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Abstract
Background and Objective: Vacuole-type NHX proteins are important for plants’ ability to tolerate abiotic stress, especially salt stress.
Materials and Methods: To gain information about the mechanisms of molecular regulation of NHX  genes under abiotic stresses in
canola (Brassica napus  L.), in silico  method was used to identify cis-acting regulatory elements present in 2.5 kbp upstream regions of
identified vacuole-type NHX  genes from the canola genome (BnNHXs). Results: A total of 51 cis-acting regulatory elements were
identified that showed remarkable differences in frequency and site-specific distribution and they fell into five groups: Light-responsive
elements, stress response, hormonal regulation, cellular development and elements with unknown function. The site-specific distribution
of stress response and hormonal regulation elements indicated that they were most dense at -1600 to -1800 bp and at -800 bp, that is,
far from the transcription start site. The most common motifs were the G-Box and Box 4 cis-elements, followed by the MBS, HSE and ARE
motifs from the stress response group and the GARE-motif and ABRE from the hormonal regulation group. The results indicated that
regulation of expression of BnNHXs  under abiotic stresses involves TC-rich repeats, heat shock elements (HSE), LTR, anaerobic responsive
element (ARE), Box-W1, MBS, CCAAT-box, ABA-responsive elements (ABRE), CGTCA-motif, TGACG-motif and ERE. Conclusion: This study
provided information on the mechanisms by which BnNHX  genes are regulated under abiotic stresses in canola.
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INTRODUCTION

It is estimated that there is need to increase food
production1 by 58% by 2050. Crops-especially wheat, rice,
canola and maize-are crucial in food production for a billion
people around the world, but a variety of biotic and abiotic
stresses threaten the safety of food production2. Abiotic
stresses inhibit crop growth mainly by creating an osmotic
effect and leading to the accumulation of toxic ions in the
plant cell3. For many years, scientists have been seeking to
improve crop tolerance under, but lack of understanding of
the complex molecular basis of plant responses stresses has
limited progress in this field.

Various studies have demonstrated many cis-acting
elements, for example, ABRE4, CE15, CE36, MYBR7, MYCR8, DRE9,
CTR10,  LTRE11,  NACR12,  ZFHDR12,  ICEr113  and  ICEr213.  The
ABRE and DRE/CRT are two major elements found at the
promoter regions of stress-induced genes, being involved in
ABA-dependent and ABA-independent gene expression
pathways14. In recent decades, advances in DNA sequencing
technology have created various genome-scale data sets that
provide an opportunity for analysis15. Several computer
programs  have  been  developed  to  analyze  cis-acting
elements in plants; for example PLACE16, PlantCARE17, AGRIS18,
TRANSFAC19 and Plant PAN20. Using these platforms, several
studies have successfully been conducted to analyze the
promoter regions and their regulatory elements of genes
responsive to various stimuli. Huang and Wu21 used
computational   approaches   based   on   ABRE  to   identify
ABA-regulated genes throughout the genome, they identified
137 ABA-regulated candidate genes and confirmed their
results  by  reverse  transcription  polymerase  chain  reaction
(RT-PCR).  Gomez-Porras  et  al.22  performed  analyzed  two
ABA-responsive cis-elements in Arabidopsis  and rice using an
in silico  method and found that two elements, ABRE and CE3,
show distinctive patterns in these plants. Li et al.23 presented
a computational method using cis-regulatory motifs to
identify osmotic stress-responsive genes in Arabidopsis.  They
used known cis-regulatory elements to train an artificial neural
network (ANN) algorithm and confirmed the efficiency of this
method using RT-PCR. In silico  methods have been used to
demonstrate that the TFs DREB1/CBF, prominent in
responding to cold stress, use combinations of cis-regulatory
motifs for governing sets of cold-stress responsive genes24. In
Arabidopsis  and rice, computational based analysis in sucrose
transporter gene families has revealed that the cis-regulatory
elements associated with plant development, plant hormonal
regulation  and  stress  response  are  involved  in  regulating
these gene families25. In another study,  an  in  silico  study  of

cis-acting elements to analyze abiotic-stress responsive genes
in the chloroplast genome revealed important cis-element
involved in responding to stresses26. Kaur et al.27 investigated
the promoter regions of pathogenesis-related genes using
computational approaches. They showed that CpG islands are
more numerous in monocots and found a high frequency of
cis-elements involved in the response to stress and hormonal
regulation. In the pea, an in silico  analysis  of  DNA  helicase
45-a    high-salinity    responsive    gene-showed    that    the
cis-regulatory elements ABRE, MBS, G-box, GARE-motif and
TGA-element are present at the 5'-UTR sequence of the gene.
These studies show that in silico  tools can be effective for the
analysis and characterization of cis-acting regulatory elements
under the influence of specific conditions.

Among the main plant transporter proteins responsible
for resistance to biotic and abiotic stresses are NHX-type
Na+/H+ exchanger proteins, also known as sodium/hydrogen
(Na+/H+) antiporter proteins. The NHXs are important in
detoxification of the cell from excessive Na+ via sequestration
of sodium within the vacuole and export of sodium from the
cell28. They are grouped into three categories based on
subcellular localization: Plasma membrane class, endosomal
class  and  vacuole  class28.  It  has  been  demonstrated  that
NHXs are involved in salt stress response29,30, ion and pH
hemostasis31, potassium hemostasis32 and cellular vesicle
trafficking32. Several recent studies have reported that cloning
one of these genes confers more tolerance to salt stress, for
example in wheat33, tobacco34, tomato35, poplar36 and cotton37.

Canola, B. napus  is well-known for its vegetable oil and is
widely cultivated worldwide38. It is of economic importance
and can be used for biodiesel production39. Abiotic stresses
restrict canola cultivation and lower its growth and
performance40-43. Therefore, engineering canola to be more
stress tolerance is essential to enable this plant to produce a
high yield to meet growing demands. However, engineering
plants  requires  comprehensive  information  about  the
molecular mechanisms of gene regulation in response to
environmental stresses. Given the importance of canola, the
key role of NHX  genes in tolerating stresses and advances in
genome sequencing of B. napus, computational based
methods were used to systematically study the gene structure,
regulatory  regions,  protein  motifs  and  phylogenetic
relationship of NHX genes in B. napus, with a focus on
identifying cis-acting regulatory elements involved in
responding to a biotic stresses. There has been little or no
analysis of cis-elements of vacuole-type NHX  genes incanola.
It is expected that our findings will shed light on the
regulatory mechanisms at transcription level by which the
NHX  genes from canola are expressed under abiotic stresses.
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MATERIALS AND METHODS

Genome-wide identification of vacuole-type NHX genes
from canola (Brassica napus L.) genome and structure
analysis: To extract the NHX  gene sequences, AtNHX1  to
AtNHX4 gene sequences of Arabidopsis thaliana  encoding
vacuole-type   Na+/H+   exchanger   proteins   were   retrieved
from    The    Arabidopsis    Information    Resource
(https://www.arabidopsis.org/)    and    blasted    against    the
B. napus genome (https://www.ncbi.nlm.nih.gov/genome/?
term=brassica%20napus).  The  chromosomal regions in the
B. napus genome operating as a Na+/H+ exchanger were
extracted and saved in the FASTA format. The Nucleotide
Database (https://www.ncbi.nlm.nih.gov/nucleotide?cmd=
search)  was searched to locate the locus of the genome,
chromosome and positions on the chromosomes for the
identified NHX  genes. The genomic sequences identified as
putative vacuole-type NHX  genes were structurally analyzed
using GENESCAN (http://genes.mit.edu/GENSCAN.html) for
the coding sequence (CDS), exon and intron arrangement. The
IBS v.1.0 was used to illustrate sequences, domains and other
structures (http://ibs.biocuckoo.org/).

Motif characterization and phylogenetic analysis of
identified vacuole-type NHX proteins: Genomic sequences
identified from the B. napus  genome were blasted (BLASTx)
against non-redundant protein sequences (nr) to find protein
sequences predicted for the identified B. napus  NHX  genes.
The candidate NHX sequences were confirmed by a cut off
more than 1040 for E-value and scanning for the presence of
trans membrane helices (TMHs) using TMHHM v.2.0
(http://www.cbs.dtu.dk/services/TMHMM/).

To confirm vacuole-type protein sequences, the amino
acid  sequences  of  NHX-type  Na+/H+  exchanger  proteins
from 11 species44 were retrieved and used to construct a
phylogenetic tree. The NHX protein sequences of  B.  napus
and other species were aligned using Clustal X2.145. The
PhyML v.3.046  was used to construct a phylogenetic tree with
1000 bootstrap replicates and the maximum likelihood
method.  Species  used  to  construct  phylogenetic  tree  were
A. thaliana, Eucalyptus grandis, Medicagotruncatula,
Vitisvinifera, Glycine max, monocotyledonous, Oryza sativa,
Sorghum bicolor, Brachypodiumdistachyon, Zea mays,
Physcomitrella patens  and Populustrichocarpa.

Prediction of promoter regions and analysis of cis-acting
regulatory elements: Using genomic sequences of NHX
genes found in the B. napus genome, a 2.5 kbp upstream
region relative to the translation start site (ATG) was extracted

for each identified gene. The translation start site (ATG) was
specified in the B. napus genomic sequence for annotated
Na+/H+ exchanger genes at https://www.ncbi.nlm.nih.gov/
genome/?term=brassica%20napus. The TSS Plant47 was used
to predict core and proximal promoter regions in a 2.5 kbp
upstream region of the identified NHX genes and PlantCARE
(http://bioinformatics.psb.ugent.be/webtools/plantcare/ht
ml/) was used to find putative cis-acting regulatory elements.
Because of the importance of accuracy in determining core
promoter regions, DAMBE was used to calculate GC skew for
2.5 kbp upstream regions48, to further confirm the TSS Plant
results. Window size and step size were set to 100 and 1 bp,
respectively.

RESULTS

Genome-wide identification of vacuole-type NHX genes
from Brassica napus genome, chromosomal distribution
and  gene  structure  analysis:  To  identify  the  vacuole-type
B. napus  NHX  genes, vacuole-type AtNHX  gene sequences
were used from A. thaliana to perform BLASTn against the
canola genome. The four AtNHX  genes from Arabidopsis
(AtNHX8,  AtNHX2,  AtNHX1  and  AtNHX3)   hit   homology
(i.e., showed >70% homology) with five loci from the canola
genome.  These  loci  were  named  BnNHX1  to  BnMHX5  for
the low side NC_027758.2, NC_027761.2, NC_027767.2,
NC_027771.2  and  NC_027773.2,  respectively.  Genomic
length  of  identified  putative  NHX  genes  (BnNHXs)  varied
from 4076 bp in BaNHX1  to 4460 bp in BaNHX5  (Table 1).

The BnNHXs  distributed among five chromosomes-
including A2, A5, C1, C5 and C7. The BnNHX1, 2, 4 and 5-were
near the end of the chromosome, while BnNHX3  was near the
middle regions of the chromosomes (Fig. 1a).

Gene structure analysis showed that BnNHX1, 2, 3, 4 and
5 had 12, 11, 11, 6 and 9 introns, respectively. Intron phases
were similar in all identified genes. Also, the exon length
showed  similar  variation  among  the  genes,  varying  from
46-329 bp in each gene (Fig. 1b).

Phylogenetic  and  motif  analysis  of  the  BnNHX  proteins:
To demonstrate function and the evolutionarily relationship of
BnNHXs  identified in the canola genome, first the presence of
TMH in BnNHX proteins was analyzed. The TMH was 10 in
BnNHX3 and 12 in the remaining BnNHX proteins. All BnNHX
proteins possessed NhaP-type Na+/H+ and K+/H+ antiporters,
with C-terminal TrkAC and CorC domains. Phylogenetic
analysis  of  BnNHX  proteins  with  NHX  protein  families  from
11 species (92 sequences) indicated that the BnNHX proteins
were grouped in vacuole-type Na+/H+ exchanger proteins. The
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Fig. 1(a-b): Map and structure of NHX genes found in Brassica napus  genome (BnNHX1  to BnNHX5). (a) Location of
sodium/hydrogen exchanger genes on Brassica napus chromosomes and (b) Exon-intron arrangement of
sodium/hydrogen exchanger genes identified in Brassica napus  genome. Blue and red rectangles depict the up and
downstream region and exon, respectively. Lines between exons indicate introns and numbers (0, 1 and 2) indicate
the intron phase

Table 1: Blast results for sodium/hydrogen exchanger genes identified in the Brassica napus  genome
AtNHX8 AtNHX2 AtNHX1 AtNHX3

(AT1G14660.1) (AT3G05030.1) (AT5G27150.1) (AT5G55470.1)
Number of homology to the homology to the homology to the homology to the

Locus on Location on Position on Assigned base pairs chromosome chromosome chromosome chromosome
the genome chromosome chromosome name (genomic sequence) region region (%) region (%) region
NC_027758.2 A2 31454014-31457198 BaNHX1 4460 Not found 75 81 79%
NC_027761.2 A5 30810495-30813537 BaNHX2 4087 Not found 80 75 Not found
NC_027767.2 C1 29429401-29432554 BaNHX3 4397 Not found 74 81 Not found
NC_027771.2 C5 43507604-43510623 BaNHX4 4076 84% 79 75 Not found
NC_027773.2 C7 26173784-26176990 BaNHX5 4345 Not found 75 78 79%

results of phylogenetic analysis confirmed that putative NHX
genes identified in canola (BnNHXs) are for vacuole-type
Na+/H+ exchangers. The NHX-type Na+/H+ exchanger proteins
could be divided into three groups, based on their location:
vacuole-type Na+/H+ exchanger, endosomal-type type Na+/H+

exchanger and plasma membrane-type Na+/H+ exchanger.
Most of the NHX proteins were located in vacuole-type Na+/H+

exchanger proteins (Fig. 2, 3).

Prediction of the promoter region and analysis of cis-acting
regulatory elements: Upstream regions up to 2.5 kbp from
the translation start site, marked as ATG, in each BnNHX were
analyzed to determine the core promoter (-60 to +40 bp in
relation to the transcription start site) and proximal promoter
regions (-300 bp in relation to the transcription start site).
These promoter regions spanned  -466  to  -806,  -237  to -577,
-483 to -823, -1234 to -1574 and -752 to -1092 for BnNHX1-5,
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Fig. 2: Locations and number of transmembrane helices in BnNHX-vacuole-type proteins

Fig. 3: Phylogenetic analysis of BnNHX  genes identified in canola (Brassica napus). The NHX members from 11 species were
Arabidopsis thaliana, Eucalyptus grandis, Medicago truncatula, Vitis vinifera, Glycine max, Monocotyledonous, Oryza sativa,
Sorghum bicolor, Brachypodium distachyon, Zea mays, Physcomitrella patens  and Populus trichocarpa. The red arrow
indicates the position of BnNHX on phylogenetic tree

respectively. The BnNHXs  showed a TATA-box, core promoter
element at -473, -256, -509, -1240 and -820 and a CAAT-box
common element in core promoter region at -454, -351, -648,
-1408 and -975 (Fig. 4). GC-skew was calculated for further
confirmation of the identified promoter regions. The GC skew
was significant around the transcription start site and declined
immediately after that site.

After determining the promoter region at 2.5 kbp
upstream of the genes, those sequences were scanned to
identify regulatory motifs. No CpG island was detected in
those regions, meaning there is a low probability of epigenetic
effects  in  the  regulation  of  these  genes.  However,  many
cis-acting regulatory elements were detected in the 2.5 kbp
upstream regions in BnNHXs. The position-specific distribution
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Fig. 4: Promoter regions (core and proximal regions) found at 2.5 kbp upstream regions of BnNHX  genes

of cis-acting regulatory elements indicated that the frequency
and density of the motifs varied among BnNHX  genes. In the
BnNHX1  and BnNHX2  genes, there were high-density regions
around -100, -300, -1300 and -1700 relative to the
transcription start site. In the BnNHX3  genes there was a
higher frequency of cis-acting regulatory elements around the
-200, -1200 and -1600 bp upstream regions relative to the
transcription start site. The upstream region of the BnNHX4
gene showed a high frequency compared to the BnNHX1-3
genes,  meanwhile,  all  motifs  were  had  a  similar  frequency
of    distribution    between    ATG    to    -2500    bp    upstream.
In the BnNHX5  gene, the regions around +700, +500, -600
and -1300 indicated a high number of cis-acting regulatory
elements (Fig. 5).

A total of 51cis-acting regulatory elements were identified
in BnNHX  genes (Table 2). These elements were functionally
categorized into five groups: Light-responsive elements, stress
response, cellular development, hormonal regulation and
elements with unknown function. The light-responsiveness
group included cis-acting regulatory elements involved in the
regulation of light responsiveness, through elements and
modules (or parts of elements and modules). The stress
response group included cis-acting elements involved in
defense and stress responsiveness, heat-stress responsiveness,
low-temperature responsiveness and anaerobic induction; it
also involved a fungal elicitor responsive element, an MYB
binding site involved in drought inducibility and aMYBHv1
binding   site.   The   hormonal   regulation   group   included
cis-acting elements involved in responsiveness to auxins,
salicylic acid, ethylene and gibberellin. The cellular

development group includes motifs involved in the binding
site of the AT-rich DNA binding protein (ATBP-1), cis-acting
elements   conferring   high   transcription   levels   and
involved  in  cell  cycle  regulation,  cis-acting  regulatory
elements  involved  in  circadian  control,  zein  metabolism
and meristem-specific activation and an elicitor-responsive
element, enhancer and cis-acting regulatory element required
for endosperm expression (Fig. 6a). In total, motifs with a
relatively   high   frequency   were   G-Box   and   Box   4   with
31  and  21  frequencies  from  the  light-responsive  group,
HSE    and    MBS    with    16    frequencies    and    ARE    with
14    frequencies    from    the    stress    responsive    group,
GARE-motif with 12 frequencies and ABRE with 11 frequencies
from the hormonal regulation group and Skn-1-motif and
5UTR Py-rich stretch with 11 frequencies from the cellular
development group (Fig. 6b-e).

After the light-responsive group, the stress-responsive
group,  at  21%,  constituted  the  major  part  of  all  identified
cis-acting regulatory elements and the hormonal-regulation
group, at 15% was the next highest. Stress response motifs
included TC-rich repeats, HSE, low temperature response
(LTR), ARE, Box-W1, MBS and CCAAT-box (Fig. 6b). Hormonal
regulation motifs included TGA-element, TCA-element, ABRE,
CGTCA-motif, CGTCA-motif, TGACG-motif, ethylene responsive
element (ERE), P-box and GARE-motif (Fig. 6d). Site-specific
distribution of stress-responsive motifs indicated that these
motifs were more frequent at -1600 to -1800 bp from the
transcription start site. Hormonal-regulated motifs were more
frequent at -800 and -1600 to -1700 bp from the transcription
start site (Fig. 7).
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Fig. 5(a-e): Position-specific distribution of cis-acting regulatory elements found at 2.5 kbp upstream regions of BnNHX  genes.
(a) BnNHX1, (b) BnNHX2, (c) BnNHX3, (d) BnNHX4  and (e) BnNHX5
Yellow bars indicate proximal and core promoter region
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Table 2: Collection of cis-acting regulatory elements found at 2.5 kbp upstream of BnNHX  genes in canola (Brassica napus)
Cis-acting
regulatory element Sequences Functions Position regarding to ATG
AT-rich element ATAGAAATCAA Binding site of AT-rich DNA binding protein (ATBP-1) -960
5UTR Py-rich stretch TTTCTTCTCT Cis-acting element conferring high transcription levels -600 to -1500
MSA-like (T/C)C(T/C)AACGG(T/C)(T/C)A Cis-acting element involved in cell cycle regulation -2332
Circadian CAAATTAATC Cis-acting regulatory element involved in circadian control -1261 to -2190
O2-site GGTAGAGTAG Cis-acting regulatory element involved in zein metabolism regulation -820 to -1780
CCGTCC-box CCGTCC,CCGTCC Cis-acting regulatory element related to meristem specific activation -920
EIRE TTCGACC Elicitor-responsive element -1063
TA-rich region TATATATATATATATATATATA Enhancer -1222
Skn-1-motif GTCAT Cis-acting regulatory element required for endosperm expression -1222
TGA-element AACGAC Auxin-responsive element -830 to -1992
TCA-element GAGAAGAATA Cis-acting element involved in salicylic acid responsiveness -600 to -1000
ABRE CACGTG Cis-acting element involved in the abscisic acid responsiveness -700 to -2000
CGTCA-motif CGTCA Cis-acting regulatory element involved in the MeJA-responsiveness -1700 to -2400
TGACG-motif GCAGT Cis-acting regulatory element involved in the MeJA-responsiveness -1700 to -2200
ERE ATTTCAAA Ethylene-responsive element -270 to -700 and -1800 to -2200
P-box GCCTTTTGAGT Gibberellin-responsive element -801 to -1937
GARE-motif AGACAAA Gibberellin-responsive element -200 to -800 and -1800 to -2100
ACE ACGTGGA Cis-acting element involved in light responsiveness -32 to -900 and -2000 to -2200
G-Box CACGTC Cis-acting regulatory element involved in light responsiveness -900 to -2300
4cl-CMA2b TCTCACCAACC Light responsive element -620
3-AF1 binding site AAGAGATATTT Light responsive element -40 to -100 and -1200
GT1-motif GGTTAA Light responsive element -80 to -600 and -1700 to 2500
Box I AAA CTTT Light responsive element -250 to -700 and -1800 to -2200
Sp1 CCTCCCTCT Light responsive element -600 to -1200
As-2-Box GATAatGATG Light responsiveness 309-2073
ATCC-motif CAATCCTC Part of a conserved DNA module involved in light responsiveness 1806-
ATC-motif AGTAATCT Part of a conserved DNA module involved in light responsiveness 971-50
ATCT-motif AATCTAATCT Part of a conserved DNA module involved in light responsiveness -500 to -2500
Box 4 ATTAAT Part of a conserved DNA module involved in light responsiveness -400 to -2000
TCCC-motif TCTCCCT Part of a light responsive element -771
L-Box AACCAACC ACTCT Part of a light responsive element -631
CATT-motif GCATTC,GCATTC Part of a light responsive element -432 to -1955
GA-motif ATAGATAA Part of a light responsive element -200 to -2000
I-box aAGATAAGA Part of a light responsive element -178 to -328
GAG-motif GGAGATG Part of a light responsive element -300 to -2400
TCT-motif TCTTAC Part of a light responsive element -500 to -2000
AT1-motif ATTAATTTTACA Part of a light responsive module -1000 to -1300
AE-box AGAAACAT Part of a module for light response -200 to -2500
TC-rich repeats AATT CTTTTG Cis-acting element involved in defense and stress responsiveness -380, -823 and -1600 to -2300
HSE AAAAAATTTC Cis-acting element involved in heat stress responsiveness -200 to 800 and -1500 to -2300
LTR CCGAAA Cis-acting element involved in low-temperature responsiveness -674 and -1500 to -2500
ARE TGGTTT Cis-acting regulatory element essential for the anaerobic induction -300 to -500 and -1100 to -2300
Box-W1 TTGACC Fungal elicitor responsive element -447 and -960
MBS GTCAAT MYB binding site involved in drought-inducibility -960 and -1600 to -2000
CCAAT-box CAACGG MYBHv1 binding site -306, -1003, -1823, -1734 and -2335
TATCCAT/C-motif TATCCAT Unknown -2257
AC-I TCTCACCAACC Unknown -633
Box E ACCCATCAAG Unknown -660
CTAG-motif ACTAGCAGAA Unknown -107, -977 and -1165
W box TTGACC Unknown -450 to -950
AAGAA-motif gGTAAGAA Unknown -90 to 700 and -1300 and -1900

DISCUSSION

In  this  study  of  canola,  a  total  of  five  vacuole-type
BnNHX  genes  were  found  and  characterized.  The  gene
length was about 4kbp; the CDS length showed a similar
pattern in all BnNHX genes but the CDS number differed
among the genes (Fig. 1b). These genes encode BnNHX
proteins  varying  from  452  amino  acids  (aa)  to  548  aa  in

length  and  containing  10  TMHs  in  BnNHX3  and  12  TMHs
in  the  remaining  BnNHX  proteins  (Fig.  2).  These  proteins
were phylogenetically clustered in the same cluster of
vacuole-type  Na+/H+  transporter  proteins,  along  with  five
NHX genes from Arabidopsis, poplar, common grape wine,
stiff  brome  and  Physcomitrella,  whereas,  other  species
showed  four,  six  and  eight  NHX  genes  in  vacuole-type
clusters (Fig. 3).
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Fig. 7: Site-specific distribution of cis-acting regulatory
elements grouped in the stress response and hormonal
regulation group across the 2.5 kbp upstream regions
of BnNHX  genes

Under abiotic stress, vacuole-type Na+/H+ exchangers are
mostly induced, particularly in root cells where they function
to sequester excessive sodium into vacuole. The NHX-type
Na+/H+ exchangers, especially vacuole-type ones, have been
shown to be one of the most important responsive proteins to
abiotic stresses, especially salt stress49-52. In Arabidopsis, the
AtNHX1  gene (AT5G27150.1) is located on chromosome five
and has a length of 4259 bp; it encodes  a  vacuolar  Na+/H+

anti-porter with 12 TMHs that mediates transport of sodium
and potassium into the vacuole. Plants transformed with the
AtNHX1 gene have shown significant tolerance50-53.
Additionally, various plant species have shown over sensitivity
and remarkable growth reduction when their AtNHX1  gene
have been knocked out54,55. The AtNHX2 (AT3G05030) is
located on chromosome three with length of 4486 bp encodes
vacuole-type proteins with 12 TMHs. This transporter is
essential to uptake potassium into vacuole. The AtNHX3
(AT5G55470) has a length of 346 bp and is located on
chromosome five and AtNHX4  has a length of 4128 bp and is
located on chromosome three56,57. In poplar, the PtNHX1-5
genes have a gene length of 4000-5000 bp and encode PtNHX
proteins with 10 TMHs44. In Physcomitrella, the PpNHX1-5
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genes, in Oryza sativa  the OsNHX1-4  genes and in Zea mays
the ZmNHX1-4  genes all have a different genomic length and
encode vacuole-type Na+/H+ exchanger proteins with lengths
of 450-750 aa49. In spite of some differences in the length of
genes (<500 bp) and the Na+/H+ exchanger proteins, the
NhaP-type Na+/H+ and K+/H+ antiporter domain was common
among vacuole-type Na+/H+ exchanger proteins. Furthermore,
the number of TMHs was the same in canola and the studied
plants. The results implied that vacuole-type Na+/H+

exchanger proteins have been conserved during evolution.
All BnNHXs were found to have the TATA-promoter

located at a different distance from the translation start site
(ATG)  in  each  gene.  Moreover,  all  BnNHX  genes  showed
CAAT-box in the promoter region (Fig. 4). The CAAT-box acts
as a binding site for the RNA transcription factor NF-Y and is an
essential element for initiating transcription in the genes
harboring this element. It seems that this element is present
in the regulatory promoter58. Promoter regions identified
further  were  confirmed  by  GC-compositional  strand  bias
(GC-skew=(C-G)/(C+G)).   It   has   been   demonstrated   that
GC-skew  around  the  transcription  start  site  shows  the
specific  model.  In  Arabidopsis  and  rice,  GC-skew  was
significant in the transcription start site of genes and declined
after that site59. In this study, the significant GC-skew around
the transcription start site for the BnNHX  genes identified in
the canola genome.

To   explore   the   molecular   mechanisms   behind
vacuole-type BnNHX  genes in responding to abiotic stresses,
a pattern recognition program was used to identify cis-acting
regulatory elements at the 2.5 kbp upstream region relative to
the translation start site. Eukaryotic gene expression is
governed mainly by TFs binding to specific conserved patterns
on the regulatory regions of the gene. High-throughput
experimental works and bioinformatic tools now provide a
rapid and reliable way to study regulatory mechanisms. In our
study, the 2.5 kbp upstream of vacuole-type BnNHX  genes
analyzed  by  scanning  those  regions  for  the  presence  of
cis-acting regulatory elements and discussed those elements
in the light of other studies. Because our focus was on BnNHXs
in responding to abiotic stress, we looked at stress-responsive
elements as well as hormone-responsive elements involved in
responding to the stresses. These results could not show
which mediating molecules perform the sensing and cascade
events that lead to activation or suppression of the TFs that
bind  to  the  regulatory  regions  of  BnNHX  genes.  However,
the  identified  BnNHX  genes  appeared  to  contain  various
cis-acting regulatory elements, suggesting that the BnNHX 
genes  are  regulated  by  various  signaling  pathways.
Identification of cis-acting elements is an important step

toward understanding the regulatory mechanisms of gene
expression. The cis-acting regulatory elements as being
responsible for regulation of vacuole-type BnNHX  genes were
identified under abiotic stresses.

The stress-responsive group constituted the second
highest    frequency    of    elements,    mainly    distributed    at
-1600   to   -1800   bp,   far   from   the   transcription   start   site
(Fig. 6, 7).  In this group, HSE, MBS and ARE motifs showed
high frequency. Heat shock elements (HSEs) containing a
AGAAnnTTCT sequence lie on the regulatory regions of myriad
genes that are responsive to temperature stress. Heat stress
TFs (HsFs) are TFs that bind to HSE, mediating the response to
heat stress. The HsFs are also induced under salinity and
drought stress60. Over expression of HsFs has been shown to
confer more tolerance to salt and drought stress61,62. The MBS
is a drought-inducible cis-acting element that acts as a
binding site for MYB transcription factor, which in turn have
shown expression changes under salinity in different plants,
suggesting their responsiveness to salt stress63,64. The ARE is
responsible for gene expression under anaerobic conditions.
It has suggested that, in the absence of hypoxia conditions,
this motif is required in responding to cold and dehydration65.
However, we found no reports of the presence of this motif in
promoter regions of salt-responsive genes. A TC-rich repeat is
involved in defense and stress responsiveness; it has been
found at the promoter of osa-MIR396c salt responsive
transcript66, the transcription factor gene TaMYB33  responsive
to salt, drought and abscisic acid67 and copper-containing
amine oxidase genes68. The LTR motif is specifically involved in
responding to low temperature, but has also been found at
promoter regions of salt-responsive genes69. The CCAAT-box
provides  a  binding  site  for  MYBHv1.  This  cis-element  has
been found at the promoter regions of DoGMP1 from
Dendrobium officinale. The DoGMP1 contributes to the
response to salt stress70. The fungal elicitor responsive
element, Box-W1, was found at a low frequency at the
promoter  region  and  Manimaran  et  al.71  reported  that  this
cis-acting element is present in the 1.5 kb promoter region of
OsNF-YC13  that is involved in responding to salt stress. These
findings indicate that a few of the cis-elements kind provides
the responsiveness of the BnNHXs to various abiotic stresses,
including heat, low temperature, salt, dehydration and
anaerobic conditions.

Motifs involved in hormonal regulation constituted the
third most frequent group of cis-acting elements (Fig. 6). In
this group, the TGA-element was responsive to auxins, the
TCA-element was responsive to salicylic acid, the ABRE was
responsive to abscisic acid (ABA), the CGTCA-motif and
TGACG-motif were responsive to  methyl  jasmonate,  the  ERE
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was  responsive  to  ethylene  and  P-box  along  with  the
GARE-motif were responsive to gibberellin. In this group, the
GARE-motif and ABRE showed a high frequency in the
promoter regions. Plant hormones, along with other signaling
pathways such as phospholipids and calcium ions are vital in
appropriate and integrative response to stresses72. The ABA,
methyl jasmonate and ethylene have been proposed as
factors regulating the adaptive responses to abiotic stresses,
while auxin, salicylic acid and gibberellin are thought to be
involved in growth and development72. The ABRE was found
at a high frequency after the GARE-motif (Fig. 6). This motif has
been shown to be involved in the ABA-dependent expression
of genes under stressful conditions73,74. The genes harboring
ERE are regulated in the presence of ethylene. It has been
suggested   that,   under   salt   stress,   ethylene   modulates
salt-responsive gene expression (e.g., AtERF4, Cor6.6, rd17,
RD21A and VSP2,  which are up-regulated and BBC1, Lea and
AtNAC2, which are down-regulated)75-77. The presence of
CGTCA- and TGACG-motif implied that methyl jasmonate may
have a role in regulating the BnNHX  genes. A high level of
methyl jasmonate was reported in salt-tolerant rice78. Some
reports  indicated  crosstalk  between  ABA  and  methyl
jasmonate at MYC2 transcription factor79,80, a factor that is
involved in regulation of gene expression under salt stress81.
Thus, the presence of cis-elements relating to ABA, ethylene
and methyl jasmonate imply these hormone have roles in
vacuole-type BnNHXs in response to abiotic stresses.

CONCLUSION

Vacuole-type Na+/H+ exchanger proteins are important in
plants’ tolerance of salt stress. In this study, five BnNHX  genes
from canola (B. napus) were identified and analyzed for
chromosomal  distribution,  gene  structure,  motifs  and
phylogenetic    relationship.    Identification    of    regulatory
cis-acting elements is an essential step to elucidate the gene
regulatory mechanisms. The main propose of the study was to
identify cis-acting regulatory elements at 2.5 kbp upstream
regions of the identified BnNHX  genes. The motifs involved in
responding  to  abiotic  stress  were  concentrated  mostly  at
--800 and -1600 to -1700 bp relative to the transcription start
site.  It  seems  that,  under  various  stresses,  the  expression
of    BnNHX    genesis    regulated    by    ABA-independent,
ABA-dependent, ethylene and methyl jasmonate regulatory
elements. These results contribute information about the
regulatory  mechanism  of  vacuole-type  NHX  genes  in
response to abiotic stresses by in silico  study of cis-acting
regulatory elements at the promoter region. This information
could be used for further study of regulatory mechanisms and
genetic engineering of canola to abiotic stresses.
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