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ABSTRACT

The propagation of Love waves in presence of a horizontal rigid barrier of finite length in the
surface layer has been discussed. The transmitted waves have been obtained by using Wiener-Hopf
technique and Fourier transform. The numerical computation has been done by assuming depth
of barrier small as compared to the wavelength of the incident wave. It has been cbserved that the
transmitted waves decrease as the distance from the barrier increases and die out after a very long
time. The result of semi-infinite barrier has been obtained as a special case of this problem.
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INTRODUCTION

The problems concerning the propagation of seismic waves through crustal layer of earth have
been of considerable importance for seismologists since a long time. Such type of study helps the
scientists in understanding the internal structure of earth, which in turn can be used for
exploration of valuable materials like o1l, hydrocarbons, minerals ete. The problems of propagation
of Love waves in different media have been discussed by Deshwal and Mudgal (1998), Kar et al.
{1986), Niazy and Kazi (1980), Wong et al. (1995) and Singh (1998). Jardaneh (2004) has
considered the expected source of earthquake evaluating the ground source response spectra taking
into account local soil properties to evaluate seismic forces. Kaur ef al. (2005) have studied the
reflection and refraction of SH-waves at a corrugated interface between two laterally and vertically
heterogeneous viscoelastic solid half-space. Dhaimat and Dhaisat (2006) have studied the sharp
cut decrease of Dead Sea. The propagation of wave in inhomogenecus thin film has been discussed
by Ugwu et al. (2007) using the series expansion solution method of Green’s funetion. Tomar and
Kaur (2007) have studied the problem of reflection and transmission of a plane SH-wave at a
corrugated interface between a dry sandy half space and an anisotropic elastic half space. They
used the Rayleigh method of approximation for studying the effect of sandiness, the
anisotropy, the frequency and the angle of incidence on the reflection and transmission coefficients.
Ademeso (2009) has discussed the deformation traits in Charnockitic rocks by analyzing the
direction of maximum compressional and tensional stresses inferred from the rose diagram.
Chattopadhyay ef al. (2009) has studied the reflection of shear waves in viscoelastic medium at
parabolic irregularity. The authors found that the amplitude of reflected wave decreases with
increasing length of notch and increases with increasing depth of irregularity. The finite element
method analysis has been used by Adedeji and Ige (2011) to investigate and compare the



Asian J. Karth Set., 5 (1) 1-12, 2012

performance of a reinforce concrete bare frame infilled with or without straw bale wall shape
memory alloy diagonal wires subjected to seismic loads and earthquake ground excitation. Ramh
and Dawocod (2011) have studied the effect of steel fibers on the engineering performance of
concrete, A computational technique has been applied to study the field propagation through an
inhomogeneous thin film using Lippmann-Schwinger equation by Ugwu (2011). The propagation
of seismic waves has also been studied by Zaman (2001), Hai-Ming and Xiao-Fei (2003),
Bahdeh et al. (2009) and Aziz ef al. (2011). The problem of Love wave excitation due to interaction
between ocean wave and sea bottom topography gas been studied by Saito (2010). Here, we discuss
the propagation of Love waves through irregularity in form of an infinite rigid strip present in the
surface layer.

This study is based on a paper by Sato (1961) who studied the problem of reflection and
transmission of Love waves in case the surface layer is variable in thickness. Here we discuss the
propagation of Love waves through irregularity in form of a finite rigid horizoental barrier present

in the surface layer at finite depth.

THE PROBLEM AND ITS SOLUTION

The propagation of Love waves due to a finite rigid horizontal barrier in the surface layer has
been discussed in the present paper. The problem is being analyzed in zx-plane. The z-axis has
been taken vertically downwards and x-axis along the interface. The Love wave is normally
incident from right to left on a perfectly rigid screen -1<x<0; z = -h. The geometry of the problem is

shown in Fig. 1. The incident Love wave 1s given by:

Vy, = Acosfy, He @ 75 g, (1)
vy, =Acof,, (z+H)e™" —H<z<0 (2)

Where:
8, =K Kk, 0, = A — KL [ | < i, klze—(’?, km:cil, (8)

and C,; is the phase velocity of nth mode and k,y; is the root of equation:

taﬂezNH=Yel—N,Y=h, (4
9y Hy

u, and p, being the rigidities of shear waves in the half space and in the crustal layer, respectively.

The wave equation in two dimensions 1s given as:

¥ 2
%+g+ Kv=0 (5)
s ol

The wave equation in the present study for the surface layer can be written as:
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Fig. 1: Geometry of the problem
(Vi+kv, =0, j=123

Where:

(6)

(7)

V, and V, are the velocities of shear waves in the half space z>0 and in the layer -H<z<0,

respectively.
Let the total displacement be given by:

v = v, +vy, 220, -o0 g oo
=wvy, g1V, chez<0, oy <eo
=v, vy, -Hzz<-h, -eo<x<e
The boundary conditions are:
Vg, gtvy =0, z=-h+0, -lcx=<0

vy ,tvs=0,2=-h-0, -lzx<0,

ov,
—2=0,z=—H,—0<X<®
7

v, ov
V,=V,, —2=—27=-h, —w<x<-L0<x<w®
oz dz
oy, dv,
v, =V, — = — z2=0, —w<xXx<®
3z adz

(8)
(9)

(10)

(11)
(12)

(13)

(14)

(15)
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The boundary conditions (11) and {12) specify that the barrier is rigid and ne displacement
takes place across the barrier. Using boundary conditions (11) and (12}, we have:

v,=—Acos O, (z+H)e™ z=—h+0,-1<x<0 (16)
v,=—Acos 0, (Z+H)e ™ z=—h—0,-1<x<0 (17)
Taking Fourier transform of Eq. 6, we obtain:
%_efvj (p,z)=0 (18)
where, 0, =iﬁ represents Fourier transform of v, (x, z)which can be defined as:
v.(p. 2)= T v, (x,z)e™dx, p= o +ip,
N (19)

-1 o )
= _[ v, (x,z)e™ dx + _fvj (x, 2)e™ dx + J‘vJ (x,z)e" dx
— -1 1)

=V, (0. 2+ V,(p.2)+ 7, (.2)

If for a given z, as |x|— « and M,t>0, |v, (x, 2)| ~ Me ™! then v, (p, ) is analytic in f>-7 and
v, (p, z) is analytic in f<t (= Im (k}). So by analytic continuation v (p, z) and its derivatives are
analyticin the strip -t<fi<t in the complex p-plane. Solving I£q. 18 and choosing the sign of 0, such
that its real part is always positive, we obtain:

v (p.2)=Ap)e™. z20, (20)
v, (p.2)=B(p)e™ +C(p)e**, -H=z<0 (21)

Solving Eq. 21 by using boundary condition (15), we get:

[0, cosh@,z—v0,sinh 0, z] (29)
0,

Vo (p.2)+V, (p.2)+ ¥y, (p.2)= A(p)

Differentiating above equation with respect to z and putting z = -h and denoting v; (p, -h) by
v; (p) ete. and then eliminating A (p), we obtain:

_ _ _ ___ B,cosh 0,270, sinh B,z _ — _— 23
BB 2T (24 % ()=~ L 5 )+ %, ()4 % () (23)

Solving Kq. 18 for ) = 3, using boundary condition (13), we have
V.. (0. 20+, (0.2)= ¥, (p,2) = 2D(plcosh), (z + H)e* (24)
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Differentiating above equation with respect to z and putting z = -h and denoting v; (p, -h) by
v; (p) ete. and then eliminating D (p) we obtain:

Vo (2 Y, (.2 Y, (p,z):e—z.%ing[V5+ )+ ¥, )+ V. ()] (25)
where, & = H-h.
Taking Fourier transformation of Eq. 14:
VD)=V, (B Vi, (P)=V,, (Pl and v, (p)=V,. (P} ¥, (p)=V; (p) (26)

From Eq. 16 and 17, we can write in usual notation as:

ACOs0 D ey @

Vo (p)=V;(p)= -k
1N

Now using Kq. 26 and 27 in Eq. 25 for z = -h we have:

coth0,3 x{

5 Vi, () + V5 (D) + o (0)+ ¥ () - ¥ ()} (28)

VL P+ Y (P)+ V. (p) =

Now from KEq. 23 and 28 for z = -h, we can write:

(7., 0+ 7, 0+ 7, (0] 005%925% % @7, @] (29)

Where:
f, {p) =0, sinh 6,H+vy0, cosh 6,H (30)
f, (p) =0, cosh O,H+v 0, sinh 6,h (31)

The Eq. 29 is the Wiener-Hopf type differential equation discussed by Noble (1958).

SOLUTION OF WIENER-HOPF EQUATION
Now using Eq. 27 and 29 may be written as:

o (o1s . (o) f5: ()5 (o OB B @) _ B{L-e ) (32)
v, (0)+ ¥, (0)-{¥; (0) -V, (0} 5, i) kL
Where:
B=-iAcosd,, & ™" (33)
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Now we factorize { 1 J f(p) as discussed by Sato (1961) as:

cosh 6,8 ) f,(p)
1 L
[cosh 8, SJ £, () K.k (p)

Let p =+ k,_ and p = £k, are the zeros of f; (p) and £, (p), respectively. Then we write:

f,(p) :ﬁ (P’ - k) G (p)
£,(p) wi (P* k2. G, (p)

Where:

6, @)= = anda, p)= 2P

| ) |

and G, (p)and G, (p) have no zeros. Also we can write:

G
L= Bl ot e
2
Where:
= %
10gL+ (P):lj‘ ¢1 7.¢2 dtfl P9 dt
my t—ip my t+p
Where:
" _ y(tz -¢—kf)”2 cosH(t2 +k§)”2
M= ) e (02 k)
2 2
ta:nq) B Y(kf 7t2)1f2 COSH(ki 7".2)1’2
=

(k2 — ) sinH (K — 217

tan ¢, and tan @, are obtained from Eq. 39 and 40 by replacing Hby h.

Now, we write:

1 fip Ll @ (pz—kfm):K .
cosh®, 6 f,(p) H+(P)H7(P)1;[1(p27k§m) LK)

Where:

K. (p)=K_{-p)=

L+(p) 2 (p+klm)
H,(p) lm_[l p+kyy)

(34)

(35)

(88)

(87)

(88)

(39)

(40)

(41)

(42)
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and |K, (p)[=Ip|¥ as |p|— .

Now g, :,/p2 _x! can be factorized as:

8, =4/p’ ki = ef%1fp+k2 xe% p-k,
Using Kq. 34 and 43, Eq. 32 can be written as:

v - {Vé. p-v (p)} B {1 - e"l(p’km)}
e O @ pok

Where:

Q)= otk K. (p) andQ,(-p)= Q. (p)
Similarly, Eq. 34 may also be written as:

B{Q. (m-Q, (k)

V.. (PQ. )+ P +N, (p+ M. (p)= o o)
N ()M (p)- P hu)
p-ky
Where:
N, (pHN_ (p)=e*v, () Q. (p)
and:

Be’il(F’klN)

M, (P +M_(p)= —

Q. (p)

Also, multiplying Eq. 32 by " and rearranging the terms, we have:

il -
BO®E™ g ()T (p)-T, p)-R, )+ -2

L )Q(p = Q.

Where:
R, (pHR_(p) =" v,, (p) O_(p)
and:

Be™
K, Q(p)

1

T.@E+T (p)=

v -7, o)}

<{¥; (), ()}

(43)

(44)

(45)

(48)

(47)

(48)

(49)

(50)

(51)
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Also, we make following substitutions for simplicity:

p, =L PIm QRN o )b - e R, (), Q, (p)= ™ P, ()R, () (52)
PFky
Where:
o+ il
R (p)=o [ — = 4 (53)
2 s {o+ pioe+ k)
and:
P il iol
Rypi— b | T g Qe (54)
Z‘J'El_w% (o+p)o—ky) pt+ky

Now Eq. 23 and 25 may respectively be written as:

v, (p2) = 0, cosh 0,z — y0, 51'.1111822><V ©® (55)
: 0, cosh®,h+v0 sinh 6,h
and:
_ cosh9,(z+H) _
7, (p.2)= 5 ) (56)
2
Where:

(U in
Bk, + kK, (k) _BRl(P)e{ 4}_'_ BCT{pe*

(P-kp)yP+EK (D) yP+EK, () YP+KK (D) (57)

—i(lp+y igpet
B i, “KK Ky BR,(p) R L BCTEpe Y
(P-kp) P-KK_(p) JP-K,K_(p) JP—kK_(p)

v,(p)=-

The displacement. v, (x, z) is obtained by inversion of Fourier transform of Kq. b5 as given
below:

o+HP
1 - —i]
v(xz)=—— | Vip.2)e""dp
TE—CD-HEv (58)
1 “F 8,cosh@,z—v6 sinh6z _ . o
= [ TR G e ap
2n 0,cosh O,h + ¥0, sinhO,h

—oH

Also, the displacement v, (¥, z) is obtained by inversion of Fourier transform of Eq. 56 as given
below:
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wHB

v.(x.z)= o j v, (p.z)e ™ dp

i (59)
oo
_1 cosh,(z+ H) ¥, () e dp
2 54 coshO8

where, v, (p) is given in Kq. 57.

RESULTS AND DISCUSSION

For finding different component of waves, we evaluate the integral in Eq. B8 and Eq. 59 in
different regions. For evaluation of Eq. 58, as anticipated, there is a pole at p = kj;; having no
contribution. Furthermore, let p =k, be the roots of Eq. f, (p) = 0, cosh 8,h+y0, sinh 6,h = 0. The
residue due to this pole contribute to:

2 Bk, + kK, (k i1+ 2 n
Y e 4R1(kzm)+Be4T(k2m)cl}{§“ J
m=1 1H

m im

(60)
isin 0, (z+h)k,
0, hK, (kzm)\lkz +ky,

—ileyx

e

where, o, =,k

—k

m "

Equation 60 represents the transmitted waves in the region -h<z<0; -1<x<0. The first term in
this equation represents the component of diffracted wave at the edge x = 0, while other terms are
the interaction terms due to second edge. Similarly, the pole at p =k, contributes to:

= | BJky — kKK . (kg 42 ity 14
Vm(x’z):72 —'\‘lNz—(kiN)enl(km—k,m) e (k! 4)R2(7k1m)+Be (k! 4),1,(71{1“\)02

m=l k., —ky (61)
" cos(8,,8)cost,, E+H)k K (k, )k, (C, 1 |t
6, Hyk,, —k, U,

The Eq. 61 represents the transmitted waves in the region -h<z<0, -x<x<-1 and the first term
represents the diffracted component of waves at the edge x = -1.

Also:

w
Oy =
2m kzm

and:

[62]
Q=

1m kl

are the phase velocities of Love type waves of mth mode in the layered structure with a layer of
uniform thickness h.
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Now we find the transmitted waves in the region -H<z<-h; x<0. There is a pole at. p =k, the
contribution due to which is zero. The poles at:

1
Cip = 1{27(2n—l)21'r2 %
P=1p, =¥ 45

n=1,2, 3., contributes to:
22 %
B Al gaf 1,
. (—1)“+'icos[M(z+H)}e { ® }
V31(X=Z):z 2 89
0= L K. Gp, K, -, ©2)
—B,fk kK, (k ftee . . pad
P 1_N+ K. IN)—Bel(k ‘R (ip,)+BC T{p,)e*
1p —k 1 n 1 n
1 1N

Equation 62 represents the transmitted waves in the region -H<z<-h; -1<x<0. The poles at
p =k,,, contributes to:

2 B,fk -k K (k iy 1 ik T
v, (x,2)= E{W il km) _ R (kg ! 4)R2(—km)+ Be (g 4)T(k1m)C2}
1N

m=| 1m

(63)

y cos(0,,8)cos0, z+H)k, K (k, )k, [C, 1 |
BZmHJklm *kz u

1m

Equation 63 represents the transmitted waves in the region -H<z<-h; -w<x<-1. Clearly, this
result 1s an analytic continuation of the result obtained in Eq. 61.

NUMERICAL COMPUTATION AND ANALYSIS OF RESULTS

The transmitted waves 1n different regions have been found out in Eq. 60, 61, 62 and 63. For
computation purpose we have considered k.8 small as compared to the wavelength of the
incident Love waves. We have taken, V, = 4.6 kmsec™, V,= 3.9 km sec™, u, = 7.98x10' pa,
u, = 4.11x10" pa, k,0<0.01 for calculation purpose and different waves have been obtained. In the
present discussion, we have taken the barrier of finite length. As a limiting case of this problem,
if we take = « , then we have only one edge at x = 0 and Eq. 60 will have only the first term,
which is same as cbtained by Kazi (1975) for a semi-infinite barrier. Also, if we take 1 =0, i.e., the
whole of the surface layer is rigid, the Love wave moves with the velocity of shear waves in the
surface layer.

CONCLUSIONS

We studied the problem of propagation of Love waves in the layered media with a surface layer
having a horizental rigid barrier of finite length. The numerical computation shows that the
diffracted Love wave decreases as the distance from the barrier increases. It is clear from the
discussion that if the barrier of large size is considered, the diffracted wave of larger intensity is
observed. So by measuring the component of the wave obtained, the internal structure of earth can
be predicted for specific study. The case of semi-infinite barrier is obtained as a special case,

10
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