software must possess the qualities like safety, reliability, availability, cost, maintainability,
performance or respoense, time, energy consumption (Meedeniya, 2011). Usability is important not
only to inerease the speed and accuracy of the range of tasks carried out by a range of users of a
system but also to ensure the safety of the user. Productivity is also imperative where the software
is used to control dangerous processes. Computer magazine software reviews now include usability
as a ratings category (Seffah ef al., 2008). There are some recent attempts to establish software
science as a foundation of software engineering. This may promote more analytical reasoning about,
software architecture, if it becomes popular. Software architectural design would benefit from
analytical reasoning with scientific foundations. Importance of software architecture in the software

design process 1s generally acecepted among practitioners (Dey, 2011).

10

Australasian J. Comp. Set., 1(1): 9-16, 2014

Review of literature: A handful of researches have been done in the field of software architecture
since it has gained more importance with the development in computer technologies. Some of the
recent researches are as mentioned.

Xu et al. (2006) have proposed a research question of transforming dependability requirements
into corresponding software architecture constructs by proposing first, that dependability needs
could be classified into three types of requirements and second, an architectural pattern that allows
requirements engineers and architects to map the three types of dependability requirements into
three corresponding types of architectural components. The proposed pattern was general enough
to work with existing requirements techniques and existing software architectural styles, including
enterprise and product-line architectures.

Kaur et al. (2009) have presented a survey of current component-based software technologies
and the deseription of promotion and inhibition factors in CBSE. The features that software
components inherit were also discussed. Quality Assurance 1ssues in component based software
were also catered to. The feat research on the quality model of component based system starts with
the study of what the components are, CBSE, its development life cycle and the pro and cons of
CBSE. Various attributes were studied and compared keeping in view the study of various existing
models for general systems and CBS. When illustrating the quality of a software component an apt
set of quality attributes for the description of the system should be selected.

Zimmermann et al. (2009) have proposed a formal definition of architectural decision models
as directed acyclic graphs with several types of nodes and edges. In their model, architectural
decision topie groups, issues, alternatives and outcomes form trees of nodes connected by edges
expressing containment and refinement, decomposition and triggers dependencies, as well as logical
relations such as incompatibility of alternatives. The formalization could be used to verify integrity
constraints and to organize the decision making process; production rules and dependency patterns
could be defined.

A key aspect of the design of any software system was its architecture. An architecture
description provides a formal model of the architecture in terms of components and connectors and
how they were composed together. COSA (Component-Object based Software Structures), was
based on object-oriented modeling and component-based modeling., The model improves the
reusability by increasing extensibility, evolvability and compositionality of the software systems.
Smeda et al. (2009) have presented the COSA modelling tool which help architects the possibility
to verify the structural coherence of a given system and to validate its semantics with COSA
approach.

Kim et al. (2009) have presented a quality-driven approach to embodying Non-Functional
Requirements (NFRs) into software architecture using architectural tactics. Architectural tactics are
reusable architectural building blocks, providing general architectural solutions for common issues
pertaining to quality attributes. The architectural tactics are represented as feature models and
their semantics was defined using the Role-Based Metamodeling Language (RBML) which was a
UML-based pattern specification notation. Given a set of NFRs, architectural tactics are selected
and composed and the composed tactic was used to instantiate an initial architecture for the
application. The proposed approach addresses both the structural and behavioral aspects of
architecture.

Ampatzoglou et al. (2012) have proposed a methodology for comparing design patterns to
alternative designswith an analytical method. Additionally, the methodology compares three design
patterns with two alternative solutions, with respect to several quality attributes. A

11

Australasian J. Comp. Set., 1(1): 9-16, 2014

theoretical/analytical methodology to compare sets of “canonical” solutions to design problems were
defined. They proposed theoretical study in the sense that the sclutions are disconnected from real
systems, even though they stem from concrete problems also analytical in the sense that the
solutions are compared based on their possible numbers of classes and on equations representing
the values of the various structural quality attributes in function of these numbers of classes. The
exploratory designs have been produced by studying the literature, by investigating open-source
projects and by using design patterns.

Shatnawi and Li (2011) have proposed a hierarchal quality model where the effect of software
refactoring on software quality was studied. They provided details of their findings as heuristics
that can help software developers make more informed decisions about what refactoring to perform
in regard to improve a particular quality factor. They wvalidate the proposed heuristics in an
empirical setting on two open-source systems. They found that the majority of refactoring heuristics
do improve quality; however some heuristics do not have a positive impact on all software quality
factors. In addition, they found that the impact analysis of refactoring divides software measures
into two categories: high and low impacted measures. These categories help in the endeavor to
know the best measures that could be used to identify refactoring candidates.

Problem definition: Software architecture is generally the structure of components in a program
ar system, their interrelationships and the principles and design guidelines that control the design
and evolution in time (Gumuskaya, 2005). The various problems that remains in the existing
researches are being identified from our review of recent researches. Some of the problems existing
in the research field are:

* Application of process and framework to large and complex software systems during
architecture are not possible (Rasool and Asif, 2007)

* The effectiveness of architectural design largely depends on the quality attributes (Dey, 2011)

+ Architecture generally exhibit higher computational time

* Bervice criented architecture designing must be completely a service oriented process with
better quality aspects (Pahl and Barrett, 2010)

*+ The quality attributes related to execution qualities should be fully supported (Ovaska et al.,
2010)

+ Explore ways to improve the accuracy of architectural knowledge sharing quality prediction
{(Liang et al., 2011)

Architecture principles of SOA: There are many definitions of software architecture:

+ Every software has architecture

* Architecture defines components and their interactions

+ Interfaces (externally visible behavior) of each component are part of the architecture

+ Interfaces allow components to interact with each other

*+ A system comprises many different kinds of components but none of these is the architecture

Software architecture is a metaphor that helps us to better cope with the challenges in software

systems. These challenges are described by a number of so-called “Laws of Software
Evolution”.

12

Australasian J. Comp. Set., 1(1): 9-16, 2014

Software
architecture

Distributed object
system

Process drive
architecture

Loosely coupled
architecture

SOA/adapted |
architecture

Fig. 1: Loosely coupled architecture and SOA

The two most prominent are:
* Law of continuing change
+ Law of increasing complexity

But software architectures are not easy to document, create and maintain and description of the
architecture using quality attributes.

Characteristics of an architect:

+ The architect is a technical leader

¢ The architect understands the software development process
* The architect has knowledge of the business domain
* The architect is a good communicator

*+ The architect makes decisions

* The architect is aware of organizational politics

* The architect is a negotiator

¢ The architect has technology knowledge

* The architect has design skills

¢ The architect role may be fulfilled by a team

* The architect has programming skills

Architectural quality attributes:

* Quality of architecture essential attributes for the fulfillment of the requirements
+ Factors those are important to make architecture good or bad

System quality attributes: Availability, reliability, maintainability, understandability,

changeability, resolvability, testability, portability, efficiency, scalability, security, inerrability,
reusability.

13

Australasian J. Comp. Set., 1(1): 9-16, 2014

‘ Reliability \

Resource

Consumption Changeability

Availability

Performance

Time to market Reusability

Maintainabilityl

Business quality attributes: Time to market, costs and projected lifetime, targeted market,

Fig. 2: Architectural quality attributes

legacy system integration, roll-out schedule.

Architecture quality attributes: Conceptual integrity, correctness, completeness,

buildability (Fig. 2).

Contribution of SOA: The quality aware software architecture remains as one of the
basic needs while designing software. Various researches have been done in the field of software
engineering in order to overcome these drawbacks. But still software architecture remains to be a
tedious job for the designers with the consideration of the quality metrics. Various quality attributes
such as maintainahility, reliability, readability, usability ete. have to be considered while designing
software. In this study, proposed an efficient. software architecture model based on service oriented
architecture design pattern with major consideration being the quality metrics. The
Service Oriented Architectural (SOA) pattern is used for our designing purpose. The service
oriented architecture design generally the way of designing a software system to provide service
to either end user or other service through published interfaces. The usage of service oriented
architectural patterns in our design provides reusable and extensible technical solutions to common
design problems 1in a standard Architectural format. The architecture design is also
incorporated with the quality metrics like usability and portability to perform a better software
architectural design. The usability of the software can be measured with the help of various
usability metrics like task completion, time ontask (usage time), error counts and satisfaction scores
through a process called six sigma methods and the portability is measured using the matrix
method. The proposed method proper maintainable and deliverable of better cuteome in the form

of design metries (Fig. 1, 3).

14

Australasian J. Comp. Set., 1(1): 9-16, 2014

Concept of
development

and system
expertise

Maturity of
development
and
maintenance
process

Quality of
source code
and quality
layout

SOA
maintainability

Software and
hardware
perform

quality

Quality of
supporting
documentation

System
architecture
and service
quality

Fig. 3: Architect maintainability analysis

CONCLUSION

This study proposed a new quality architect paradigm to enable system quality to connect with
software architectural models from which it 1s possible to extract precisely information. Our scheme
has been proven quality in the standard model. A systematic complexity analysis and extensive
experiments show that our proposal is also efficient in terms of computation and design. These
features quality analysis framework scheme a talented scolution to group-service oriented

communication with aceess control in various types of design.

REFERENCES

Abdelmoez, W.M., A H. Jalali, K. Shaik, T. Menzies and HH. Ammar, 2009, Using software
architecture risk assessment for product line architectures. Proceedings of the International
Conference on Communication, Computer and Power, February 15-18, 2009, Muscat, Oman.

Al Dallal, J., 2009, Software similarity-based functional cohesion metric. IEKT Software, 3: 46-57.

Ampatzoglou, A, G. Frantzeskou and [. Stamelos, 2012, A methodology to assess the impact of
design patterns on software quality. Inform. Software Technol., 54: 331-346.

Dey, P.P., 2011. Strongly adequate software architecture. World Acad. Sci. Eng. Technol.,
60: 1559-1562,

Daobrica, L., AD. Ionipa, RE. Pietraru and A. Olteanu, 2011. Automatic transformation of software
architecture models. U.P.B. Seci. Bull. Series C, 73: 3-18.

Feles, P., 2009. Software architecture masterclass. Proceedings of the IBM Rational Software
Conference, May 31-June 4, 2009, Orlando, FL., USA.

15

Australasian J. Comp. Set., 1(1): 9-16, 2014

Cumuskaya, H., 2005, Core issues affecting software architecture in enterprise projects. Proe.
World Acad. Seci. Eng. Technol., 9: 22-37.

Kaur, I, P.5. Sandhu, H. Singh and V. Saini, 2009, Analytical study of component based software
engineering. World Acad. Sci. Eng. Technol., 26: 370-375.

Kim, 5., D.K. Kim, L. Lu and 8. Park, 2009. Quality-driven architecture development using
architectural tactics. J. Syst. Software, 82: 1211-1231.

Liang, P., A. Jansen, . Avgeriou, A. Tang and L. Xu, 2011. Advanced quality prediction model for
software architectural knowledge sharing. J. Syst. Software, 84: 786-802,

Ludik, T., J. Navratil and A. Langerova, 2011. Process oriented architecture for emergency
scenarios in the Czech Republic. World Acad. Sci. Eng. Technol., 59: 2342-2351.

Meedeniya, I., 2011. Robust optimization of automotive software architecture. Proceedings of the
Auto CRC Technical Cenference, July 7, 2011, Melbourne, Australia.

Ovaska, K., A. Evesti, K. Henttonen, M. Palviainen and P. Aho, 2010. Knowledge based
quality-driven architecture design and evaluation. Inform. Software Technol., 52: 577-601.
Pahl, C. and R. Barrett, 2010. Pattern-based software architecture for service-criented software

systems. e-Inform. Software Eng. J., 4: 31-45,

Pan, W., 2011. Applying complex network theory to software structure analysis. World Acad.
Seci. Eng. Technol., 60: 1630-1638,

Raiha, O., K. Makinen and T. Poranen, 2009, Using simulated annealing for producing software
architectures. Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference, July 8-12, 2009, Canada, pp: 2131-2136.

Rascol, G. and N. Asif, 2007, Software architecture recovery. World Acad. Sci. Eng. Technol.,
34:99-104.

Seffah, A., M. Donyaee, R.B. Kline and H.K. Padda, 2006. Usability measurement and metrics:
A consolidated model. Software Qual. J., 14: 159-178.

Sharma, A., R, Kumar and P.8. Grover, 2007. A critical survey of reusability aspects for
component-based systems. World Acad. Sei. Eng. Technel., 33: 35-39.

Shatnawi, E. and W. Li, 2011. An empirical assessment of refactoring impact on software quality
using a hierarchical quality model. Int. J. Software Eng. Appl., 5: 127-149,

Smeda, A., A, Alti, M. Oussalah and A. Boukerram, 2009, Cosastudio: A software architecture
modeling tool. World Acad. Sei1. Kng. Technol., 49: 263-266.

Sobiesiak, R. and Y. Diaoe, 2010, Quantifying Software Usability Through complexity Analysis. IBM
Press, New York.

Xu, L., H. Ziv, T.A. Alspaugh and D.J. Richardson, 2006. An architectural pattern for
non-functional dependability requirements. J. Syst. Software, 79: 1370-1378.

Zimmermann, O., J. Koehler, F. Leymann, K. Polley and N. Schuster, 2009 Managing
architectural decision models with dependency relations, integrity constraints and production
rules. J. Syst. Software, 82: 1249-1267.

16

	9-16_Page_1
	9-16_Page_2
	9-16_Page_3
	9-16_Page_4
	9-16_Page_5
	9-16_Page_6
	9-16_Page_7
	9-16_Page_8
	aujcs.pdf
	Page 1

