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Symmetry of Hamiltonian Systems
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Abstract: In the present study we use the formalism of Hamiltonian system on
symplectic manifold due to Reeb, given in Abraham and Marsden and Arneld to
derive the equation of motion for a particle on a line in a plane with a spring force
and for a free particle m n-space. The time flows for both the problems mentioned
above are also determined and proved that the determined flow is a Hamiltonian
flow i.e., the symmetry of a Hamiltonian system. A non-Hamiltonian flow is also
considered and it is shown that by changing the symplectic form and the phase
space of the system we can convert it into a Hamiltonian flow. The translation and
rotational symmetry related to linear and angular momentum respectively for the
motion of a free particle in n-space 1s also considered, which 1s useful i reducing
the phase space of a mechanical system.

Key words: Hamiltorian system, lie-group action, hamiltonian flow, linear and
angular momentum

INTRODUCTION

The use of differential form mn mechanics and its eventual formulation in terms of
symplectic manifolds has been slowly evolving since Cartan (1922). The first modem
exposition of Hamiltonian systems on symplectic manifolds seems to be due to Reeb (1952).

In this study the Hamiltonian systems formalism given in Abraham and Marsden (1978)
and Amold (1989) 1s used to derive the equations of motion for a particle on a line with a
spring force and for a free particle in n-space from the energy function and the kinetics of the
phase space.

The study of symmetry provides one of the most appealing applications of group
theory. Groups were first invented to analyze symmetries of certain algebraic structures
called field extensions and because symmetry 1s a common phenomenon n all sciences, it 1s
still one of the two main ways in which group theory is applied the other way is through
group representations. One can study the symmetry of plane figures in terms of groups of
rigid motions of the plane. Plane figures provide a rich source of examples and a background
for the general concept of group operations. Plane figures have generally bilateral symmetry,
rotational symmetry, translational symmetry, glide symmetry and their combination.

HAMILTONIAN SYSTEM

A general Hamiltoman system consists of a manifold X, possibly infinite dimensional
together with a (weakly) non-degenerate closed two-form @ on X (1e., ® 1s an alternating
bilinear form on each tangent space T, X of 2{, dw = 0 and for xeX, w, (u, v) =0 for all ueT X
unplies v = 0) and a Hamiltoruan function H: X-R. Then X, H, w determine mn nice cases, a
vector fleld Xj; called the Hamiltoman vector field determined by the condition:
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Cy w=dH (1)

Flows
Let X be a smooth manifold. A C™-function F:RxX-X 1s called a flow for the vector field
vif F: R-X is an integral solution for v i.e.,

d

—F (t)=veF, (t

T 0= VeEL (D
or

gF(t x) = voF(t,x)

dt t3 - t]

and

F(=Fx)=x VteRxeX

Hamiltonian Flow

Let (X, H, w) be a Hamiltoman system. A flow F 1s called a Hamiltoman flow if it
preserves the symplectic form and the Hamiltonian finction (ie, F, @ = w and F,'H=H for
teR) (Abraham and Marsden, 1978).

Group Actions
Let G be a group and let X be a set. An action of G on X is an assignment of a function
S, X-X to each element geG such that:

»  If11s the identity element of the group G, then S 1s the 1dentity map, 1.e., for any xeX we
have S, (x)=x
¢ Forany g, heG we have 828, = 8, 1.e., forevery xeXwe have 5,(3, (x)) = S, (x)

A Lie-group action should satisfy certain differentiability properties in addition to the
algebraic properties given above. The action is called effective if S, = Identity map for only
t=20.

SYMMETRY OF HAMILTONIAN SYSTEMS

The symmetry of Hamiltonian system (X, w, H) is a function 8: X-X that preserves both
the symplectic form w and the Hamiltonian function H.

Motion of a Particle on a Line in the Plane with the Spring Force

The phase space of such a physical system Sunmons (1991) 1s the simplest non-trivial
svmplectic manifold, the two-dimensional plane X = R*= {(q, p): qeR, peR} with the area
two-form @ = dg/dp.

The Hamiltoman function for such a particle is:

1 k
H=—1p*+—¢ (2)
2mp 2q
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where, second term in the Hamiltonian is the potential energy of the spring.
Using the Eq. 1, we have for geR and veT R

(X (q),v) = dH(g).v

Taking
Xy =X ¢ +X i
qa Pap
and
a a
V=Veg +vp%

as an arbitrary vector field. We find:

(dq A dp)(X,e (@), v) = dH(q)(vq%Jr v, %)

or
8 8 @ 8. .p 8 B
(dq/\dp)(xanrxP%,vqa—quVP%):(Edp+kqdq)(vq%+vp%)
or
P p
Xqvp—xpquavp+kqvq:>xqza
and
x,=-kq
Thus we have:
p @ a
22 kq—
I q@p

since, 0/dq and 9/dp are functions of time t (along a particular trajectory) we can write the
vector fleld:

_dqg @ dp @

T d e dtap

as time derivative along trajectories on the plane, since d/dq and J/dp are lmearly
mndependent we have:

4



Asian J. Earth Se¢i., 2 (2): 39-48, 2009

B:ﬂaﬂdngkq (3)
m dt dt

which shows that equation of motion for a particle in a line with spring force 1s a linear
differential equation:

dq_ k @
& ml

We can draw the useful picture by using the conservation of the Hamiltonian by the
Hamiltoman flow because it unplies that the orbits of the system must lie mside level sets of
H (An orbit 1s set of all pomts in phase space that the system must passes through during
one particular motion. In other words it is the set of all points on one particular trajectory).
The beautiful features of Hamiltonian systems is that we can get information about orbits of
the differential equations of motion by solving the algebraic equation H = constant, which
1s easy to solve. So, here first we determine the Hamiltoman flow of the spring problem.

HAMILTONIAN FLOW OF THE SPRING PROBLEM
For finding the bona fide solutions to our differential equations, 1.e., not only the orbit
of a trajectory but the trajectory itself (i.e., the position as a function of time). We use the

algebraic equation Hy = constant to reduce our original system of differential equations:

dqg _p dp _

QA_P g By
a m o a
mnto one scalar differential equation:
2
gﬂ:idhm}%—kqnl:iJ4H07Egi (3)
dt m m m

which on integration gives:

qit) = J_rl‘jH%] sin [‘j% t+ q(O)] (6)

The Hamiltonian flow for the linear differential Eq. 4 is given by the function:

COSJEt

1 .JE
—sin,[—t
ft:Rza[q]»—) m km m {qJERz (7
P —+fkm sinJEt cos\[Et P
m m
or
1 0 CDSJEI; sin‘jgt - 0
f, Rza[q}»—) Jkm m m m (qJeRz (8)
P .k k 0 1ip
0 1)| —sin,/—t cosj—t
m m
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Geometrically, the flow at time t in phase space is effected by first scaling the g-axis by
a factor of 1/km , which takes the orbits to circles, second, rotating these circles clockwise

through an angle \/E ¢ and finally rescaling the g-axis back to its original scale. Since, for
m

each t the function f, is a linear function from R*o R* and because the determinant of the
matrix representing f, is 1, f, is area preserving. So, the flow preserves the symplectic form.

Also the Hamiltonian flow preserves the Hamiltonian for £ H = H, ie., Hef, we have, for
ge30(2), (special orthogonal group):

1 k
Hof,(q,p) = Higq,pg™) = 2f|pgT|2 + =~ led’
m 2
_ L Ty T E ToTY P_2 E 2_ Ty ool
=5 —pg'ep +o(ea)(d’s" )= -+ 2" =H, (g7 g =" =1]
the level sets of H in phase space are ellipses (Fig. 1),

Here if k is large the ellipses are tall and skinny, while if k is ¢lose to O then the ellipses
are short and wide. If k = 1/m the ellipses degenerate to circles. As the flow preserves the
Hamiltoman, each selution of the system must lie entirely with in one ellipse in phase space.
The conservation of the Hamiltonian by the Hamiltonian flow tells us that orbits must lie

inside sets of the form _ i + qu — constant - Since the motion is continuous, it fellows that
2m 2

each orbit 1s contamed in the curve 5_2 +%q2 — constant (F1g. 1
m

The spring Hamiltonian given in Eq. 2 is an action of the group (R, +) on R’, for:

1o
. f = [0 J = Identity matrix, for 0 R

_ cos(\/k/_m)t Jlasin((\fk/_m)t) cos(ka_m)s Jlﬁsin((ﬁ)s)
—Jﬁsin((ﬁ)t) cos(Jk/_m)t —Esiﬂ((ﬁ)s) cos(‘fk/_m)s
cos(\/k/_m)(t+s) Jlasin((,jk/_m)(t+s))

= =f,... foranystinR

—fkm sin ((ﬁ) {t+ s)) cos(Jk/_m)(t +3)

.
»

0
\

Fig. 1: Phase space of the particle on the line with level sets of the spring Hamiltonian

43



Asian J. Earth Se¢i., 2 (2): 39-48, 2009

This action is not effective because if i3 an integer multiple of zn( m,/k) then:

cos(Jk/’_m)t Jlasin((\/kf_m)t)
—flam sin ((Jk/_m) t) cos (Jk/_m)t

=1

Which also shows that the flow is periodic with peried 2n(,fm,fk) .
MOTION OF A FREE PARTICLE IN n-SPACE

Consider the motion of a free particle inn space. Let q = (qy, ..., g,) be the position vector
of the particle and p = (p,, ..., p,) be the corresponding momentum vector of the particle. Then
the phase space of the particle is the manifold M= {{q- e Pir s Pu) iAo Qoo Proon P € R} with
the symplectic form:

o= Z dq, ~ dp,
i=1
and the Hamilteran function
H-= Li p.2
2m

Then w, H determine the vector field X by the condition (1)

Let XH:a1i+...+ani+b1i+...+bn °  and V:Za"ieri' ¢
i=1

aq, 8q, oy &, g, o,
fields, then using (1), we have:

be arbitrary vector

or
(b, b= L(iplb;}
P ml=

This gives;

a, = pym and b, = 0, (1=1,... n).
Thus the vector field is given by:

f><IH:&i+...+&i )]
m &g, m &q,
Taking the vector field:
o 48 do, o Ao, 0 (10)

H

Cdtag odiaqg, digp T dodp,

as time derivative along trajectories, we have:
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U R R T R (11)
m dt dt
This gives:
d2
m (@ =0 (12)

the required equation of motion of the free particle in n- space
HAMILTONIAN FLOW OF THE PARTICLE IN n-SPACE

The Hamiltonian flow of the Particle in n-space is determined by taking the algebraic
equation:

1
H,=——3p’ = constant (13)
. 2m§‘p‘ constan

with the system of differential equations (1.9.3) and initial condition p(t) = p(0), t= 0, we have:
t
q(t)=—p(0)+4(0) (14)
Thus for any fixed time t, the map:
£ R % (R™)* - R x (R*) *

defined by:

el

is a Hamiltonian flow, for:

n n

o= fi‘[idql ~ dplj = (fd, A f7dp,) = [dql + %dp,] ndp, = (dg, A dp) =
i=1 i=1

1 i=1

andf H=H.
To show that every flow 13 not a Hamiltonian flow. If we take the flow of the problem
particle in n-space as:

g R (B >R = (RY)”

def]‘lled by
P pﬁt
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for any t€R, then g o=¢"®. Thus g, is not a Hamiltonian flow of a Hamiltonian system with
the canonical symplectic form on R*

Taking ., Zn: 1

i=1 My

(dg, ~ dp,) @s the symplectic form on R* ~ {0} then the flow g, defined

Eq. 16 preserves w, for:

o n 1 LR
To=g; Ladp) |=>er dg, ndp )= ————(d{g;e") ~n dip,e’
g gt[;} H(dq p)} ;gt[%p‘](q p;) ;(qie‘p,et)( (qe") A dip,e"))
=1, =
= e*(dq adp) =3 ——(dg Adp)= o
;(qipiem) o é(qipi) dn

The Hamiltonian function for this system can be determined by taking

g Pig n Oy 2
bt "oq,  op, " op,
and
2,0 . 8
v=>a —+b —
xZ=1: & op;

as arbitrary vector fields, then Eq. 1, we have:

L] 1 2 d d 2 ., @ , 0
—(d d R b'— || =dH
g[qipi( e ”J[Z[q aqu‘ap,J Z[a x, ‘apiB )

or
a1 ' ' 2 6H cH Sy , 8
—1Iqb/ -2 = —dq, + —dj a —+b'—
1[ ; i(qu p)} [21[6 9% pD[l[ ' apn
which gives:
H__ 1 H_ 1 ) 0
9, aq P P
which on integration yields:
Hzlog[pl'"p“]+c (a7
G-

Now:

gZ‘HgT[log[["“p“} + ch;;[W} -
GQ--la (q,€")...(g,e"

Hence, g, preserves H. Thus g, defined Eq. 16 1s a Hamiltoman flow for the Hamiltonian
system (M, w, H), where,
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M = R*-{0}

and H is given Eq. 17.
The Hamiltonian flow of the Particle in n-space given Eq. 15 can be written as:

L

and satisfying the condition of group action, for:
*  0eR, f; is indeed an identity matrix

. fscft:[l (Sfm)j[l (t/m)Hl (s+tfm)]=fm e

0 1 0 1 0 1

The action 1s also effective. Thus the time flows of the Spring problem and Particle in n-
space problem are symmetry of Hamiltonian system. But a Hamiltonian system may have
other type of symmetries in addition to the time flow. For the problem the phase space of
such a particle motion 1s:

TR =R (R) = f(s G PPy )0 Gy PP, € R}

with symplectic form ,_ Z": dq, » dp, @nd the Hamiltorian function - LG: p? - Consider the
el ' 2me

translation action of the group (R”, +) on X, for each g = (g,, ..., g.) in R", define the function:
5, ‘X=R™ 5 X=R™
by
S, (ap)=(a+p) (18)
Then 5, is the symmetry of the Hamiltonian system for any geR”, for:
8- =d(qtg) dp=dq dp= for dg=0

and S, H=H. =

Since, 3, gives a one-to-one corrgspondence from X to X, shows that S, preserves the
symplectic mamfold.

Next, consider the rotational symmetry of a free particle in n-space.
The Hamiltonian system for such a particle is:

{(Rﬂx(Rﬂ)*} (dqndp), [%WD
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The action of SO(n) on X is defined by S.(p, q) = (gq, pg") and is called the rotation
action. Here, S, preserves manifold X and symplectic form, since, g is constant and an
orthegonal matrix g g", also we have:

S;m:d(gq)/\d(pgT):(ggT)qudp:dq/\dp:m

and S, H=H, ie., HeS, = H, for:

HeS,(q.p)=H(gqp gT):ﬁ\p e[ :%(p g)pe) :i(p g (e pT):%p P :%W =H(q.p)

Hence, t}le aCtiOn Of t}le Lle group (R 5 ) on:
[Rzn ( 17 [) L ‘[‘2]
’ ’ 2m

preserves both the symplectic form and the Hamiltorman function called the translation and
rotation symmetry of the mechamcal system. These symmetries are linear symmetries so they
can express in matrix form.

CONCLUSION

In this study we have shown that every flow is not Hamiltonian but by changing the
symplectic form and with some restriction on the phase space one can successfully change
the non Hamiltoman flow mnto the Hamiltonan flow. Also, we have discussed the symmetry
group properties of the mechanical system. For two body problem only these symmetries are
sufficient for consideration but for other system nonlinear symmetries also arise (for further
discussion about symmetry of differential equations and Hamiltonian systems see Artin
(1991) and Marsden and Ratiu (1999)). The above symmetries of a mechanical system are
useful in reducing the phase space of the system using the Marsden-Weinstein theorem.
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