Asian Journal of **Biological**Sciences

Asian Journal of Biological Sciences 4 (6): 506-513, 2011 ISSN 1996-3351 / DOI: 10.3923/ajbs.2011.506.513 © 2011 Knowledgia Review, Malaysia

Comparative Study of the Status of a Biomarker of Lipid Peroxidation (Malondialdehyde) in Patients with *Plasmodium falciparum* and *Plasmodium vivax* Malaria Infection

¹O.B. Idonije, ²O. Festus, ³O. Okhiai and ⁴U. Akpamu

Corresponding Author: O.B. Idonije, Department of Chemical Pathology, Ambrose Alli University, Ekpoma, Edo State, Nigeria

ABSTRACT

Malaria infection has been found to be associated with lipid peroxidation accompanying reduction in antioxidant capacity of the infected patients especially Plasmodium falciparum infection. In this study, a biomarker of lipid peroxidation, Malondialdehyde (MDA) was evaluated in adult (18-45 years) Nigerian patients with Plasmodium falciparum and Plasmodium vivax malaria infection. The research group is comprised of fifty patients with P. falciparum and fifty with P.vivax malaria confirmed patients attending the outpatient department of University of Benin Health Services Department, University of Benin, Benin City. Their lipid peroxidation products (MDA) values estimated spectrophotometrically were compared to that of the control group who are fifty apparently healthy tested malaria negative subjects. Result showed a significant increase (p<0.05) in Malondialdehyde level in malaria positive patients (n = 100; 7.67±0.42 μM L⁻¹) compared to the control; malaria negative patients (n = 50; 4.43 \pm 0.32 μ M L⁻¹). This increase in Malondialdehyde level was higher in P.vivax malaria patients (n = 50; 7.94±0.27 μ M L⁻¹) than in P. falciparum malaria (n = 50; $7.41\pm0.38 \mu M L^{-1}$) and increases as the degree of parasitaemia increases. Malondialdehyde activity in malaria was higher in males than in females and among the young adults than in the old adults. The study specified malaria to induced oxidative stress which is higher in male and in the young and as the degree of parasitaemia increases and more severe with P.vivax malaria infection. Conclusively, supplementation of diet with antioxidants along antimalaria drugs during treatment of malaria patients is recommended.

Key words: Oxidative stress, malaria, *Plasmodium falciparum*, *Plasmodium vivax*, sex, age

INTRODUCTION

Earlier research workers reported about increased lipid peroxidation in malaria patients, particularly in *P. falciparum* infection (Upadhyay *et al.*, 2011; Kulkarni *et al.*, 2003). Instantaneous reduction in antioxidant potency in tandem with increased lipid peroxidation is also observed to be equally accountable for development of oxidative stress in malaria patients (Das and Nanda, 1999; Upadhyay *et al.*, 2011; Egwunyenga *et al.*, 2004). Any infection, including malaria, activates the immune system of body thereby causing release of reactive oxygen species

¹Department of Chemical Pathology, Ambrose Alli University, Ekpoma, Edo State, Nigeria

²Department of Medical Laboratory Science, Ambrose Alli University, Ekpoma, Edo State, Nigeria

³Department of Nursing, Ambrose Alli University, Ekpoma, Edo State, Nigeria

⁴Department of Physiology, Ambrose Alli University, Ekpoma, Edo State, Nigeria

as an antimicrobial action (Kulkarni et al., 2003). In addition to host's immune system, malaria parasite also stimulates certain cells in production of reactive oxygen species thereby resulting in hemoglobin degradation (Loria et al., 1999; Pradines et al., 2005). One of the major reasons for development of malarial anemia seems to be oxidative stress (Das and Nanda, 1999; Kremsner et al., 2000) while changes in micronutrient metabolism alter disease progression and severity (Singotamu et al., 2006). Malaria is a parasitic disease caused by a unicellular protozoan plasmodium (Krotoski et al., 1982), leading to damage of red blood cells and vital organs of the body. It is the World most important parasitic infection (Meis et al., 1983) caused by Plasmodium species and is one of the oldest and greatest health challenges affecting 40% of the world's population (Greenwood and Mutabingwa, 2002). It affects 300-500 million people and kills 1.5-2.7 million people annually (Phillips, 2001). Four species of malaria parasites are known to infect humans and all are spread by the female Anopheles gambiae mosquitoes. The most serious forms of the disease are caused by Plasmodium falciparum and Plasmodium vivax but the other related species can also affect human (Mendis et al., 2001; WHO, 2005). From the epidemiological point of view, these are most important of the four parasite species pathogenic to human. It was therefore the aim of this study to evaluate the status of lipid peroxidation (Malondialdehyde) in Nigerian affected by malaria caused by Plasmodium falciparum and Plasmodium vivax species.

MATERIALS AND METHODS

Subjects: The test population consisted of one hundred and fifty three untreated confirmed malaria patients between the ages of 18 and 45 years of both sexes. However, only one hundred of them were suitable and selected for the study. The hundred selected were 50 each with Plasmodium falciparum and Plasmodium vivax malaria. They were patients attending the outpatient department of the University of Benin Health Services (UBHS), Benin City, Edo state, Nigeria between January and December 2010. The study was conducted in compliance with the Declaration on the Right of the Patient (WMA, 2000) after approval by the Ethical Committee of University of Benin Health Services (UBHS), Benin City, Edo State, Nigeria. Before enrolment for the study, the patients were informed on the significant of the study and their consents were obtained.

The control group is comprised of fifty apparently healthy Malaria negative subjects. There were twenty five (25) each of male and female and young adults (age 18-30) and old adults (age 31-45). Also, the test groups were distributed as in the age of the control.

Inclusion criteria include; Nigerian origin, It was also confirmed that the patients were not taking any anti-malarial drugs as at the time they visited the hospital.

Exclusion criteria include; pregnant women, diabetes mellitus, hypertension, obesity, smoking, alcoholism, people living with HIV, patients taking anti-malaria drugs and vitamin supplements, patients who have treated malaria in the past 2 months.

Malaria diagnosis: Malaria was diagnosed with the blood smear staining method of Warhurst and Williams (1996). The stages of malaria were confirmed by microscopic examination. Parasitaemia was determined in peripheral blood smears stained by Giemsa stain. The parasitaemia was graded as: $+ = low (1-999 \, \mu L^{-1})$, $++ = moderate (1000-9999 \, \mu L^{-1})$ and $+++ = severe (>10,000 \, \mu L^{-1})$.

Blood samples collection and analysis for MDA estimation: Five milliliter of venous blood sample was collected from the antecubital vein under aseptic precaution from each subject into

Asian J. Biol. Sci., 4 (6): 506-513, 2011

EDTA anticoagulant bottles. The blood was then centrifuged at 2500 rpm for 5 min and the plasma removed and stored at 4°C pending assay of product of lipid peroxidation-Malondialdehyde (MDA) estimation:

 MDA, a Thiobarbituric Acid Reactive Substance (TBARS) was estimated by the method described by Buege and Aust (1978)

Statistical analysis: The values are expressed as mean±SD. The statistical analysis of data was performed using the one way ANOVA of SPSS version 17 and value p<0.05 were considered significant as compared to control, values in each row and column.

RESULTS

Statistical significant increase (p<0.05) in plasma total lipid peroxides was noted in malaria positive patients (7.67±0.42 μ M L⁻¹) as compared to controls; malaria negative patients (4.43±0.32 μ M L⁻¹). The patients with *P. vivax* (7.94±0.27 μ M L⁻¹) infection presented highest levels of Malondialdehyde compared to *P. falciparum* malaria patients (7.41±0.38 μ M L⁻¹) (Table 1).

Malondialdehyde level in P. falciparum malaria patients was significant higher (p<0.05) in male (7.50±0.37 μ M L⁻¹) compare to female (7.24±0.34 μ M L⁻¹) while in P. vivax malaria patients there was no significant different between sexes (7.98±0.27 μ M L⁻¹ for male and 7.89±0.28 μ M L⁻¹ for female). Although not significantly different from that of the old, the young presented higher Malondialdehyde level in both P. falciparum and P. vivax malaria patients (Table 2).

On the degree of parasitemia in relation to malondialdehyde level, it was observed that malondialdehyde level increases as the degree of parasitaemia increases from mild (+) to moderate (++) and to severe (+++) parasitaemia. Furthermore, *P. vivax* malaria patients presented significant higher (p<0.05) malondialdehyde level compared to corresponding degree of parasitemia in *P. falciparum* malaria patients (Table 3).

 ${\bf Table\ 1:\ Malondial dehyde\ level\ in\ \it P.\ falciparum\ and\ \it P.\ vivax\ malaria\ compared\ to\ control}$

Parameter	Control ($n = 50$)	Malaria positive ($n = 100$)	P. falciparum (n = 50)	P. $vivax$ (n = 50)
MDA (μM L ⁻¹)	4.43±0.32ª	7.67±0.42 ^b	7.41±0.38°	7.94±0.27 ^d

Values are Mean±Standard Deviation. MDA: Malondialdehyde; Values in a row having different super scripts are significantly different (p<0.05)

Table 2: Malondialdehyde level in P. falciparum and P. vivax malaria in relation to sex and age

	Control		P. falcipar	P. falciparum		P. vivax	
Characteristic	N	MDA	N	MDA	N	MDA	
Sex						_	
Male	25	4.45 ± 0.30^{a}	17	7.50 ± 0.37^{b}	22	$7.98 \pm 0.27^{\circ}$	
Female	25	4.41 ± 0.35^{a}	33	7.24 ± 0.34^{d}	28	$7.89 \pm 0.28^{\circ}$	
\mathbf{Age}							
≤30	25	4.33 ± 0.35^{a}	31	7.45 ± 0.41^{b}	35	$7.98 \pm 0.30^{\circ}$	
≥31	25	4.53±0.26a	19	7.33 ± 0.32^{b}	15	$7.83 \pm 0.14^{\circ}$	

Values are Mean±Standard Deviation. MDA: Malondialdehyde; N: Frequency; Values in a row and in each column having different super scripts are significantly different (p<0.05)

Table 3: Malondialdehyde level in P. falciparum and P. vivax malaria in relation to the degree of parasitaemia

		Degree of parasitaemia			
Type of malaria infection	Control	+ (n = 11)	++ (n = 13)	+++ (n = 26)	
P. falciparum	4.43±0.32ª	7.25±0.25 ^b	$7.37 \pm 0.44^{\rm bc}$	7.49±0.38°	
		Degree of parasitaemia			
Type of malaria infection	Control	+ (n = 9)	++ (n = 30)	+++ (n = 11)	
P. vivax	4.43±0.32ª	7.79±0.14 ^d	7.95±0.28 ^d	8.01±0.29 ^d	

Values are Mean±Standard Deviation. N: frequency. Values in a row and in each column having different super scripts are significantly different (p<0.05). +: Low parasitaemia, +++: Moderate parasitaemia, +++: Severe parasitaemia

DISCUSSION

The results of this study revealed oxidative stress level assessed by a biomarker of lipid peroxidation (Malondialdehyde) in patient infected with Plasmodium falciparum and Plasmodium vivax malaria to be significantly higher than the level of malaria negative subjects. Highly increased Malondialdehyde (MDA) activity found in this study in malaria positive patients is an indication of increased production of reactive oxygen species. This finding is in agreement with the findings of several previous studies where those with malaria parasite have been shown to have a higher MDA level (Hunt and Stocker, 1990; Egwunyenga et al., 2004; Akanbi et al., 2009). Interestingly, report shows malaria parasite itself to generate large quantities of ROS and also through its interaction with phagocytic cell system (Kremsner et al., 2000). The oxidant stress originates due to destruction of red cells which cause imbalance between the generation of reactive oxygen species and the antioxidant defense system (Bonnefont-Rousselot et al., 2000; Mendis et al., 2001). Pathogenesis of an infecting agent cause an over production of free radical species and failure of normal defense mechanism that decreases antioxidant level which leads to decreases elimination of reactive substances (Thurnhann et al., 1988). One of the consequences of oxidative stress is the development of malarial anaemia (Kremsner et al., 2000; Clark and Hunt, 1983). Plasmodium infected human erythrocytes are under increased oxidative stress exerted by the malaria parasite (Eaton et al., 1976; Golenser et al., 1991). Malaria parasite is capable of generating Reactive Oxygen Species (ROS) within the erythrocytes and the ROS resulting from immune activation can further damage the uninfected erythrocytes (Rath et al., 1991) which agrees with our study in which there is an increased oxidative stress in the studied population.

The present study also shows oxidative stress status to be more serious with P. vivax malaria infection than in P. falciparum malaria infection. This finding agrees with the finding of Erel $et\ al.\ (1997)$ who reported that oxidative mechanism was more dominated in patients with $Plasmodium\ vivax$ malaria as compared to that of $Plasmodium\ falciparum$. In contrary is the study of Rath $et\ al.\ (1991)$ who reported an increased level of serum lipid peroxidation in P. falciparum infected patients as compared to P. vivax infection. Of significance also is the fact that malaria produced by $Plasmodium\ vivax$ relapses often occurs months to years after treatment because some of the parasites can become dormant in the liver (Trampuz $et\ al.\ 2003$; Mockenhaupt $et\ al.\ 2004$). Also, significant decreased level of vitamin C (an antioxidant) has been observed in $Plasmodium\ vivax$ malaria patients than $Plasmodium\ falciparum\ malaria\ patients\ (Upadhyay\ et\ al.\ 2011$; Prasannachandra $et\ al.\ 2006$) which support findings of the present study. On sex of the patients, malondialdehyde levels were higher in male than in female in both P. $falciparum\ malaria\ and$

P. vivax malaria patients. However, that of the P. vivax malaria was not significantly different from P. falciparum malaria between sexes. This finding agrees with the finding of Akanbi et al. (2010) who concludes that the cause could be due to the fact that males expose their bodies more than females when the weather is hot and thus increases their chances of being bitten by the mosquito. However, there is some information on oxidative stress in men showing a pro-oxidant effect of testosterone (Dincer et al., 2001). In female decreased superoxide anion production by the endothelium in response to estrogen is considered to contribute to vascular protective properties of estrogen (Barbacanne et al., 1999). In addition, the young presented non-significant higher malondialdehyde level than the old in both P. falciparum and P. vivax malaria patients. Similar result have been reported by Akanbi et al. (2010) who shows highest mean parasite density was found among those within the age range 18-21 years while it was least among those within the age range 26-30 years. He then concluded that this could be due to the number of exposure to mosquito bites among people within the age range of 26-30 years as it has been reported that the number of exposure to mosquito bite increases with age (Akanbi et al., 2010). Thus, in agreement to the higher malondialdehyde level among the young than the old reported in this study. The number of exposure to mosquito bites by individuals had been confirmed to increase the level of immunity against malaria infection (Hommel, 1991) and this increases with age. Thus, in Plasmodium falciparum endemic areas, protective immunity against malaria infection is acquired slowly after a large number of infections and its maintenance requires a sustained exposure to infected mosquito (Akanbi et al., 2009). The level of immunity against malaria has also been related to age of the individuals living in malaria endemic areas (Akanbi et al., 2006). Some individuals have the benefits of genetically controlled protection mechanisms against malaria, such as blood group determinants, abnormal haemoglobin and red blood cell enzymes deficiency. It has been reported that severe malaria occurs more frequently in individuals with non-O blood group (Fischer and Boone, 1998) even gender can also affect the prevalence of malaria infection (Mande and White, 1984). In support of the present study is that various studies have also established that malaria infection is accompanied by increased production of Reactive Oxygen Species (ROS) which indicates the environment for oxidative stress (Akanbi et al., 2009). Malaria parasite is sensitive to oxidative stress and the level of oxidative stress is influenced by the severity of malaria infection as measured from plasma parameters (Farombi et al., 2003; Sibmooh et al., 2004) which also agrees with present study. Though, oxidative stress destroys malaria parasites but may also render host tissues such as erythrocytes more vulnerable to oxidative damage and thereby resulting to anaemia in malaria infected individuals (Egwunyenga et al., 2004). Previous study have confirmed that MDA levels may reflect the severity of a disease process (Das et al., 1993) as observed in this study. In Malaria caused by Plasmodium falciparum and Plasmodium vivax the oxidative stress is due to the over load in reactive oxygen species which create an increase in the oxygen free radicals and failure of normal defense mechanism that increases the antioxidant blood serum levels (Hunt and Stocker, 1990).

CONCLUSION

Conclusively, present study showed malaria infection to induced oxidative stress which is more serious in *P. vivax* than in *P. falciparum* malaria patients, in the young than in the old, in males than in females and directly proportional to the degree of parasetaemia. It is our suggestion therefore that supplementation of diet and/or anti-malaria drugs with antioxidants is part of treatment plan for the management of malaria patients. In addition, further research in this respect cannot be overemphasized.

REFERENCES

- Akanbi, O.M., A.B. Odaibo and O.G. Ademowo, 2006. Effect of age and anti- MSP1 (19) antibody (IgG) level on prevalence of malaria in pregnancy in southwestern Nigeria. Sci. Res. Ann., 2: 33-38.
- Akanbi, O.M., A.B. Odaibo and O.G. Ademowo, 2009. Anti-MSP1 (19) antibody (IgG) and reactive oxygen species (ROS) response against malaria infection in pregnancy in South Western Nigeria. Asian Pacific J. Trop. Med., 2: 9-15.
- Akanbi, O.M., J.A. Badaki, O.Y. Adeniran and O.O. Olotu, 2010. Effect of blood group and demographic characteristics on malaria infection, oxidative stress and haemoglobin levels in South Western Nigeria. Afr. J. Microbiol. Res., 4: 877-880.
- Barbacanne, M.A., J. Rami, J.B. Michel, J.P. Souchard and M. Philippe *et al.*, 1999. Estradiol increases rat aorta endothelium-derived relaxing factor (EDRF) activity without changes in endothelial NO synthase gene expression: Possible role of decreased endothelium-derived superoxide anion production. Cardiovascular Res., 41: 672-681.
- Bonnefont-Rousselot, D., J.P. Bastard, M.C. Jaudon and J. Delattre, 2000. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab., 26: 163-176.
- Buege, J.A. and S.D. Aust, 1978. The thiobarbituric acid assay. Methods Enzymol., 52: 306-307.
- Clark, I.A. and N.H. Hunt, 1983. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect. Immun., 39: 1-6.
- Das, B.S. and N.K. Nanda, 1999. Evidence for erythrocyte lipid peroxidation in acute falciparum malaria. Trans. Royal Soc. Trop. Med. Hyg., 93: 58-62.
- Das, B.S., J.K. Patnaik, S. Mohanty, S.K. Mishra, D. Mohanty, S.K. Satpathy and T.K. Bose, 1993. Plasma antioxidants and lipid peroxidation products in falciparum malaria. Am. J. Trop. Med. Hyg., 49: 720-725.
- Dincer, Y., E. Ozen, P. Kadioglu, H. Hatemi and T. Akcay, 2001. Effect of sex hormones on lipid peroxidation in women with polycystic ovary syndrome, healthy women and men. Endocrine Res., 27: 309-316.
- Eaton, J.W., J.R. Eckman, E. Berger and H.S. Jacob, 1976. Suppression of malaria infection by oxidant- sensitive host ery-hrocytes. Nature, 264: 758-760.
- Egwunyenga, A.O., G. Isamah and O.P. Nmorsi, 2004. Lipid peroxidation and ascorbic acid levels in Nigeria children with acute falciparum malaria. Afr. J. Biotech., 3: 560-563.
- Erel, O., A. Kocyigit, S. Avei, N. Aktepe and V. Bulut, 1997. Oxidative stress and antioxidant status of plasma and erythrocytes in patients with vivax malaria. Clin. Biochem., 30: 631-639.
- Farombi, E.O., Y.Y. Shyntum and G.O. Emerole, 2003. Influence of chloroquine treatment and *Plasmodium falciparum* infection on some enzymatic and non-enzymatic antioxidant defense indices in human. Drug Chem. Toxicol., 26: 59-71.
- Fischer, P.R. and P. Boone, 1998. Severe malaria associated with blood group. Am. J. Trop. Med. Hyg., 58: 122-123.
- Golenser, J., E. Marva and M. Chevion, 1991. The survival of plasmodium under oxidant stress. Parasitol. Today, 7: 142-146.
- Greenwood, B. and T. Mutabingwa, 2002. Malaria in 2002. Nature, 415: 670-672.
- Hommel, M., 1991. Steps towards a malaria vaccine. Res. Immunol., 142: 618-631.

Asian J. Biol. Sci., 4 (6): 506-513, 2011

- Hunt, N.H. and R. Stocker, 1990. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cell., 16: 499-526.
- Kremsner, P.G., B. Greve, B. Lell, D. Luckner and D. Schmid, 2000. Malarial anemia in African children associated with high oxygen-radical production. Lancet, 355: 40-41.
- Krotoski, W.A., W.E. Collins, R.S. Bray, P.C. Garnham and F.B. Cogswell *et al.*, 1982. Demonstration of hypnozoites in sporozoite-transmitted *Plasmodium vivax* infection. Am. J. Trop. Med. Hyg., 31: 1291-1293.
- Kulkarni, A.G., A.N. Suryakar, A.S. Sardeshmukh and D.B. Rathi, 2003. Studies on Biochemical changes with special reference to oxidant and antioxidant in malaria patients. Indian J. Clin. Biochem., 18: 136-149.
- Loria, P., S. Miller, M. Foley and L. Tilley, 1999. Inhibition of peroxidative degradation of heme as the basis of action of chloroquine and other quinoline antimalarials. Biochem. J., 339: 363-370.
- Mande, B.K. and M.J. White, 1984. Lecture Notes on the Infective Diseases. 4th Edn., Blackwell Science Publication, USA., pp: 172-193.
- Meis, J.F.G.M., J.P. Verhave, P.H.K. Jap, R.E. Sinden and J.H.E.T. Meuwissen, 1983. Malaria parasites-discovery of the early liver form. Nature, 302: 424-426.
- Mendis, K., B.J. Sina, P. Marchesini and R. Carter, 2001. The neglected burden of *Plasmodium vivax* malaria. Am. J. Trop. Med. Hyg., 64: 97-106.
- Mockenhaupt, F.P., S. Ehrhardt, J. Burkhardt, S.Y. Bosomtwe and S. Laryea *et al.*, 2004. Manifestation and outcome of severe malaria in children in Northern Ghana. Am. J. Trop. Med. Hyg., 71: 167-172.
- Phillips, R.S., 2001. Current status of malaria and potential for control. Clin. Microbiol. Rev., 14: 208-226.
- Pradines, B., F. Ramiandrasoa, T. Fusai, A. Hammadi and M. Henry *et al.*, 2005. Generation of free radicals and enhancement of hemin-induced membrane damage by a catechol iron chelator in *Plasmodium falciparum*. J. Biological Sci., 5: 463-471.
- Prasannachandra, V. D'Souza and B. D'Souza, 2006. Comparative study on lipid peroxidation and antioxidant vitamins E and C in *Falciparum* and *Vivax* malaria. Indian J. Clin. Biochem., 21: 103-106.
- Rath, R.N., N. Panigrahi, B.K. Das and P.K. Das, 1991. Lipid peroxidation in acute falciparum malaria. Indian J. Med. Res., 93: 303-305.
- Sibmooh, N., P. Yamanont, S. Krudsood, W. Leowattana, G. Brittenham, S. Looareesuwan and R. Udomsangpetch, 2004. Increased fluidity and oxidation of malarial lipoproteins: Relation with severity and induction of endothelial expression of adhesion molecules. Lipid Health Dis., 3: 1-15.
- Singotamu, L., R. Hemalatha, P. Madhusudhanachary and M. Seshacharyulu, 2006. Cytokines and micronutrients in *Plasmodium vivax* infection. J. Med. Sci., 6: 962-967.
- Thurnhann, D.I., Koottathep and D.D. Adelekan, 1988. Chain Breaking Antioxidant in the Blood of Malaria Infected Nigerian Child. In: Free Radical Chemistry, Pathology and Medicine, Riec-Evans and T. Dormandy (Eds.). Richelieu Press, London, pp. 161-185.
- Trampuz, A., M. Jereb, I. Muzlovic and R.M. Prabhu, 2003. Clinical review: Severe malaria. Crit. Care, 7: 315-323.

Asian J. Biol. Sci., 4 (6): 506-513, 2011

- Upadhyay, D.N., R.K. Vyas, M.L. Sharma, Y. Soni and Rajnee, 2011. Comparison in serum profile of peroxidants (MDA) and non enzymatic anti oxidants (vitamins e and c) among patients suffering from *Plasmodium falciparum* and vivax malaria. JPMI, 25: 96-100.
- WHO, 2005. World Malaria Report, 2005. World Health Organization (WHO), Geneva, pp. 300.
- WMA, 2000. World medical association declaration of helsinki ethical principles for medical research involving human subjects. 52nd WMA General Assembly, Edinburgh, Scotland. http://oss-sper-clin.agenziafarmaco.it/normativa/direttive_OsSC-000122-000000.pdf.
- Warhurst, D.C. and J.E. Williams, 1996. Acp Broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J. Clin. Pathol., 49: 533-538.