Asian Journal of **Biological**Sciences

ISSN 1996-3351 DOI: 10.3923/ajbs.2018.83.88

Research Article

Determination of Resistance to *Striga asiatica* L. Kuntze Using Agar Jel Analysis and Sand Culture in *Sorghum bicolor* L. Moench and *Sorghum arundinaceum* in Zimbabwe

¹Mandumbu Ronald, ¹Mutengwa Charles, ²Mabasa Stanford and ³Mwenje Eddie

Abstract

Background and Objective: Resistance through reduced strigolactones is one of the sustainable ways of managing *Striga asiatica*. To verify the existence of reduced strigolactone production in sorghum genotypes, an agar jel assay was carried out on seven sorghum bicolor lines and one *Sorghum arundinaceaum* sourced in Zimbabwe. **Methodology:** In the first experiment, pre-germinated *Striga* seeds were pipetted into a Petri dish with drying agar jel and pre-germinated sorghum seedlings were grown across the Petri dish. The eight sorghum genotypes were also grown in a sand culture and the number of *Striga* that attached were recorded. **Results:** The results indicated that sorghum genotypes varied significantly (p<0.05) with respect to maximum germination distance (Mgd) with wild sorghum and SC sila having the largest mgds indicating that they produced the largest quantities of strigolactones. The genotypes Mukadziusaende had the highest tiller numbers while SC sila had the lowest. *Striga* counts were highest on Wild Sorghum, Ruzangwaya and Hlubi. There was a negative correlation between mgd and tiller number showing that the highest strigolactone producers had low tiller numbers. A correlation coefficient of 0.564 between mgd and *Striga* counts showed that as Strigolactones increase *Striga* counts also increase. **Conclusion:** It can therefore be concluded that resistance through reduced strigolactones was found in the sorghum genotype Mukadziusaende. The direct relationship between mgd means that tiller number can be used to select for reduced strigolactone production in the field.

Key words: Sorghum, Striga asiatica, resistance, strigolactones, Zimbabwe

Citation: Mandumbu Ronald, Mutengwa Charles, Mabasa Stanford and Mwenje Eddie, 2018. Determination of resistance to *Striga asiatica* L. kuntze using agar jel analysis and sand culture in *Sorghum bicolor* L. moench and *Sorghum arundinaceum* in Zimbabwe. Asian J. Biol. Sci., 11: 83-88.

Corresponding Author: Mandumbu Ronald, Department of Agronomy, University of Fort Hare, P.O. Box X1314, Alice 5700, South Africa Tel: +263772919821

Copyright: © 2018 Mandumbu Ronald *et al.* This is an open access article distributed under the terms of the creative commons attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Competing Interest: The authors have declared that no competing interest exists.

Data Availability: All relevant data are within the paper and its supporting information files.

¹Department of Agronomy, University of Fort Hare, P.O. Box X1314, Alice 5700, South Africa

²Department of Crop Science, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe

³Department of Crop Science, Bindura University of Science Education, P.O. Box 1020, Bindura, Zimbabwe

INTRODUCTION

The average *Sorghum* productivity in the Sub-saharan Africa subcontinent is low as a result of a myriad of production constraints of which Striga asiatica is a major obstacle. Striga asiatica is an obligate hemi-parasite that attach to the roots of several crop species leading to severe yield loss¹. This Striga spp. is geographically the most widespread species with large populations having been reported throughout sub-saharan Africa, south east China and the Indian subcontinent while smaller isolated populations have been reported in Arabia, Indonesia, Philippines, north and east Carolina (USA) and Australia². The *S. asiatica* is the predominant species towards the east African coast and southern Africa³. According to Bouwmeester et al.4 these parasites especially the Striga spp. infests about two thirds of the 70 million ha used for cereal production in Africa. Jamil et al.5 asserts that about 20-80% yield losses or even complete crop failure can occur due to parasitism.

The root parasitic weed has developed the ability to germinate only when they are exposed to germination stimulants released from the host roots, thus synchronising their life cycle to those of their potential hosts only germinating when a suitable host seed is in proximity to the *Striga* seed⁶. Fernadez-Aparacio *et al.*⁷ reported that the synchrony is vital for parasitic weed survival because they have an absolute requirement for nutritional support from the host.

According to Bouwmeester et al.4 and Akiyama and Hayashi⁸, the first critical step in the life cycle of *Striga*, the germination of its seed, is regulated by strigolactones. The dependence on strigolactones could be exploited for Striga management through selecting for low strigolactones producing cultivars. The seeds of these parasitic plants will only germinate after perceiving a germination stimulant of their host⁹. After radicle emergence, the haustoria attaches and penetrates the host roots¹⁰. Cardoso et al.¹¹ reported that once germination has been triggered, the radicle protrudes from the testa, elongates towards the root and develops haustorium, an organ that can attach to and penetrate roots of the host plant. The parasitic plant grows underground for 4-7 weeks prior to emergence and utilises host water, nutrients and photosynthates¹². Much of the damage will have occurred by the time the Striga emerges above the ground.

Jamil *et al.*¹² found significant variation among NERICA rice cultivars and their parents for strigolactones production and *Striga* germination. Production of low germination

stimulants results in low numbers of *Striga asiatica* attachments thereby producing a resistant phenotype. Studies done in *Sorghum* have also shown that genotypes with low production of germination stimulant have demonstrated to be resistant to *Striga* in the field¹³⁻¹⁵. Since the root parasites affect the crop from the time they attach to the root, the development of new control strategies should focus on the initial steps in host parasite interaction¹⁶.

Ejeta et al.17, Wilson et al.18, Gurney et al.19 and Gurney et al.²⁰ demonstrated that the near relatives of cereals could provide new sources of tolerance and or resistance to the parasite infection and may provide the way forward for the control of *Striga* spp. According to Doggett^{21,22} and De Wet²³ the cultivated Sorghums of today primarily originated in Africa from the wild *Sorghum bicolor* spp. *Arundinaceaum*. Southern Africa has more sorghum landraces and whilst the quest to find a land race that produce the least strigolactones is still on, there is need to look at the wild Sorghum and the vast number of Sorghum landraces that are under cultivation in the African savannah. Given the high genetic diversity of the Sorghum spp. including wild Sorghum, there is need to quantify strigolactones in most of these cultivated lines as they are grown in Striga infested fields. According to Ejeta and Butler²⁴ different *Sorghum* genotypes differed by as much as a billion fold in the amount of germination stimulants they produce. Jamil et al.5 asserts that strigolactones have a triple role which is underground communication between the plant and AM fungi and parasitic plants and the regulation of tillering. According to Umehara et al.25 and Lopez-Raez et al.26 strigolactones inhibit tillering in plants and therefore the ability to tiller can be used as a selection criteria for reduced strigolactones production. Therefore, the objective of this study was to quantify strigolactones in Sorghum lines using agar jel analysis to determine Sorghum lines that produce the least strigolactones and therefore confers the highest resistance. The research also aimed at correlating the maximum germination distance (MGD) and tillering and Striga asiatica counts.

MATERIALS AND METHODS

Experiment 1: Agar jel assays

Germplasm and chemicals: Seeds of 8 *Sorghum bicolor* varieties were obtained from the gene bank, Harare research Station in Zimbabwe. The seeds of *Sorghum arunaceaum* were obtained from Gwebi agricultural college fields which is 27 km west of the city of Harare.

Experimental design

Surface sterilisation and Sorghum seed germination:

Sorghum seeds were soaked in 1% sodium hypochlorite solution for 60 min and rinsed in double deionised water. The seeds were soaked in an aqueous solution of 10% captan overnight. Seeds were rinsed with deionized water three times and then incubated in moist filter paper at 27°C. At 48 h germinating seeds were placed in agar plates as outlined by Hess *et al.*¹⁴. The *Sorghum* genotypes whose strigolactones were quantified are shown in Table 1.

Surface sterilisation and conditioning of *Striga* **seed:** *Striga asiatica* seeds were placed in 30 mL sample bottles and rinsed 3 times by adding 3-5 drops of the detergent tween 20 into 10 mL of distilled water. Sonication was done using an ultra sonic cleaner 3 min during the first rinse²⁷. The *Striga* seeds were incubated at 27°C for 3 days prior to transferring them into the fresh sterile flasks containing 15 mL of 0.001% aqueous benomyl solution. The sample bottles were reincubated at 25°C for 35 days before they were ready for use in the agar jel assay.

Assay set up: Pre-conditioned *Striga* seeds were pipetted into Petri dishes. Water agar was then poured over the seed. The roots of the germinating *Sorghum* seeds were placed in the solidifying agar with the root tip pointing across the plate. The plates were incubated in the dark for 5 days. The maximum germination distances (mgd): distance between the host root and the furthest germinated *Striga* seed were used as indicators of the quantities of strigolactones produced.

Sand culture: About 1 g of *S. asiatica* seeds were weighed for every treatment and mixed thoroughly with 2 kg of washed river sand. The sand was sterilized before the start of the experiment by heating in an oven at 120°C for 48 h to kill any *Striga* weed seeds that could be in the sand. The method was adapted from Jamil *et al.*⁵. Plastic pots of dimensions 18 cm diameter and 20 cm height were used.

Table 1: Sorghum genotypes used in strigolactone quantification

ruble 1. 3019/14/11 genotypes used in strigolactoric quantification	
Sorghum cultivar	Cultivar name
1	Mukadziusaende
2	Wild Sorghum
3	Sc Sila
4	Chiredhi
5	Ruzangwaya
6	Isifumbathe
7	Hlubi
8	Zambia

Experimental design: There were 8 cultivars (Table 1) and the experiment was replicated four times and laid down as a completely randomized design.

Planting and data collection: Five *Sorghum* seeds were planted in pots at a depth of 0.5 cm the seedlings were thinned to one plant per pot at 2 WACE. The *Sorghum* were allowed to grow in pots for 15 weeks and the *Striga* that emerged were counted. The number of tiller in the *Sorghum* plants were also counted. The data was analyzed according to the model:

$$Y_{ij} = \mu + T_i + e_{ij}$$

where, Y_{ij} is the measured parameter e.g., tiller number, μ is general mean, T_i effect of the treatment and e_{ij} is the error term. Correlation of the measured parameters were determined using SPSS.

RESULTS

Maximum germination distance (MGD): The *Sorghum* cultivars differed strongly (p = 0.001) with regard to maximum germination distance which is indicative of the strigolactones quantity produced (Fig. 1) at 120 h of incubation time at 30 °C. The minimum germination distance was 1.225 cm and it was for Mukadziusaende whilst the maximum was 2.775 cm for SC Sila (Fig. 1). The higher the maximum genetic distance the higher the quantity of strigolactones production.

Tillering: Sorghum varied strongly (p<0.01) in tillering and the average number of tillers varied from 1.5 for SC Sila to 4.5

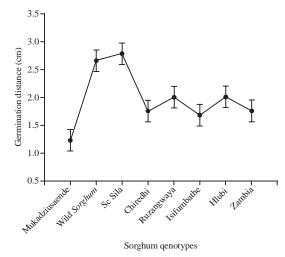


Fig. 1: Maximum germination differences for various Sorghum cultivars



Fig. 2: Effect of *Sorghum* cultivars on tiller numbers

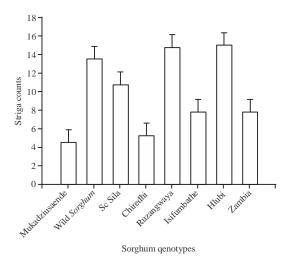


Fig. 3: Effect of *Sorghum* cultivars on *Striga* counts

for Mukadziusaende (Fig. 2). The cultivars that had the highest number of tillers were Mukadziusaende and wild *Sorghum* while the lowest were SC Sila and Zambia (Fig. 2).

Striga counts: The *Sorghum* cultivars varied strongly in eliciting *Striga* germination (counts) (p<0.01) the cultivars that had the highest number of *Striga* counts were Ruzangwaya and Hlubi while the lowest were Mukadziusaende and Chiredhi (Fig. 3).

Correlations between maximum germination distance, tillering and *Striga***counts:** A correlation coefficient between germination distance and tiller numbers shows a negative relationship with a correlation coefficient of -0.191. When the maximum germination distance increases the tiller number

decreases. The correlation coefficient between germination distance and *Striga* counts has a value of 0.564 which shows a relatively strong relationship between the two variables. As mgd increases, *Striga* counts also increase (p<0.001).

DISCUSSION

The objective of this study was to determine the *Sorghum* genotype that had produced the lowest strigolactones and the correlate strigolactones production to tillering. The *Sorghum* genotypes with lowest maximum germination distance were Mukadziusaende, Chiredhi and Isifumbathe whilst wild *Sorghum* and SC Sila had the biggest maximum germination distance. All the genotypes were susceptible to *Striga asiatica*. This is based on the stipulation that genotypes with a germination distance of less than 1 cm are resistant while those with more than 1 cm are susceptible to *Striga asiatica*¹⁴. However, the level of susceptibility differs with the genotypes.

These results are consistent with previous observations in cereals like rice⁵. The results confirm the existence of large genetic variation among the *Sorghum* cultivars. According to Jamil *et al.*⁵ up to about 500-fold difference exist in the amounts of strigolactones exuded by rice Germplasm. Ejeta and Butler²⁴ confirmed the same results in *Sorghum* and reported differences as much as a billion fold in the amounts of stimulants produced in *Sorghum*.

Tillering varied among Sorghum genotypes with Mukadziusaende having the highest tiller number whilst the lowest was SC Sila (Fig. 2). In Sorghum, tillering has been proposed to be under genetic and environmental control and according to Kim et al.28 tillering has not been comprehensively addressed by the carbohydrate supply and demand framework. In this study the Sorghum genotypes were subjected to the same environmental conditions hence the environmental influences were eliminated. Therefore the differences suggested that hybrids may also differ in their propensity to tiller which is independent of the carbon supply demand²⁸. The differences could be due to differences in hormonal signaling as the plants were in the same environment. According to Umehara et al.25 the hormone strigolactones reduced tillering in plants so plants that produce less strigolactones have profuse tillering compared to those that produce more. The results of this study support the propensity to tiller hypothesis as the genotypes were grown in the same conditions.

Taken together the results of this study suggested that elevated levels of strigolactones contribute to the inhibition of tiller buds. Therefore tiller growth is promoted when

strigolactones are decreasing in the plant. The same results were supported by Umehara *et al.*²⁵ and Dun *et al.*²⁹. The implications of this study are that when high tillering *Sorghum* cultivars are introduced *Striga* can be managed.

CONCLUSION

The genotype Mukadziusaende had the least mgd and more tiller numbers and also was attached to less *Striga asiatica* plants. Tiller numbers can be used to select for reduced strigolactones production in the field since they is an inverse relationship between tillers and strigolactones. Tillering potential of *Sorghum* becomes a marker of the plant's susceptibility to *Striga* infection. The selection of high tillering cultivars could be helpful strategy to reduce *Sorghum* loss to *Striga*. Therefore, farmers in Zimbabwe can utilize tiller number to select for moderately resistant *Sorghum* lines.

SIGNIFICANCE STATEMENT

Sorghum landraces vary with respect to strigolactones production Strigolactones quantities are inversely linked to tillering. The quantity of strigolactones produced is directly related to the number of *Striga* attachments in *Sorghum* Farmers and researchers can use tiller numbers to select for low strigolactones producers.

ACKNOWLEDGMENTS

Funding from the Research and Post Graduate Centre of the Bindura University of Science Education and the Research Council of Zimbabwe (RCZ) are acknowledged. The Zimbabwe Gene bank for the provision of varieties and the Seed Company of Zimbabwe for the variety SC Sila. *Striga*seed was sourced from Henderson Research Station (The Weed Research team) under the Department of Research and Specialist Services, Harare Research Station, Zimbabwe.

REFERENCES

- 1. Parker, C., 1991. Protection of crops against parasitic weeds. Crop Protect., 10: 6-22.
- Cochrane, V. and M.C. Press, 1997. Geographical distribution and aspects of the ecology of the hemiparasitic angiosperm Striga asiatica (L.) Kuntze: A herbarium study. J. Trop. Ecol., 13: 371-380.
- Parker, C., 2009. Observations on the current status of Orobanche and Striga problems worldwide. Pest Manage. Sci., 65: 453-459.

- 4. Bouwmeester, H.J., R. Matusova, Z. Sun and M.H. Beale, 2003. Secondary metabolite signalling in host-parasitic plant interactions. Curr. Opin. Plant Biol., 6: 358-364.
- Jamil, M., J. Rodenburg, T. Charnikhova and H.J. Bouwmeester, 2011. Pre-attachment *Striga hermonthica* resistance of New Rice for Africa (NERICA) cultivars based on low strigolactone production. New Phytol., 192: 964-975.
- Fernandez-Aparicio, M., J.H. Westwood and D. Rubiales, 2011. Agronomic, breeding and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany, 89: 813-826.
- 7. Fernandez-Aparicio, M., F. Flores and D. Rubiales, 2009. Recognition of root exudates by seeds of broomrape (*Orobanche* and *Phelipanche*) species. Ann. Bot., 103: 423-431.
- 8. Akiyama, K. and H. Hayashi, 2006. Strigolactones: Chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann. Bot., 97: 925-931.
- 9. Yoneyama, K., A.A. Awad, X. Xie, K. Yoneyama and Y. Takeuchi, 2010. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol., 51: 1095-1103.
- 10. Yoder, J.I., 2001. Host-plant recognition by parasitic *Scrophulariaceae*. Curr. Opin. Plant Biol., 4: 359-365.
- 11. Cardoso, C., C. Ruyter-Spira and H.J. Bouwmeester, 2011. Strigolactones and root infestation by plant-parasitic *Striga*, *Orobanche* and *Phelipanche* spp. Plant Sci., 180: 414-420.
- 12. Jamil, M., T. Charnikhova, B. Houshyani, A. van Ast and H.J. Bouwmeester, 2012. Genetic variation in strigolactone production and tillering in rice and its effect on *Striga hermonthica* infection. Planta, 235: 473-484.
- Ramaiah, K.V., 1987. Breeding Cereal Grains for Resistance to Witchweed. In: Parasitic Weeds in Agriculture: Striga, Musselman, L.J. (Ed.). CRC Press, Boca Raton, FL., ISBN: 9780849362729, pp: 227-242.
- 14. Hess, D.E., G. Ejeta and L.G. Butler, 1992. Selecting sorghum genotypes expressing a quantitative biosynthetic trait that confers resistance to *Striga*. Phytochemistry, 31: 493-497.
- 15. Ejeta, G., 2007. Breeding for *Striga* resistance in sorghum: Exploitation of an intricate host-parasite biology. Crop Sci., 47: S216-S227.
- Lopez-Raez, J.A., T. Charnikhova, V. Gomez-Roldan, R. Matusova and W. Kohlen *et al.*, 2008. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol., 178: 863-874.
- Ejeta, G., P. Mohammed, A. Rich, T.L. Merlake-Berhan, T.L. Housely and D.E. Hess, 2000. Selection for Specific Mechanisms of Resistance to Striga in Sorghum. In: Breeding for Striga Resistance in Cereals, Haussmann, B.I.G., D.E. Hess, L.M. Koyama, L. Grivet, H.F.W. Rattunde and H.H. Geiger (Eds.). Margraf, Welkersheim, Germany, ISBN: 9783823613251, pp: 29-37.

- 18. Wilson, J.P., D.E. Hess and W.W. Hanna, 2000. Resistance to *Striga hermonthica* in wild accessions of the primary gene pool of *Pennisetum glaucum*. Phytopathology, 90: 1169-1172.
- 19. Gurney, A.L., D. Grimanelli, F.K. Kanampiu, D.A. Hoisinhton, J.D. Scholes and M.C. Press, 2001. Can wid relatives of cereals provide new sources of resistance to the parasitic angiosperm *Striga?* Proceedings of the 7th International Parasitic Weed Symposium, June 3-8, 2001, Nantes, France.
- 20. Gurney, A.L., M.C. Press and D.J. Scholes, 2002. Can wild relatives of sorghum provide new sources of resistance or tolerance against *Striga* species? Weed Res., 42: 317-324.
- 21. Doggett, H., 1976. Sorghum. In: Evolution of Crop Plants, Simmonds, N.W. (Ed.)., Longman Group, New York, USA., pp: 112-117.
- 22. Doggett, H., 1988. Sorghum. 2nd Edn., John Wiley and Sons, New York.
- 23. De Wet, J.M.J., 1978. Systematics and evolution of sorghum sect. Sorghum (Gramineae). Am. J. Bot., 65: 477-484.
- 24. Ejeta, G. and L.G. Butler, 1993. Host-parasite interactions throughout the *Striga* life cycle and their contributions to *Striga* resistance. Afr. Crop Sci. J., 1:75-80.

- 25. Umehara, M., A. Hanada, H. Magome, N. Takeda-Kamiya and S. Yamaguchi, 2010. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Phydsiol., 51: 1118-1126.
- Lopez-Raez, J.A., R. Matusova, C. Cardoso, M. Jamil and T. Charnikhova *et al.*, 2009. Strigolactones: Ecological significance and use as a target for parasitic plant control. Pest Manage. Sci., 65: 471-477.
- 27. Mutengwa, C.S., 2004. The search for molecular markers, parental characterisation and inheritance studies of witchweed [*Striga asiatica*(L.) Kuntze] resistance in Sorghum [*Sorghum bicolor* (L.) Moench]. Ph.D. Thesis, Department of Crop Science, Faculty of Agriculture, University of Zimbabwe.
- 28. Kim, H.K., D. Luquet, E. van Oosterom, M. Dingkuhn and G. Hammer, 2010. Regulation of tillering in sorghum: Genotypic effects. Ann. Bot., 106: 69-78.
- 29. Dun, E.A., P.B. Brewer and C.A. Beveridge, 2009. Strigolactones: Discovery of the elusive shoot branching hormone. Trends Plant Sci., 14: 364-372.