Asian Journal of **Biological**Sciences

Asian Journal of Biological Sciences 6 (8): 376-381, 2013 ISSN 1996-3351 / DOI: 10.3923/ajbs.2013.376.381 © 2013 Knowledgia Review, Malaysia

Towards Safer Alginate Production from a Strain of Pseudomonades

¹Amro A. Amara, ²Atef M. Shibl, ²Hesham Radwan, ²Abdullah Al-Omrani and ²Abdul-Kader F. Tawfik

¹Department of Protein Research, Genetic Engineering and Biotechnology Research Institute, Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt

²Department of Pharmaceutics, Division of Microbiology, Faculty of Pharmacy, King Saud University (KSU) Riyadh, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia

Corresponding Author: Amro Abdl Al Fattah Amara, Department of Pharmaceutics, Division of Microbiology, Faculty of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia

ABSTRACT

Pseudomonas aeruginosa produces a unique type of soft alginate. But, being an opportunistic pathogen, its alginate production is one of the missed biotechnological products. Few Pseudomonades, other than P. aeruginosa, are able to produce alginate. The safest ones those isolated from plant source. In this study, Pseudomonades like strain that was isolated from plant source, showed the ability to produce alginate. Its alginate was produced under static cultivation condition. Alginate produced from P. aeruginosa ATCC 9027 was used as a control and underwent the same conditions. The net amount of the produced alginate from the new Pseudomonades like isolate was 3 g L⁻¹, which is less by 33.3% than that produced by P. aeruginosa. FT-IR and DSC were used to evaluate the yielded alginates. The FT-IR and DSC results showed that the alginate extracted from the new isolate is almost compared to that produced by P. aeruginosa. This study showed the ability to produce alginate using safe strain of Psedomonades bacteria.

Key words: Psedomonades, alginate, safe production

INTRODUCTION

Pseudomonas aeruginosa is one of the opportunistic bacteria (Satsuta et al., 1984). It causes nearly no problem for healthy individuals; however, it can cause severe diseases for immunocompromised patients (Stephenson et al., 1985; Boukadida et al., 1991; El Baze et al., 1991; Fergie et al., 1991, 1994; Furukawa et al., 1993; Qu et al., 2002; Lang et al., 2004; Kalai et al., 2005).

Because *P. aeruginosa* is able to show pathogenic properties, its has few biotechnological applications. Despite of that, the advances in the fermentation processes control enable using *P. aeruginosa* as a package for producing some biotechnological products, however, the risk is still existing (Buning-Pfaue and Rehm, 1972; Chayabutra and Ju, 2001; El-Bessoumy *et al.*, 2004; Benkert *et al.*, 2008). Therefore, it is worth to search for more friendly *Pseudomonades* like. *Pseudomonades* alginate is flexible while that produced from *Azotobacter vinelandii* is rigid upon react with Ca²⁺ (Sherbrock-Cox *et al.*, 1984).

Many authors reported that *Pseudomonades* like which isolated from plant source are able to produce alginate. Those which are harmless for human can be used for commercial alginate production.

So, the main aim of this study is to investigate the efficiency of an isolate of *Pseudomonades* like strain got from plant to produce alginate compound close to that produced by *P. aeruginosa*. The successful of new plant isolated strain in producing alginate in an acceptable quantity will result in a safe and economic production of alginate from *Pseudomonades*.

MATERIALS AND METHODS

Strains: P. aeruginosa ATCC 9027 was used in this study. It was routinely cultivated on LB medium or Muller-Hinton agar at 37°C (Sambrook et al., 1989; Atlas, 1995).

The new *Pseudomonades* like strain was got from vegetables waste collected from local market. These vegetables waste was screened for *Pseudomonades* using M-Cetrimide medium (Atlas, 1995). The new isolate was cultivated routinely on LB medium or Muller-Hinton agar at 37°C.

Biochemical test: The new isolate was subjected to basic biochemical tests to prove that it is a *Pseudomonades* like isolate and that it is not *P. aeruginosa*. Those tests include Gram-stain, its ability to grow in Citramid-medium, production of fluorescent on Muller Hinton agar, production of alginate on LB medium, hemolytic on Blood agar, motility and oxidase test.

Alginate production: Alginate was produced from the tow invastigated strains using 100 mL flasks contain, each, 25 mL of LB medium. The flasks were incubated at static incubator at 37°C for 72 h.

Alginate isolation and purification: Alginates from the used *Pseudomonades* were isolated and purified according to the following method. After 72 h static cultivation using LB medium at 37°C the cells free supernatant was collected (for each strain) by decantation. Two point five volumes of 50 mM EDTA was added to each cells pellet. The pellets then re-suspended and vortex aggressively for 5 min followed by centrifugation at 1500 rpm. Each supernatant was collected by decantation and two volumes of cold ethanol were added to each followed by incubating the mixtures at -80°C for 30 min. The cold supernatant was centrifuged at 13000 rpm for 15 min. The resultant pellets were collected for each preparation and dried. For further purification, the pellets were dissolved in double distilled water and dialyzed for overnight. The alginate for each preparation was collected using cold ethanol precipitation method that mentioned above. The final amount for each type of alginate was dried using airflow drying process in suitable container and the net recovered alginate was weighted. The dry alginate was preserved in a clean and sterile glass container for further use.

Fourier transform infrared spectroscopy: The Fourier Transform Infrared Spectroscopy (FT-IR) spectra of the produced alginates were recorded by FT-IR spectrophotometer (FT-IR-8400S, Shimadzu, Kyoto, Japan). The investigated sample of alginate was mixed with potassium bromide (KBr) and converted the mixture into a disk by compressing the mixture using hydraulic press. The resultant disk was scanned from 4000-600 cm⁻¹ according to Sherbrock-Cox et al. (1984).

Differential scanning calorimetry: Differential Scanning Calorimetry (DSC) DSC-60 (Shimadzu, Japan) was used to investigate the produced alginates. Three to five milligram of the investigated alginates were loaded in an aluminum pans and covered by a lid using a crimper. The thermal behavior of each sample of alginate was studied by raising the temperature form 25-300°C in a rate of 10°C min⁻¹ under nitrogen. Thermograph was got using the TA-60WS thermal analysis software.

RESULTS

Biochemical identification for the new isolate: The new isolate was a gram-negative motile road. This isolate showed the ability to grow on Citramid agar and produced fluorescent on Muller Hinton agar. This new isolate showed the ability to produce alginate when cultivated in LB medium, which are the main feature of *Pseudomonades*. But, it is oxidase negative and non-hemolytic when cultivated on Blood agar.

Alginate production and purification: The net gain from the alginate produced by the new isolate under the described condition was equal to 3 g L^{-1} , whereas, for *P. aeruginosa* ATTC 9027 under the same cultivation and purification conditions was 4.5 g L^{-1} .

FT-IR analysis: The results from the analysis of the alginate produced and purified from both of the new isolated strain and *P. aeruginosa* were shown as in Fig. 1 and 2. Both figures (Fig. 1 and 2) represent typical alginate plateaus.

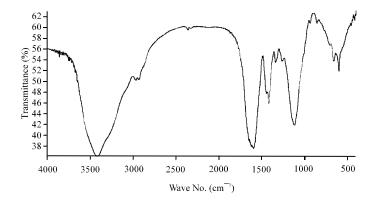


Fig. 1: FT-IR alginate analysis of the new Pseudomonades like isolate

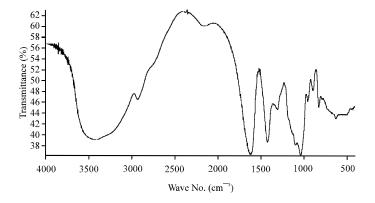


Fig. 2: FT-IR alginate analysis of the Pseudomonas aeruginosa ATCC 9027

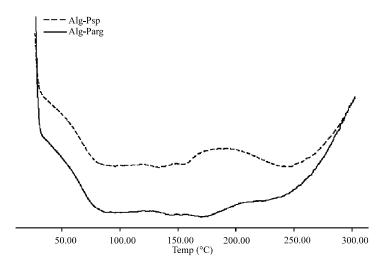


Fig. 3: DSC trace of alginate got from *Pseudomonas aeruginosa* ATCC 9027 (Alg-Parg) and the new *Pseudomonades* like isolate (Alg-Psp)

DSC analysis: Despite the absence of a characteristic and define transition beak for alginate, the thermograms of the investigated samples (the alginates got from new isolate and *Pseudomonas aeruginosa*) showed almost the same behavior (Fig. 3).

DISCUSSION

Alginate is a biopolymer produced by algae and few bacterial species. Alginates from different sources and found its way in many industrial, pharmaceutical and medicinal applications. Based on its type and monomeric composition, the application is variable. P. aeruginosa has a unique type of soft alginate. Being an opportunistic pathogen, P. aeruginosa's did not commercialize yet. P. aeruginosa other products were cloned and expressed out of host using the molecular biology and genetic engineering tools.

Unfortunately, its alginate did not produce. This is because of that, alginate production in *P. aeruginosa* is a complicated and multi-step process. It does not follow the role of "from gene to protein". Its production governs by a complicated process where genes/proteins, transport system, excretion system, signaling system are involved. Alginate production is host dependent products; however, future might show a success for producing it in an independent host.

Alternatively, scientists have investigated different ways to produce the same type of alginate using species except *P. aeruginosa*. Their concept based on using *Pseudomonades* like isolated from non-human source such as plant. *Pseudomonades* isolated from plant proved historically that it is none or less harmful for human. But, some risk is still existed. The system of *Pseudomonades* associated with plant is adapted for manipulating plant material, which reduce many important virulence factors for human.

The current study is designed to explore *Pseudomonades* got from plant wastes collected from local market using the Citramid agar as enrichment medium. The biochemical analysis of the new strain revel that this strain related to the *Pseudomonades* and it is not *P. aeruginosa*. For comparisons purposes, *P. aeruginosa* strain ATCC 9027 was used. Both strains were cultivated on LB medium, which might not be the optimum alginate production condition for both strains and particularly for the new *Pseudomonades*. Meanwhile, LB media insure

alginate production under static condition. Static cultivation induce algT(U) mutations which occur in vitro when organisms are grown under static conditions in ambient air as reported by Hassett (1996).

After 72 h incubation under static condition at 37°C the produced alginate was recovered and purified using simple method as described in this study. The method ensures maximum recovery and high purity. Both alginate were characterized using FT-IR spectrophotometer and DSC and proved to be nearly identical.

This study simply summarizes a process for isolation of *Pseudomonades* like strain from plant source other than *P. aeruginosa*. This study showed the possibility to produce and purify the alginate produced by both strains (using static cultivation). The production condition did not maintain optimum alginate production. However, static cultivation ensures producing alginate whenever their related genes are existed. Simple isolation and purification process can be used for better comparison between the different types of alginates.

This study recommended using plant *Pseudomonades* for alginate large scale production. Further study about to medium optimization and molecular identification of the new isolate should be done in future study.

CONCLUSION

In this study, a pseudomonade from plant source was isolated. The strain shows ability to produce alginate. The produced alginate is similar to that produced from *P. aeruginosa* 9027. When *Pseudomonades* from plant source could be a safe force for alginate, this study open the way for a safe soft alginate production.

ACKNOWLEDGMENT

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGPRGP-VPP-038.

REFERENCES

- Atlas, R.M., 1995. Alphabetical Listing of Media. In: Handbook of Microbiological Media for the Examination of Food, Atlas, R.M. (Ed.). CRC Press, Boca Raton, FL., USA., pp. 12.
- Benkert, B., N. Quack, K. Schreiber, L. Jaensch, D. Jahn and M. Schobert, 2008. Nitrate-responsive NarX-NarL represses arginine-mediated induction of the *Pseudomonas aeruginosa*. arginine fermentation arcDABC operon. Microbiology, 154: 3053-3060.
- Boukadida, J., M. de Montalembert, J.L. Gaillard, J. Gobin and F. Grimont *et al.*, 1991. Outbreak of gut colonization by *Pseudomonas aeruginosa* in immunocompromized children under-going total digestive decontamination: Analysis by pulsed-field electrophoresis. J. Clin. Microbiol., 29: 2068-2071.
- Buning-Pfaue, H. and H.J. Rehm, 1972. Production of aldehyde from batch-fermentation by *Pseudomonas aeruginosa* growing on decanol. Archiv Mikrobiol., 86: 231-240.
- Chayabutra, C. and L.K. Ju, 2001. Polyhydroxyalkanoic acids and rhamnolipids are synthesized sequentially in hexadecane fermentation by *Pseudomonas aeruginosa* ATCC 10145. Biotechnol. Progress, 17: 419-423.
- El Baze, P., A. Thyss, H. Vinti, A. Deville, P. Dellamonica and J.P. Ortonne, 1991. A study of nineteen immunocompromised patients with extensive skin lesions caused by *Pseudomonas aeruginosa* with and without bacteremia. Acta Dermato Venereol., 71: 411-415.

- El-Bessoumy, A.A., M. Sarhan and J. Mansour, 2004. Production, isolation and purification of L-asparaginase from *Pseudomonas aeruginosa* 50071 using solid-state fermentation. J. Biochem. Mol. Biol., 37: 387-393.
- Fergie, J.E., C.C. Patrick and L. Lott, 1991. *Pseudomonas aeruginosa* cellulitis and ecthyma gangrenosum in immunocompromised children. Pediat. Infect. Dis. J., 10: 496-500.
- Fergie, J.E., S.J. Shema, L. Lott, R. Crawford and C.C. Patrick, 1994. *Pseudomonas aeruginosa* bacteremia in immunocompromised children: Analysis of factors associated with a poor outcome. Clin. Infect. Dis., 18: 390-394.
- Furukawa, T., T. Uji, Y. Miyake, A. Hyodo and K. Deguchi, 1993. Therapeutic efficacy of cefodizime in combination with aminoglycosides against systemic infections caused by *Pseudomonas aeruginosa* in immunocompromised tumour bearing mice. Jpn. J. Antibiot., 46: 472-481.
- Hassett, D.J., 1996. Anaerobic production of alginate by *Pseudomonas aeruginosa*: Alginate restricts diffusion of oxygen. J. Bacteriol., 178: 7322-7325.
- Kalai, S., W. Achour, A. Abdeladhim, M. Bejaoui and H.A. Ben, 2005. *Pseudomonas aeruginosa* isolated in immunocompromised patients: Antimicrobial resistance, serotyping and molecular typing. Med. Maladies Infect., 35: 530-535.
- Lang, A.B., M.P. Horn, M.A. Imboden and A.W. Zuercher, 2004. Prophylaxis and therapy of *Pseudomonas aeruginosa* infection in cystic fibrosis and immunocompromised patients. Vaccine, 22: S44-S48.
- Qu, J., Z. Li, L. He, B. Sun and X. Chen, 2002. Inflammatory reaction and alterations of pulmonary surfactant in *Pseudomonas aeruginosa* pneumonia in immunocompromised rats. Chin. Med. J., 115: 1099-1100.
- Sambrook, J., E.F. Fritsch and T.A. Maniatis, 1989. Molecular Cloning: A Laboratory Manual. 2nd Edn., Cold Spring Harbor Laboratory Press, New York, USA., ISBN-13: 9780879695774, Pages: 397
- Satsuta, K., A. Kurokawa and T. Ootsuka, 1984. Bacteriological study on specimens from Department of Emergency and Critical Care Medicine (DECCM), Nippon Medical School. IV. *Pseudomonas aeruginosa* as viewed from the standpoint of opportunistic infection. Kansenshogaku Zasshi, 58: 91-98.
- Sherbrock-Cox, V., N.J. Russell and P. Gacesa, 1984. The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of *Pseudomonas aeruginosa*. Carbohydr. Res., 135: 147-154.
- Stephenson, J.R., S.R. Heard, M.A. Richards and S. Tabaqchali, 1985. Gastrointestinal colonization and septicaemia with *Pseudomonas aeruginosa* due to contaminated thymol mouthwash in immunocompromised patients. J. Hosp. Infect., 6: 369-378.