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Abstract
Background and Objective: Previous attempts to estimate the delay and energy consumption in wireless sensor networks employed
an M/M/1 queue model. In the M/M/1 queue model, the packet length is assumed to have low variability in packet sizes and therefore,
service time is best modeled by the exponential distribution. The objective of this study was to estimate the delay and energy
consumption for wireless sensor networks with high coefficient of variability. Methodology: To overcome the weaknesses of M/M/1 queue
model, this study proposed to model delay and energy consumption under heavy-tail distribution where packet sizes was highly variable
as depicted in the Internet using M/G/1 queue model. The service time of packets in the M/G/1 queue was modeled using Bounded
Pareto, Lognormal and Weibull distributions. Bounded Pareto, Lognormal and Weibull distributions that depict the heavy-tailed
distributions. The coefficient of variation represents the ratio of the standard deviation to the mean and it is a useful statistic for comparing
the degree of variation. Results: The numerical results obtained from the derived models show that the average waiting time and energy
consumption is  higher under the M/G/1 (where G represents Bounded Pareto and Weibull distributions) than under M/M/1 queue model.
However, the average waiting time and energy consumption was lower under M/Lognormal/1 than under M/M/1 queue model. It was
also observed that increase in the coefficient of variability leads to increase in average waiting time and energy consumption. Conclusion:
The M/M/1 queue model under estimates delay and energy consumption for wireless sensor networks with high coefficient of variability.
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INTRODUCTION

Wireless  sensor  networks  (WSNs)  have  recently
received more and more attention due to their potential in
civil  and  military  applications  as  well  as  the  advances  in
micro-electromechanical systems technology1. Wireless sensor
networks can be deployed in extremely hostile environments,
such as battle field target areas, earthquake disaster scenarios
and inaccessible spaces inside nuclear facility to monitor
environmental changes or other required information.

Wireless sensor networks normally feature dynamic
topology, limited energy, nodes with limited resources and
non-reliability   of   data   transmission.   Hence,   they   need
real-time, energy conservation and coordination in above
aspects to improve the network performance of WSNs and
satisfy the performance requirements of the task scheduling
system2.

A typical sensor network consists of a large number of
sensor nodes deployed either inside the phenomenon of
interest or close to it. The primary purpose of sensor networks
is to provide users access to the information gathered by the
spatially distributed sensors, rather than enabling end-to-end
communication between pairs of nodes as in other large-scale
networks such as the Internet or wireless mesh networks. Due
to limited transmission range of sensor nodes, the sensory
data are delivered to a processing center, called sink node, via
multi-hop communication implying that each sensor node
plays the dual role of being a data originator and a data router.
This information is then processed to obtain useful data,
which is then sent to the user3. Mean delay experienced by the
packets in a sensor node is defined as the average waiting
time of the packets in the queue4,5.

A critical issue in wireless sensor networks is the limited
availability of energy within the network and hence
optimizing energy is critical6. Communication is the most
energy consuming function among sensor nodes and thus, all
network  communication  protocols  designed  for  sensor
networks must be energy efficient in order to optimize
network life time7. Therefore, energy saving in wireless sensor
networks is quite important. Furthermore, network life time in
wireless sensor networks is usually estimated by estimating
the energy consumption of nodes.

It is expected that in 10-15 years that the world will be
covered with wireless sensor networks with access to them via
the internet8. The workloads observed in the Internet
constitute around 99% of short jobs and the 1% which are the
largest jobs account for more than 50% of the total amount of

workload9. This property has also been referred to as heavy-tail
property10,11, but it is not restricted to heavy-tail distributions12.
The internet traffic model is not necessarily heavy-tailed12,
rather it fits many distributions that have high coefficient of
variation (CoV>1). Coefficient of variation is defined as the
ratio of the standard deviation to the mean of a distribution
and it is a common metric to measure the variability of a
distribution, the higher the CoV value of a distribution the
higher the variability of the distribution. Typical examples of
CoV observed in the Internet traffic range between 5-2011,13.

In an attempt to reduce delay, maximize through put and
conserve energy consumption in channel access, Sikandar and
Kumar14, developed a model based on M/M/1 queue, where
arrival  follows  Poisson  distribution  and  service  time  is
exponentially distributed. The expression for the average
waiting time for an M/M/1 queue system is given as14:
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where,  is the second moment of the distribution and D is2X

the load in the system.
D is the load in the system, λ is the average arrival rate of

requests in the system, WQ is the average waiting time.
Based on M/M/1 queueing model, the mean number of

packets in the sensor N is determined as:
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and the probability that the sensor is in idle state is
determined as Po = (1-D). Energy required for sending a data
packet can be determined as:
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The average energy consumption of a sensor can be
expressed as15:

PW = NETX+(1-ρ)Eidle (3)
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Where, N is the mean number of  packets  in  the sensor,
µ is the average service rate of packets in the system. Po is the
probability  that  the  sensor  is  in  idle  state.  ETX  is the  energy
required for sending a data packet, PW is the average energy
consumption of a sensor, Eidle is the energy consumed by
sensor while in idle state.

In the M/M/1 queue model, the packet length was
assumed to have low variability and therefore, modeled by the
exponential  distribution.  However,  recent  internet  traffic
measurements have revealed that the internet traffic exhibits
a high variability property, many flows are short web transfers
and about 1% of the largest flows carry more than 50% of all
bytes16,17. Motivated by the fact that this traffic characteristic
cannot be represented by M/M/1 queueing system, this study
proposed to model delay and energy consumption under
heavy-tailed distribution where packet sizes are highly
variable as depicted in the Internet.

The main objective of this study was to estimate delay
and energy consumption for wireless sensor networks with
heavy-tailed packet size distribution. This has been achieved
as the model for delay and energy consumption based on
heavy-tailed distribution where packet sizes are highly
variable has been derived and implemented to compare
performance with the M/M/1 queue model.

MATERIALS AND METHODS

This study employed the use of analytical models and
MATLAB tool to study the performance of wireless sensor
networks in terms of average queue delay and energy
consumption. An analytical model is a set of formulae or
computational algorithms used to analyze systems. Analytical
models provide a faster and more computationally efficient
methods of obtaining performance measures. In particular,
queueing theory was used to model arrival and service rate of
requests in the system. Queueing models are suitable in a
variety of environments ranging from common daily life
scenarios to complex service and business processes,
operations  research  problems,  or  computer  and
communication systems18. Given certain customer arrival
patterns and service requirements, the order of service is the
most important point affecting the performance of a service
management facility.

The basic queuing system can be illustrated as customers
arriving for service, waiting for service if the server was busy
and leaving the system after completing service. The basic
queuing model can be identified by some basic elements of
the system as19:

C Input process: Input process represents either the
number of arrivals during a time interval or the time
interval between successive arrivals. Furthermore, the
distribution can also be used to determine the arrival of
customers to the system. If the arrival of customers and
the services being offered match then a queue may not
build up. However, if customer arrivals exceed the system
capacity then a queue builds up.

C Service mechanism: It involves the number of servers,
the number of customers being served at any time and
the duration of service. The processing time was
represented by appropriate distribution functions

C Queuing: The number of customers waiting for service is
an important point of consideration. The waiting room or
queue length can be considered infinite. The realization
of such queue is hard in real network such as
telecommunication networks

C Queue discipline: This involves the way in which
customers are serviced or removed from the queue

System model: Consider a WSN that consists of large number
of sensors that are uniformly distributed and a sink node at the
center of the field that collects data from other nodes. In this
WSN model, the following assumptions are made:

C All sensors in the WSN are identical, that is, sensors are
assumed to be homogeneous

C The arrival of data packets to sensors is assumed to follow
a Poisson process with mean arrival rate (λ) per node.
Poisson distribution models random arrivals to systems

C Service time of sensor node follow Bounded Pareto
distribution, Lognormal and Weibull distributions

C Buffer capacity is infinite

Let the network consist of N contending sensor nodes.
The channel can be in busy or idle state. If channel becomes
busy it means that there was on-going transmission in the
channel otherwise the channel was in the idle state. A channel
may switch from busy to idle state or vice-versa in active time.
Switching from one state to another state was termed
transitions.

Mathematical background: In this section mathematical
expressions for the average queue delay and energy
consumption are derived for heavy tailed distributions. The
performance metric considered here was the average queue
delay  and  energy  consumption.  Average  queue  delay  was
the time taken by a packet in the queue, while energy
consumption   was   the   amount   of   energy   consumed   by
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nodes. The lower the average queue delay the better is the
performance of the system and the higher the  average  queue
delay the worse the performance of the system. Similarly, the
lower the energy consumption, the better was the efficiency
and the longer the network life time. On the other hand, the
higher the energy consumption, the worse the efficiency and
the shorter the network life time.

Specifically  the  M/G/1  queue  model  was  used,  where
M represents Poisson arrival with mean arrival rate (λ) per
node with exponentially distributed inter arrival times. Poisson
distribution best models random arrivals into systems. G
represents general service time, which in this case shall be
Bounded Pareto, Lognormal and Weibull distributions. One
server was assumed in all cases. Poisson probability
distribution is given as17:

(4)e
P(x) x 0,1,2,...

x!

 
 

Where,

x = number of arrivals in a specific period of time.

λ = average, or expected number of arrivals for the
specific period of time, e = 2.71828.

The probability density function of a Bounded Pareto
distribution BP (k, P, "), where k and P are the minimum and
the maximum job sizes and " is the exponent of the power
law and is given by:
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The cumulative distribution function F(x) and the nth
moment mn of the BP( k,P," ) distribution are respectively:
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From  Eq.  5, the mean of the Pareto distribution is given
as:
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The Pareto distributions that emerge in computer system
applications typically have α 0 (0.9, 1.3)17. In the
implementation considered in this study, the mean equals
72.7. Similar mean has been used by Bansal10, BP (10, 5 105, 1.1)
have highly varying job sizes with about 99% of the jobs being
small and less than 1% of the largest jobs constituting more
than 50% of the total load17. In this study the BP job size
distribution BP (10, 5 105, 1.1) with C = 5 is used as an example
of the BP distribution that exhibits the high variability
property. This distribution was also used to analyze the
unfairness of shortest remaining processing time (SRPT)10. 

The probability density function of lognormal distribution
is given as20:

(9)
2

2

1 (1nx )
f (x, , ) exp , x 0

2x 2

  
       

where, the variable x>0 and the parameters µ and * are real
numbers. The expectation of the lognormal distribution is
given by:

2

2E(x) e




where, k>0 is the shape parameter and λ>0 is the scale
parameter of the distribution and x is a “time-to-failure.” The
Weibull distribution is often used in the field of data analysis
due to its flexibility. Depending on parameters, the Weibull
can  behave  as  a  normal  distribution,  an exponential
distribution,  or  a  heavy-tailed  distribution.  The Weibull
distribution has recently emerged as a good model of
empirical distribution in many computer applications21. A
Weibull distribution is summarized by two parameters: A
shape parameter, α and a scale parameter, 8. The pdf of the
Weibull distribution is given as21.

x1x
f (x) e


    








The  cumulative  distribution  function  of  a  Weibull
distribution is given as:

x

F e


   

The ith moment of the Weibull distribution is given as:

i i i
E(x ) 1      
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where,

1 x

0
( ) x e dx

     

and can be thought of as a continuous version of the factorial
function.

In particular, '( n)=(n ! 1)! for any positive integer n. The
mean of the Weibull distribution is given as:

1
E(x) 1     

On the other hand the squared co efficient of variation for
Weibull distribution is given by:

(10)2
x

2
1

C 1
1

1

     
      

Typical observed values for α in computer applications
range between 1/3 and 2/3 which correspond to CoV values
in the range of 3-1921.

Expression for delay using M/G/1 queue system: Under the
M/G/1 queue system, the arrival rate of requests into the
system follows a Poisson distribution. The service time was
assumed to follow a general distribution. In this case, the
service time was assumed to follow BP, lognormal and Weibull
distributions. One server and infinite capacity buffer were
assumed.

Assume  a  system  was  in  state  j  if  there  are  a  total  of
j requests in the queue. The system goes from state j to state
j+1 if another request comes into the system. If the system
was in state j and a request was served, it goes to state j!1.

Assume that once a sensor gets the channel, it sends all
the data it collected while in the waiting state. Therefore, the
average delay for the sensors in the queue can be derived as
follows:

If the rate of generation of packets per sensor was λ then
the average delay WQ for any queue system is given as21:

(11) 
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Where,  the second moment of the distribution and D is2X
the load in the system. However, under the heavy tail
distribution,  the  average  waiting  time  was  affected  by  the

variability property. The variability property was captured by
a metric called coefficient of variability. The coefficient of
variation CoV which is defined as the ratio of the standard
deviation to the mean,
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where, V(X) and E(X) is the variance and mean of a distribution.

E(X2) = V(X)+E(X)2

E(X2) = CoV2E(X)2+E(X)2

E(X2) = (1+CoV2)E(X)2

Hence,
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Therefore, the general expression for the average waiting
time is given as:
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For the BP distribution, the expression for the average
delay simplifies to:
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For the lognormal distribution, the expression for the
average delay simplifies to:
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For the Weibull distribution, the expression for the
average delay simplifies to:

(15) 
 

2 2
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Expression for energy consumption using M/G/1 queue
system: Based on M/G/1 queueing models, the mean number
of packets in the sensor (N) is determined as:

(16)   
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Using Little’s law, N = λWQ. And the probability that the
sensor is in idle state is determined as: Po(1!D), where, D = λ/µ.
From Eq. 3, the average energy consumption is:

PW = NETX+(1-ρ)Eidle (17)

For the BP distribution, the expression for the average
energy consumption simplifies to:
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where, ETX is a s shown in Eq. 2.
For the lognormal distribution, the expression for the

average energy consumption simplifies to:

(19)
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For the Weibull distribution, the expression for the
average energy consumption simplifies to:

(20)
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Next, the derived models of average delay and energy
consumption under heavy tailed distribution are used to
evaluate the performance while comparing it with models
under the exponential distribution.

RESULTS AND DISCUSSION

The performance of the derived models was evaluated
using Matlab and the results were then presented. In many
applications, particularly computer science applications, it was
frequently  the  case  that  empirical  job  size  distributions
exhibit very high variability and are best modeled by a Pareto
distribution, or a Log Normal distribution with high coefficient
of variation. Some examples include UNIX process CPU
requirements22 (where CoV values of 5-7 have been
measured), sizes of files transferred through the Web11,
durations of FTP transfers in the internet23 and Central
Processor Unit requirements for supercomputing jobs24.

Using the formula for squared coefficient of variation for
Weibull Distribution and values for " in computer applications
ranging between 1/3 and 2/321, the CoV values was found to
be in the range of 3-19. The coefficient of distribution for the
exponential distribution was one17.

The  arrival  rate  of  0-4  packets secG1  and  service  rate
of 5 packets secG1 were  chosen  to  study  the  behaviour  of
the  sensor  nodes  at  maximum  utilization  of  90%
(utilization=arrival rate/service rate). Similar values of arrival
rates and service rates were also depicted in14,25. In the
evaluation of different network performance, a load or
utilization of 0.9 was taken as high load and the maximum
load was taken to be one17.

Table 1 shows the evaluation parameters used in the
analysis which was consistent with parameters used in
literature14.

Evaluation of performance in terms of average waiting
time: In this section the performance of the derived models in
terms of average waiting were evaluated while comparing
with M/M/1 queue model.

Table 1: Evaluation parameters
Parameters  Values
Arrival rate, λ 0-4 packets secG1

Service rate, µ14,25 5 packets secG1

Load17 0-0.9
Mean of Bounded Pareto17 72.7
Mean of Lognormal20 e½

Coefficient of variation for BP 5 and 611,13

Coefficient of variation for Lognormal 5 and 611,13

Coefficient of variation for Weibull21 3 and 4
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Fig. 1: Average waiting time versus load for BP (CoV=5), BP (CoV=6) and M/M/1

Fig. 2: Average waiting time versus arrival rate for BP (CoV=5), BP (CoV=6) and M/M/1

Comparison of M/M/1 and M/Bounded Pareto/1: In this
section the performance of M/M/1 and M/Bounded Pareto/1
are compared. In doing this equations 1 and 12 were used to
plot graphs 1 and 2. The mean for both distributions are fixed
to 72.7 as shown in Table 1.

Figure 1 shows a graph of average waiting time against
load for a Bounded Pareto distribution with CoV=5, Bounded
Pareto distribution with CoV=6 and M/M/1 queue system with
CoV=1. It was observed that average waiting time increases
with increase in load regardless of the distribution. It was
further observed that initially the average waiting time of
packets under the two distributions were the same, however
as the  load  increases  the  average  waiting  time  under  the
BP  distribution  was higher than under the M/M/1
distribution. This can be explained by the  fact  that  under  the

BP distribution, there was a higher variation in the size of
requests unlike under the M/M/1 queue system where the
service time of requests are similar. It can also be observed
that as the CoV increases, the average waiting time also
increases. In other words, increase in variability of packet sizes
lead to increase in average waiting time.

Figure 2 shows a graph of average waiting time against
average arrival rate for a Bounded Pareto distribution  with
CoV=5, Bounded Pareto distribution with CoV=6 and M/M/1
queue system with CoV=1. It was observed that average
waiting time increases with increase in arrival rate regardless
of the distribution. It was further observed that for low arrival
rate  values, the average waiting time of packets under the
two distributions were closer, however as the arrival rate
increases the average waiting  time  under  the  BP distribution
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Fig. 4: Average waiting time versus arrival rate for Lognormal (CoV=5), Lognormal (CoV=6) and M/M/1

was higher than under the M/M/1 distribution. In the same
vein, it can be concluded that variability in packet size has an
effect on the average waiting time.

Comparison of M/M/1 and M/Lognormal/1: The performance
of M/M/1 and M/Lognormal/1 was compared. In doing this
equations 1 and 13 were used to plot graphs 3 and 4. The
mean for lognormal distribution is fixed at e0.5 or 1.6487 and
the mean for the M/M/1 or exponential distribution is fixed at
72.7 as shown in Table 1.

Figure 3 shows a graph of average waiting time against
load for lognormal distribution with CoV=5, lognormal
distribution with CoV=6 and M/M/1 queue system with
CoV=1. In doing this equations 1 and 13 were used to plot
graph 3. The study investigates the  effect  of  varying  load  on

the average waiting time for Lognormal (CoV=5), Lognormal
(CoV=6) and M/M/1 distributions. It can be observed that
average waiting time increases with increase in load
regardless of the distribution. Initially the average waiting time
under the distributions were the same, however, as the load
increases there is a significant difference in the average
waiting time under the distributions. The average waiting
times under the lognormal distribution for Lognormal (CoV=5)
and Lognormal (CoV=6) were lower than under M/M/1 queue
system. It was also observed that as CoV increases for
Lognormal (CoV=5) to Lognormal (CoV=6), there is an increase
in the average waiting time. Hence, increase in variability of
packet sizes lead to increase in average waiting time.

Figure 4 shows a graph of average waiting time against
arrival rate for lognormal distribution with CoV=5, lognormal
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Fig. 5: Average waiting time versus load for Weibull (CoV=3), Weibull (CoV=4) and M/M/1

distribution with CoV=6 and M/M/1 queue system with
CoV=1. In doing this equations 1 and 13 were used to plot
graph 4. The mean for lognormal distribution is fixed at e0.5 or
1.6487 and the mean for the M/M/1 or exponential
distribution is fixed at 72.7 as shown in Table 1. This study
investigates the effect of varying arrival rate on the average
waiting time for Lognormal (CoV=5), Lognormal (CoV=6) and
M/M/1 distributions. It was observed that average waiting
time increases with increase in arrival rate regardless of the
distribution. Initially the average waiting time under the
distributions were the same, however, as the arrival rate
increases there was a significant difference in the average
waiting time under the distributions. The average waiting time
of packets under the lognormal distribution is lower than
under M/M/1 queue system. Therefore, as CoV increases, there
is an increase in the average waiting time under the lognormal
distribution.

Comparison of M/M/1 and M/Weibull/1: The performance of
M/M/1 and M/Weibull/1 was compared. In doing this, Eq. 1
and 14 were used to plot graphs 5 and 6. The mean for Weibull
distribution  is  fixed  at  6 λ or 24 using the maximum value of
λ of 4 requests secG1 and the mean for the M/M/1 or
exponential distribution is fixed at 72.7 as shown in Table 1.

Figure 5 shows a graph of average waiting time versus
load for Weibull (CoV=3), Weibull (CoV=4) and M/M/1 queue
system with CoV=1. This study investigates the effect of
varying load on the average waiting time for Weibull (CoV=3),
Weibull (CoV=4) and M/M/1 distributions. It was observed that
average waiting time generally increases with increase in load
for all the considered distributions. It was further observed
that initially the average waiting time under Weibull (CoV=3),
Weibull (CoV=4) and  M/M/1  queue  systems  were  the  same,

however as the load increases, packets experience a higher
average waiting time under Weibull (CoV=3) and Weibull
(CoV=4) than under M/M/1 queue system. It was also
observed that average waiting time of packets under Weibull
(CoV=4) is higher than under Weibull (CoV=3) implying that
increase in CoV leads to increase in average waiting time.

Figure 6 shows a graph of average waiting time versus
arrival rate for Weibull (CoV=3), Weibull (CoV=4) and M/M/1
queue system with CoV=1. In doing this Eq. 1 and 14 were
used to plot graph 6. This study investigates the effect of
varying arrival rate on the average waiting time for Weibull
(CoV=3), Weibull (CoV=4) and M/M/1 distributions. It was
observed that average waiting time generally increases with
increase in arrival rate for all the considered distributions.

It was further observed that initially the average waiting
time under Weibull (CoV=3), Weibull (CoV=4) and M/M/1
distributions were the same, however as the arrival rate
increases the average waiting time of packets under Weibull
(CoV=4) is higher than the average waiting time under Weibull
(CoV=3) distribution which in turn is higher than the average
waiting  time of packets under M/M/1 queue system. It can
also be observed that the average waiting time under Weibull
(CoV=4) is higher than the average waiting time under Weibull
(CoV=3) implying that increase in CoV leads to increase in
average waiting time for a particular distribution.

Next, the performance of the system in terms of average
energy consumption were analyzed.

Evaluation of performance in terms of energy consumption:
The performance of the derived models was evaluated in
terms of average energy consumption while comparing with
M/M/1 queue model.
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Fig. 6: Average waiting time versus arrival rate for Weibull (CoV=3), Weibull (CoV=4) and M/M/1

Fig. 7:Average energy consumption versus load for M/BP (CoV=5)/1, M/BP (CoV=6)/1 and M/M/1

Comparison of M/M/1 and M/Bounded Pareto/1: The
performance of M/M/1 and M/BP/1 was compared in terms of
average  energy consumption. In doing this, equations 3 and
15 were used to plot graphs 7 and 8. The mean for both
distributions are fixed to 72.7 as shown in Table 1.

Figure 7 shows a graph of average energy consumption
against load for M/BP (CoV=5)/1, M/BP (CoV=6)/1 and M/M/1
with CoV=1.

This study investigates the effect of varying the load on
average energy consumption for Bounded Pareto M/BP
(CoV=5)/1, M/BP (CoV=6)/1 and exponential (M/M/1)
distributions.  It  was  observed  that  average  energy
consumption increases with increase in load regardless of the
distribution. It was further observed  that  for  low  load  values,

the average energy consumption under M/BP (CoV=5)/1,
M/BP (CoV=6)/1 and M/M/1 were the same, however, as the
load increases in the system, the energy consumption is
highest under M/BP (CoV=6)/1 followed by M/BP (CoV=5)/1
and least under M/M/1. It can also be observed that increase
in coefficient of variation leads to increase in energy
consumption as observed in energy consumed under M/BP
(CoV=5)/1 and M/BP (CoV=6)/1.

Figure 8 shows a graph of average energy consumption
against arrival rate for M/BP (CoV=5)/1, BP (CoV=6) and M/M/1
with CoV=1. This study investigates the effect of varying the
arrival rate on average energy consumption for Bounded
Pareto M/BP (CoV=5)/1, M/BP (CoV=6) and exponential
(M/M/1)  distributions.  It  was  observed  that  average  energy
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Fig. 8: Average energy consumption versus arrival rate for BP (CoV=5), BP (CoV=6) and M/M/1

Fig. 9: Average energy consumption versus load for M/Lognormal (CoV=5)/1, M/Lognormal (CoV=6)/1 and M/M/1

consumption  increases  with  increase  in  arrival  rate  for all
the considered distributions. It was further observed that
average energy consumption under M/BP (CoV=6)/1 is higher
than under BP (CoV=5) which in turn is higher than under
M/M/1 as the arrival rate increases. The difference in energy
consumption under M/BP (CoV=5)/1, M/BP (CoV=6)/1 and
M/M/1 increases as the arrival rate increases.

Comparison of M/M/1 and M/Lognormal/1: This section
explores the performance of M/M/1 and M/Lognormal/1 in
terms of average energy consumption. In doing this equations
3 and 16 were used to plot graphs 9-10. The mean for
lognormal distribution is fixed at e0.5 or 1.6487 and the mean
for the M/M/1 or exponential distribution is fixed at 72.7 as
shown in Table 1.

Figure 9 shows a graph of average energy consumption
against load for M/lognormal (CoV=5)/1, M/Lognormal
(CoV=6)/1 and M/M/1 with CoV=1. This study investigates the
effect  of  varying  the  load  on  average  energy  consumption
for M/Lognormal (CoV=5)/1, M/Lognormal (CoV=6)/1 and
M/M/1 distributions. It was observed that average energy
consumption increases with increase in load for all the
considered distributions. It was further observed that average
energy consumption under M/M/1 is higher than under
M/Lognormal (CoV=6)/1, which in turn is higher than under
M/Lognormal (CoV=5)/1 at higher load values. Initially the
energy  consumption  under  M/Lognormal  (CoV=5)/1,
M/Lognormal (CoV=6)/1 and M/M/1 were the same, however
as the load increases, there is a marked difference between
the   energy   consumption   under   M/Lognormal   (CoV=5)/1,
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Fig. 10: Average energy consumption versus arrival rate for Lognormal (CoV=5), Lognormal (CoV=6) and M/M/1

M/Lognormal (CoV=6)/1 and M/M/1. The difference in energy
consumption is even more pronounced at higher load values.

Figure 10 shows a graph of average energy consumption
against arrival rate for M/lognormal (CoV=5)/1, M/Lognormal
(CoV=6)/1 and M/M/1 with CoV=1.

This study investigates the effect of varying the arrival rate
on average energy consumption for M/Lognormal (CoV=5)/1,
M/Lognormal (CoV=6)/1 and M/M/1 distributions. It was
observed   that   average   energy   consumption   increases
with increase in arrival rate. It was further observed that
average energy consumption under M/M/1 was higher than
under M/Lognormal (CoV=6)/1, which in turn is higher than
under M/Lognormal (CoV=5)/1 at higher arrival rates. Initially
the energy consumption under M/Lognormal (CoV=5)/1,
M/Lognormal (CoV=6)/1 and M/M/1 were the same, however
as the arrival rate increases, there is a marked difference
between the energy consumption under M/Lognormal
(CoV=5)/1,  M/Lognormal  (CoV=6)/1  and  M/M/1.  The
difference in energy consumption is even more pronounced
at higher arrival rates.

Comparison of M/M/1 and M/Weibull/1: The performance of
M/M/1 and M/Weibull/1 was compared in terms of average
energy consumption. In doing this, Eq. 3 and 17 were used to
plot  graphs  11  and  12.  The  mean  for  Weibull  distribution
is  fixed  at  6  λ  or  24  using  the  maximum  value   of   λ   of
4 requests secG1 and the mean for the M/M/1 or exponential
distribution is fixed at 72.7 as shown in Table 1.

Figure 11 shows average energy consumption against
load for  Weibull  (CoV=3),  Weibull  (CoV=4)  and  M/M/1  with

CoV=1. This study investigates the effect of varying the load
on average energy consumption for M/Weibull (CoV=3)/1,
Weibull  (CoV=4)  and  M/M/1  distributions. It was observed
that average energy consumption increases with increase in
load irrespective of the distribution. It was also observed that
the energy consumption under Weibull (CoV=3), Weibull
(CoV=4) and M/M/1 were initially the same, however as the
load increases, the energy consumption under M/Weibull
(CoV=4)/1 is higher than under Weibull (CoV=3) which in turn
is higher than under M/M/1. The difference in energy
consumption is more pronounced at higher load values.

Figure 12 shows average energy consumption against
arrival rate for Weibull (CoV=3), Weibull (CoV=4) and M/M/1
with CoV=1. This study investigates the effect of varying the
arrival rate on average energy consumption for M/Weibull
(CoV=3)/1, Weibull (CoV=4) and M/M/1 distributions. It was
observed that average energy consumption increases with
increase in arrival rate regardless of the distribution. It was
further observed that the energy consumption under Weibull
(CoV=3), Weibull (CoV=4) and M/M/1 were initially the same,
however, as the arrival rate increases, the energy consumption
under M/Weibull (CoV=4)/1 is higher than under Weibull
(CoV=3) which in turn is higher than under M/M/1. The
difference in energy consumption is more pronounced at
higher arrival rates.

Previous attempts to estimate the delay and energy
consumption in wireless sensor networks employed an M/M/1
queue model14. In the M/M/1 queue model, the arrival rate of
packets were assumed to follow a Poisson distribution, packet
length is assumed to have low variability and therefore service
time is best modeled by the exponential distribution.
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Fig. 11: Average energy consumption versus load for Weibull (CoV=3), Weibull (CoV=4) and M/M/1

Fig. 12: Average energy consumption versus arrival rate for Weibull(CoV=3), Weibull(CoV=4) and M/M/1

In this study, the delay and energy consumption
estimated using the M/G/1  queue  models  were  found  to  be
higher than delay and energy consumption estimated by the
previous models proposed15,16,25,26. This was due to the fact
that the M/G/1 queue model takes into consideration the high
variability in packet sizes which was depicted by the type of
traffic that traverses the wireless sensor network, whereas, the
M/M/1 queue model assumes low variability in packets sizes
and therefore underestimates the delay and energy
consumption which affects the network life of a sensor
network.

It  was  observed  that  the  average  waiting  time  and
energy  consumption  was  higher  under  the  M/G/1  (where
G represents    Bounded    Pareto   and   Weibull   distributions)

than under  M/M/1  queue  model.  It  was  also   observed 
that increase in the coefficient of variability  leads  to  increase 
in  average  waiting  time  and  energy  consumption.
Coefficient of variability was a standardized measure of
dispersion of a probability distribution or frequency
distribution. However, the average waiting time and energy
consumption was lower under M/Lognormal/1 than under
M/M/1 queue model.

CONCLUSION

An  analytical  model  of  delay  and  average  energy
consumption  for  WSN  is  presented.  In  this  model, the
packets   are   assumed  to  be  highly  variable  and  therefore,
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modeled using Bounded Pareto, Lognormal and Weibull
distributions   as   opposed   to   the   exponential   distribution
that models low variability in packet sizes. The model is used
to compare the performance of packets under the M/BP/1,
M/Lognormal/1, M/Weibull/ and M/M/1, queue models.  The 
numerical  results obtained from the derived models show
that the average waiting time and energy consumption is
higher under M/Bounded Pareto/1 and M/Weibull/1 than
under M/M/1 queue model. However, the average waiting
time and energy consumption is lower under M/Lognormal/1
than under M/M/1 queue model. It is also observed that
increase in the coefficient of variability leads to increase in
average waiting time  and  energy  consumption.  Therefore, 
the  models developed can more accurately approximate the
average waiting time and energy consumption when packets
show high variability in packet sizes as opposed to the
traditional M/M/1 queue model.

SIGNIFICANCE STATEMENTS

This   study  discovers  the  possible  ways  of  modeling
delay and energy consumption based on the M/G/1 queue
model  for  networks  that  exhibit  high  variability  in  packet
sizes. It is expected that this study will help researchers to
uncover possible ways of modeling delay and energy
consumption in wireless sensor networks with various packet
sizes.
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