

Asian Journal of **Plant Pathology**

ISSN 1819-1541

Effect of Organic Amendments on Soil Mycoflora

¹Ravindra Kumar, ¹Seweta Srivastava, ²Manisha Srivastava and ¹Asha Sinha ¹Department of Mycology and Plant Pathology,

Institute of Agricultural Sciences, B.H.U., Varanasi-221005, India ²Department of Botany, Harish Chandra P.G. College, Varanasi-221001, India

Abstract: In present study, the influences of different organic soil amendments on soil fungi was studied. Soil organisms carry a wide range of processor that are important for soil health and partially in both natural and managed agricultural scales. The total number of organisms, the diversity of species and activity of soil biota will fluctuate as soil environment changes. Three types of soil amendments and fertilizers viz., urea, FYM and vermicompost were used to amend the cultivated agricultural soil. The fungi were isolated from soil by using dilution plate technique and soil plate method. The dynamics of soil fungi were observed qualitatively as well as quantitatively. The maximum number of fungi was recorded when soil amended with FYM (40.6×10⁴ g⁻¹), urea (38.8×10⁴ g⁻¹) of dry soil at different concentration 2.0, 1.5 and 2.0%, respectively. In control where soil was not amended with any organic amendment, the number of fungi was 13.0×10⁴ to $16.8 \times 10^4 \,\mathrm{g}^{-1}$, $14.4 \times 10^4 \,\mathrm{to} \, 16.8 \times 10^4 \,\mathrm{g}^{-1}$, $13.8 \times 10^4 \,\mathrm{to} \, 16.8 \times 10^4 \,\mathrm{g}^{-1}$ in urea, FYM and Vermicompost, respectively. A total 25 fungi were observed during the experimental period. Eighteen were observed when soil amended with urea, twenty-two observed when soil amended with FYM and 20 when soil amended with vermicompost. In control soil only fifteen fungi were recorded. The result showed that the number of fungi was increased in amended soil. Qualitatively, the fungi Rhizopus stolonifer, Aspergillus niger, Aspergillus flavus, Trichoderma harzianum, Penicillium citrinum, Alternaria alternata and Curvularia lunata, White Sterile Mycelium and Black Sterile Mycelium were observed.

Key words: Mineral cycling, fertilizers, fungus culture, urea, farmyard manure (FYM), vermicompost

INTRODUCTION

The microorganisms carry out a number of transformations in the soil as part of their normal activities and at the same time they are instrumental in adding organic matter to soil (Brady and Weil, 1999). The total number of organisms, the diversity of species and the activity of the soil biota fluctuates with changing soil environment. These changes may be caused by natural or imposed systems. Plant residues provide sources of energy and nutrient for the biota, which turnover organic matter improve nutrient availability and soil structures and prevent disease and degrade pollutants. Soil biota can increase and reduce agricultural production (Badale and More, 2000). Well aggregated soils provides a better living environment for soil organisms and support larger population, soil-borne fungi not add

mucus but the vast network of thread-like hyphae hold the soil particles together improving stability (Otten and Gilligan, 1998; Harris et al., 2003; Otten et al., 2004). Soil microbial activity is a biomarker of degradation of remediation (Pascual et al., 2000). The ecological studies of soil fungal flora was made by Reichardt et al. (2001), Li et al. (2001) and Marschner et al. (2003). In this respect, the soil microflora can be manipulated and protected to enhance the nutrient cycling, which improves chemical and physical properties and regulates the decomposition process in soil (Rezacova et al., 2007). Soil amendments such as plant residues, manures and composts play a major role in changing the soil ecosystem; its physio-chemical characteristics and soil microflora are of great significance in soil microbiology (Anastasi et al., 2005). Recently, several reports (Wada and Toyota, 2004; Girvan et al., 2005) have found that organic amendment may enhance soil functional stability mediated by soil microbial community. Microbial community composition cab be more sensitive to soil amendment with plant residues than microbial biomass and it is possible that the different forms of organic amendments such as organic fertilizers i.e., urea, FYM and vermicompost stimulate soil microbial growth and activity, with subsequent mineralization of soil nutrients (Randhawa et al., 2005), but the ability to deliver nutrients depends on the composition of the amendments. Since availability of carbon substrates largely controls microbial growth in soil, it is a key factor governing nitrogen, phosphorus and sulphur cycling. Previous studies have found that amendment with farmyard manure (Toyota et al., 1999) and spent mushroom compost (Piqueres et al., 2006) significantly affected soil microbial community structure. However, the effects of compost were found to vary depending on both the type of compost and the soil type (Piqueres et al., 2006). Microorganisms form a vibrant living community in the soil contributing to a number of nutrient transformations. They are involved in organic matter decomposition, nitrogen-fixation, solubilization and immobilization of several major and minor nutrients (Katayama et al., 1998; Lal, 1998; Muller et al., 1998). In the present study an attempt has been made to analyze the effect of different amendments on fungal population in soils at different-time intervals (Zaller and Koepke, 2004; Hole et al., 2005; Chang et al., 2007; Stark et al., 2007).

MATERIAL AND METHODS

The whole method was done at Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, B.H.U., Varanasi, India during 1st July 2009 to December 2009. For the study of fungal community associated with soils, different isolation techniques were adopted. The soil inhabiting fungi were studied by Dilution plate technique and soil plate method technique. Dilution plate technique gives the useful information of the number of each type of microorganism in the soil samples. The soil sample was crushed and 10 g of it was suspended in 100 mL of sterilized distilled water. Further dilution series 1:1000, 1:10,000, 1:1, 00, 000 were prepared from it. One milliliter of each dilution was poured individually in sterilized Petri plates. Then 15-20 mL of sterilized nutrient medium was added. Five replications of each dilution were prepared and all plates were incubated 25±2°C for a week. In soil plate method a plate was prepared by transferring a small amount of soil to be examined into sterile petri dish. The amount of soil should result in at convenient number of fungal colonies on each plate. The soil was transferred with help of inoculating needle 10-15 mL of melted agar medium, the dispersal was obtained by gently shaking and rotating the plate before the agar solidifies. The plates were then allowed to incubate at 25-30°C for a period of 2-3 days.

Total No. of fungi/g over dried soil was calculated on the basis of total number of fungi in particular concentration being divided by over dry weight of soil:

Asian J. Plant Pathol., 4 (2): 73-81, 2010

No. of fungi/g of soil = $\frac{\text{Total No. of fungi} \times \text{Concentration of the solution}}{\text{Over dry weight of the soil}}$

Frequency and abundance of fungi were determined with the help of following formula (Saksena, 1955). pH was determined with the help of Elico-Electric pH meter. Moisture content was determined on the basis of percentage loss in dry weight. Available Nitrogen was determined by alkaline permanganate method by Subbiah and Asija (1956). The method of Olsen *et al.* (1954) was used for determination of available Phosphorus in soil. Potassium determined by flame photo metrically (Jackson, 1973). Organic carbon in soil was determined by chronic acid rapid titration method (Walkley and Black, 1934). Organic Matter was estimated by multiplying total carbon with constant factor 1.724.

RESULTS

The data of pH, moisture content and average number of fungi per gram of dry soil is presented in Table 1, maximum pH was 7.18 at 30 and 45 days at 2%, maximum moisture was 33.20 at 15 days 1% and maximum average number of fungi 40.6×10⁴ at 15 days at 2% concentration of FYM. The maximum fungi were recorded when the soil amended with FYM $(40.6 \times 10^4 \,\mathrm{g}^{-1})$, urea $(38.8 \times 10^4 \,\mathrm{g}^{-1})$ and vermicompost $(35.6 \times 10^4 \,\mathrm{g}^{-1})$ of dry soil at different concentration 2.0, 1.5 and 2.0%, respectively. In control where soil was not amended with any organic amendment, the number of fungi was 13.0×10^4 g⁻¹ to 16.8×10^4 g⁻¹, 14.4×10^4 g⁻¹ to 16.8×10^4 g⁻¹, 13.8×10^4 to 16.8×10^4 g⁻¹ in urea, FYM and Vermicompost respectively. The soil fungi were determined by dilution plate technique, recorded as frequency and abundance of fungi at different organic amendments viz., urea (Table 2), eighteen fungus were found and frequency of Aspergillus niger was maximum that is 5 at 1.5% concentration at 15 days and abundance of Aspergillus niger is maximum that is 4 at 1.5% at 15 days and 30 days respectively and Penicillium citrinum, abundance is maximum (4) at 1.5% concentration of urea at 30 days. Soil amended with FYM (Table 3), twenty-two fungus were observed and Aspergillus niger frequency (5) were maximum at 1, 1.5 and 2% concentrations of FYM at 15 days and abundance (4) were maximum at 2% concentration of FYM at 15 and 30 days,

Table 1: The pH, moisture content, average number of fungi/g of soil in control and amended with different concentrations of urea, FYM and vermicompost

	15 Days						45 Days				
Amendments with different concentration	pН	Moisture	Average No. of fungi/g×10 ⁴	pH Moisture		Average No. of fungi/g×10 ⁴	pH Moisture		Average No. of fungi/g×10 ⁴		
Control	7.02	29.94	16.80	7.02	29.94	16.80	7.020	29.94	16.80		
Urea											
1.0%	6.80	32.12	27.80	6.74	28.46	17.80	6.920	27.12	16.40		
1.5%	6.62	30.86	38.80	6.48	28.44	24.00	6.640	26.22	22.40		
2.0%	6.50	31.08	33.60	6.28	27.36	21.80	6.460	25.86	20.40		
C.D. at 5%	0.09	01.46	02.17	0.10	00.69	01.87	0.084	00.90	01.86		
FYM											
1.0%	6.90	33.20	24.20	6.94	29.28	18.20	6.940	27.30	17.00		
1.5%	7.06	32.58	32.40	7.04	29.84	27.60	7.040	26.94	27.20		
2.0%	7.10	31.10	40.60	7.18	28.48	34.00	7.180	26.86	31.20		
C.D. at 5%	0.08	01.61	02.17	0.14	01.20	02.22	0.180	01.05	02.36		
Vermicomposi	t										
1.0%	6.96	29.70	21.20	7.04	28.12	19.20	7.100	26.20	16.40		
1.5%	7.20	29.68	30.40	7.14	26.73	25.60	7.280	25.32	21.40		
2.0%	7.32	29.37	35.60	7.34	26.52	32.00	7.320	24.18	29.40		
C.D. at 5%	0.11	00.87	02.89	0.12	00.75	02.11	0.200	01.05	02.33		

Table 2: Isolation of fungi from soil amended with urea

	Concentration																		
	15	days					30 days							45 days					
Name of fungi		1%		1.5%		2%		1%		1.5%		2%			1.5%		2%	<u> </u>	
		A	F	Α	F	Α	F	Α	F	 A	F	A	F	A	F	Α	F	Α	
Rhizopus stolonifer	2	2	2	3	2	2	2	1	2	2	1	2	-	-	1	2	2	1	
Aspergillus niger	3	3	5	4	4	3	3	3	3	4	3	4	3	2	3	3	3	2	
Aspergillus flavus	3	2	3	3	3	2	2	2	2	3	2	2	2	1	2	2	2	2	
Aspergillus terreus	3	2	3	3	2	2	2	1	2	2	1	2	-	-	1	1	2	1	
Aspergillus sydowi	2	2	3	2	3	2	1	2	2	2	2	1	1	1	-	-	1	2	
Aspergillus fumigatus	3	2	3	3	3	2	1	2	2	2	2	2	1	1	2	1	2	2	
Trichoderma viridae	-	-	-	-	-	-	1	2	2	1	1	2	-	-	1	2	1	1	
Trichoderma harzianium	2	1	-	-	-	-	2	1	2	2	2	2	1	1	2	2	2	1	
Penicillium citrinum	3	3	4	3	4	2	3	3	3	4	4	3	3	2	2	2	2	2	
Fusarium oxysporum	2	2	3	3	2	2	2	2	3	2	3	2	2	1	2	2	2	2	
Alternaria alternata	2	2	3	2	3	2	2	1	3	2	2	2	-	-	2	2	2	1	
Helminthosporium oryzae	1	2	2	2	2	2	-	-	2	2	1	2	1	1	2	1	1	2	
Cladosporium	-	-	2	1	2	2	-	-	2	1	2	1	1	1	2	1	1	1	
c ladosporiodes																			
Phoma hibernica	2	1	2	2	3	2	1	1	2	1	2	2	1	2	2	2	2	1	
Curvularia lunata	2	2	3	2	3	2	2	1	2	2	3	2	-	-	2	1	1	2	
White Sterile Mycelium	-	-	1	2	-	-	1	2	-	-	2	2	1	-	1	2	1	2	
Black Sterile Mycellium	1	2	-	-	-	-	1	1	1	2	-	-	-	-	-	-	1	1	

F: Frequency in percent, A: Abundance in absolute number

Table 3: Isolation of fungi from soil amended with FYM

	Concentration																	
	15 days						30	days	45 days									
	1%		1.5	%	2%	ó	1%	, ,	1.5	%	2%		1%		1.5	5%	2%	, ,
Name of fungi	F	A	F	Α	F	Α	F	Α	F	Α	F	A	F	A	F	Α	F	Α
	F	A	F	A	F	Α	F	Α	F	Α	F	Α	F	Α	F	A	F	Α
Rhizopus stolonifer	1	1	-	-	1	1	1	1	-	-	1	1	1	1	1	2	1	2
Mucor racemosus	1	1	2	1	-	-	1	1	1	1	1	2	2	1	-	-	1	2
Aspergillus niger	5	3	5	3	5	4	3	3	4	3	3	4	4	3	4	3	3	3
Aspergillus flavus	2	1	2	2	3	2	-	-	2	1	2	2	-	-	1	2	2	2
Aspergillus sulphureus	-	-	2	2	2	2	-	-	1	1	2	1	1	1	1	2	2	2
Aspergillus terreus	1	1	1	1	2	1	1	1	-	-	1	2	-	-	-	-	1	1
Aspergillus sydowi	1	1	2	1	2	2	-	-	2	1	2	1	-	-	-	-	1	2
Aspergillus candidus	-	-	-	-	-	-	1	1	1	2	2	2	2	1	1	2	2	2
Aspergillus fumigatus	1	2	1	2	2	1	1	2	2	1	2	2	2	2	2	2	2	2
Trichoderma viridae	1	1	2	1	2	2	1	2	2	1	2	2	1	2	2	2	3	2
Trichoderma harzianium	1	2	1	2	2	2	1	2	2	2	3	2	2	1	3	2	2	2
Penicillium citrinum	3	2	3	3	3	3	3	2	4	2	4	2	2	1	3	3	2	2
Fusarium oxysporum	1	1	2	1	2	2	1	2	2	1	1	1	2	1	1	1	1	1
Alternaria alternata	1	1	2	1	1	2	1	1	1	2	1	1	2	1	1	1	1	1
Nigrospora sphærica	1	1	2	1	2	2	1	1	1	2	1	2	2	1	1	2	2	1
Chaetomium globosum	1	1	2	1	2	2	1	2	-	-	2	2	-	-	-	-	1	2
Phoma hibernica	1	1	1	1	2	1	-	-	1	1	1	2	1	1	-	-	1	1
Curvularia lunata	1	2	2	1	1	1	1	1	1	2	1	1	1	1	1	1	-	-
White Sterile Mycelium	-	-	1	1	-	-	1	1	1	1	1	1	2	1	1	1	1	1
Pink Sterile Mycellium	-	-	-	-	-	-	1	1	-	-	1	2	1	1	-	-	1	1
Black Sterile Mycellium	1	1	-	-	-	-	1	1	1	1	-	-	1	1	-	-	1	1
Unidentified Species			1	1	_		1	1	-	-	1	1	1	1	_	-	_	-

F: Frequency in percent, A: Abundance in absolute number

respectively. Soil amended with vermicompost (Table 4), twenty fungus were observed in which Aspergillus niger frequency (5) and abundance (4) were maximum at 2% concentration

Table 4: Isolation of fungi from soil amended with Vermicompost

	Co	ncentr	ation																
	15	days					30 days							45 days					
		1%		1.5%		2%		1%		1.5%			1%		1.5%		2%	ó	
Name of fungi	F	A	F	A	F	Α	F	Α	F	Α	F	A	F	A	F	A	F	Α	
Rhizopus stolonifer	1	1	1	2	2	2	2	1	1	2	-	-	1	1	-	-	1	1	
Mucor racemosus	1	1	2	1	2	2	1	1	1	1	-	-	1	1	1	1	-	-	
Aspergillus niger	3	2	4	3	5	4	3	2	4	2	4	3	3	2	4	1	4	2	
Aspergillus flavus	1	2	2	2	3	2	-	-	2	1	2	2	1	1	1	2	2	2	
Aspergillus sulphureus	1	1	1	2	2	2	1	1	2	1	2	2	-	-	1	2	2	1	
Aspergillus terreus	-	-	1	1	2	2	1	1	1	1	-	-	-	-	1	1	1	1	
Aspergillus sydowi	1	1	1	2	2	1	-	-	-	-	2	1	1	1	1	1	1	2	
Aspergillus fumigatus	-	-	2	1	2	2	1	1	1	2	2	2	1	1	1	2	2	2	
Trichoderma viridae	-	-	2	1	2	2	1	1	1	2	2	1	-	-	2	1	2	1	
Trichoderma harzianium	2	1	2	2	-	-	-	-	1	2	2	2	1	1	1	1	2	1	
Penicillium citrinum	3	2	3	2	4	3	3	2	3	2	4	2	3	2	3	2	4	1	
Fusarium oxysporum	2	1	1	2	2	1	1	1	1	2	-	-	-	1	1	2	1	1	
Alternaria alternata	2	1	1	2	1	2	-	-	1	2	1	1	1	1	1	1	-	-	
Cladosporium	2	1	1	2	2	2	1	1	1	1	2	1	-	-	1	1	2	1	
cladosporiodes																			
Chaetomium globosum	1	2	1	2	2	2	1	1	1	1	1	2	1	1	-	-	1	2	
Curvularia lunata	1	1	1	2	2	1	1	1	1	1	1	1	2	1	1	1	-	-	
Pink Sterile Mycellium	1	1	1	2	1	1	1	1	-	-	2	1	1	1	-	-	2	1	
Black Sterile Mycellium	1	1	2	1	-	-	1	1	2	1	1	1	1	1	2	1	-	-	
Unidentified Species	1	1	-	-	1	1	1	1	2	1	-	-	1	1	1	1	2	1	

F: Frequency in percent, A: Abundance in absolute number

Table 5: Isolation of fungi from soil in control condition

	15 days		30 days	;	45 days		
Name of fungi	F	 A	 F	 A	F	A	
Rhizopus stolonifer	2	1	2	1			
Mucor racemosus	$\frac{\overline{}}{2}$	2	2	2	2	1	
Aspergillus niger	4	3	4	2	3	2	
Aspergillus flavus	3	2	2	2	2	1	
Aspergillus sulphureus	3	2	2	1	2	1	
Aspergillus sydowi	2	1	-	-	2	1	
Aspergillus candidus	-	-	-	-	2	2	
Trichoderma harzianium	3	1	2	2	2	1	
Penicillium citrinum	3	3	3	2	2	2	
Fusarium oxysporum	2	2	1	2	1	1	
Alternaria alternata	2	3	2	1	-	-	
Cladosporium cladosporiodes	2	1	1	1	1	1	
Curvularia lunata	2	2	2	1	-	-	
White Sterile Mycelium	-	-	-	-	1	1	
Black Sterile Mycellium	-	-	1	1	-	-	

F: Frequency in percent, A: Abundance in absolute number

at 15 days. In control conditions (Table 5) where soil was not amended with any organic amendment only Fifteen fungus were found in which frequency (4) of *Aspergillus niger* was maximum at 15 and 30 days respectively and abundance (3) of *Aspergillus niger*, *Penicillum citrinum and Alternaria alternata* were maximum at 15 days. They may be classify into three groups according to their appearance, frequency abundance and their sporulation. The values of nitrogen, phosphorus, potassium, carbon and organic matter were furnished in (Table 6). Which indicate the variation of Nitrogen 365-518 kg h⁻¹, Phosphorus 30.5-36.1 kg h⁻¹, Potassium 189-267.2 kg h⁻¹, Carbon 0.28-0.58 percent and Organic matter 0.48-0.99%. The values of NPK were increased in the soil amended with urea, FYM and

Table 6: Nutrient content of the soil after amended with urea, FYM and vermicompost

	Control			1.0%			2%			2.5%			
Urea	15 days	30 days	45 days	15 days	30 days	45 days	15 days	30 days	45 days	15 days	30 days	45 days	
N (kg h ⁻¹)	372.00	368.00	376.00	445.00	429.00	417.00	498.00	473.00	459.00	518.00	508.00	483.00	
$P (kg h^{-1})$	32.40	31.80	32.10	32.80	33.00	31.90	36.00	35.20	32.80	34.70	34.60	33.90	
K (kg h ⁻¹)	248.50	239.90	243.70	202.00	207.30	198.00	216.60	209.10	201.40	197.90	193.50	189.00	
C.C. (%)	0.29	0.31	0.33	0.34	0.33	0.35	0.41	0.39	0.37	0.43	0.40	0.38	
O.M. (%)	0.50	0.53	0.57	0.59	0.57	0.60	0.71	0.67	0.64	0.74	0.69	0.66	
FYM													
N (kg h ⁻¹)	369.00	365.00	367.00	368.00	378.00	382.00	374.00	385.00	389.00	373.00	381.00	398.00	
$P (kg h^{-1})$	30.80	31.70	30.50	32.00	33.20	32.90	32.90	34.60	34.90	33.70	35.50	36.10	
K (kg h ⁻¹)	235.90	237.10	238.50	239.00	246.00	247.90	238.60	249.20	251.30	241.30	256.80	255.60	
C.C. (%)	0.32	0.31	0.34	0.32	0.35	0.35	0.39	0.43	0.47	0.49	0.48	0.50	
O.M. (%)	0.55	0.53	0.59	0.55	0.60	0.60	0.67	0.74	0.81	0.84	0.83	0.86	
Vermicomp	ost												
N (kg h ⁻¹)	365.00	372.00	370.00	369.00	374.00	381.00	367.00	380.00	393.00	367.00	386.00	407.00	
$P (kg h^{-1})$	30.70	31.60	31.50	31.90	33.20	33.20	30.60	34.60	35.00	32.10	34.30	34.90	
K (kg h ⁻¹)	242.60	240.40	243.00	239.80	246.10	248.10	242.30	255.30	257.80	243.80	259.80	267.20	
C.C.	0.28	0.31	0.32	0.30	0.36	0.39	0.43	0.49	0.51	0.48	0.54	0.58	
O.M. (%)	0.48	0.53	0.55	0.51	0.62	0.67	0.74	0.84	0.88	0.83	0.93	0.99	

N: Nitrogen, P: Phosphorus, K: Potassium, C.C: Carbon content, O.M: Organic matter

Vermicompost. The nitrogen content varies from in soil amended with urea 368-518 kg h⁻¹, FYM 365-398 kg h⁻¹ and Vermicompost 365-407 kg h⁻¹.

DISCUSSION

Moisture content plays an important role in microbial activity in the soil. Increasing moisture contents help in increasing microbial activities. Maximum moisture content (33.20%) was recorded at 15 days sampling amended with FYM. Madge (1965) has shown marked effect of moisture on the number of soil fungi. Moisture content is chiefly responsible for the colonization of microorganisms (Hudson, 1971; Dunn *et al.*, 1985; Pandey *et al.*, 1991; Marianari *et al.*, 2000; Zaller and Koepke, 2004). The pH of the soil varied from 6.28 to 7.34. The pH of soil amended with FYM and vermicompost was higher than the soil amended with urea. The increase in pH was due to decomposition of FYM and vermicompost (Shiralipour *et al.*, 1992; Kannan *et al.*, 2005).

The dominant fungi were those, which appeared in almost all sampling and more in number. In this group following fungi were included: Rhizopus stolonifer, Aspergillus niger, Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum and Trichoderma harzianium. In the common group of fungi are Mucor racemosus, Aspergillus sulphureus, Aspergillus terreus, Aspergillus sydowi, Aspergillus candidus, Trichoderma viridae, Alternaria alternata, Curvularia lunata and Cladosporium cladosporiodes are found they are less than 75% and more than 50%. Rare group included those fungi appeared once. These Chaetomium globosum, Phoma Nigrospora sphaerica, hibernica Helminthosporium orvzae. The beneficial effect of fertilizer in increasing fungal population was reported by many workers (Jadhaw et al., 1997; Gunapala and Scow, 1998; Marinari, 2000; Karmegan and Daniel, 2000; ICRISAT and APRLP, 2003) and ascribe the higher nutrient supply as the reason for it. It is also clear from the data that fungal population of amended soil decreased with the increase of incubation period. The reason for it may be that during the early phase of incubation (15 days) most of the nutrient status of fertilizers is utilized by the soil inhabitant, hence, they increased in number, but at later stages nutrient level decreased and consequently lower the fungal counts (Elmholt and Zabruriau, 2005; Singh et al., 2007; Guerrero et al., 2007; Mandal et al., 2007).

It has been attributed by several workers (Agarwal and Chauhan, 1988; Bulluck *et al.*, 2002) that urea is a good source of nitrogen for the microbial growth and multiplication. Soil available Phosphorus varied from in soil amended with urea 31.8-36 kg h⁻¹, FYM 30.5-36.1 kg h⁻¹ and vermicompost 30.6-35 kg h⁻¹, while the available Potassium in soil amended with these three amendments, ranged between 189-248.5, 235.9-256.8 and 239.8-259.8 kg h⁻¹ in urea, FYM and vermicompost, respectively. Soil available Phosphorus, Potassium were either or higher than initial value. In most of the Indian soil the amount of organic matter is relatively less and influence on physical properties can be largeness. The soil organic amendments *viz.* urea, FYM and vermicompost can help to maintain or increase soil organic matter and improve the physical properties. The changes in physico-chemical properties of soil were studied by Das *et al.* (1947), Chander *et al.* (1998), Balloli *et al.* (2000) and Chakrabarti *et al.* (2000).

REFERENCES

- Agarwal, A.K. and S. Chauhan, 1988. Influence of fertilizers on the population dynamics of soil microfungi. Proc. Nat. Acad. Sci. Ind., 58B: 603-610.
- Anastasi, A., G.C. Varese and V.F. Marchisio, 2005. Isolation and identification of fungal communities in compost and vermicompost. Mycologia, 97: 33-44.
- Badale, S.B. and S.D. More, 2000. Soil organic carbon status as influenced by organic and inorganic nutrient sources in vertisol. J. Maharashtra Agric. Univ., 25: 220-222.
- Balloli, S.S., R.K. Ratan, R.N. Garg, S. Gurucharan and A.K. Kumari, 2000. Soil physical and chemical environment as influenced by duration of rice-wheat cropping system. J. Ind. Soc. Soil Sci., 48: 75-78.
- Brady, N.C. and R.P. Weil, 1999. Soil Organic Matter. In: The Nature and Properties of Soils, Brady, N.C. and R.P. Weil (Eds.). Prentice Hall Inc., Upper Saddle River, New Jersey, pp. 446-490.
- Bulluck, L.R., M. Brosius, G.K. Evanylo and J.B. Ristaino, 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecol., 19: 147-160.
- Chakrabarti, K., B. Sarkar, A. Chakraborty, P. Banik and D.K. Bagchi, 2000. Organic recycling for soil quality conservation in a sub-tropical plateau region. J. Agron. Crop Sci., 184: 137-142.
- Chander, K., S. Goyal, D.P. Nandal and K.K. Kapoor, 1998. Soil organic matter, microbial biomass and enzyme activities in a tropical agroforestry system. Biol. Fertil. Soils, 27: 168-172.
- Chang, E.H., R.S. Chung and Y.H. Tsai, 2007. Effect of different application rates of organic fertilier on soil enzyme activity and microbial population. Soil Sci. Plant Nutr., 53: 132-140.
- Das, B.C., S. Nath and S.K. Banerji, 1997. Antagonistic effect of *Aspergillus terrus*, *Trichoderma harzianum* and *Trichoderma viridae* on sheath vblight of rice. Oryza, 33: 62-65.
- Dunn, P.H., C.B. Susan and M. Path, 1985. Soil moisture affects survival of micro-organisms in heated carparral. Soil Biochem., 17: 143-148.
- Elmholt, S. and R. Labouriau, 2005. Fungi in danish soils under organic and conventional farming. Agric. Ecosys. Environ., 107: 65-73.
- Girvan, M.S., C.D. Campbeel, K. Killham, J.I. Prosser and L.A. Glover, 2005. Bacterial diversity promoted community structure stability and functional resilience after perturbation. Environ. Microbial., 7: 301-313.

- Guerrero, C., R. Moral, I. Gomez, R. Zornaza and V. Arcengui, 2007. Microbial biomass and activity of an agricultural soil amended with the solid phase of pig slurries. Biorasour. Technol., 98: 3259-3264.
- Gunapala, N. and K.M. Scow, 1998. Dynamics of soil microbial biomass and activity of conventional and organic farming systems. Soil Biol. Biochem., 30: 805-816.
- Harris, K., I.M. Young, C.A. Gilligan, W. Otten and K. Ritz, 2003. Effect of bulk density on the spatial organization of the fungus *Rhizoctonia solani* in soil. FEMS Microbiol. Ecol., 44: 45-56.
- Hole, D.G., A.J. Perkins, J.D. Wilson, I.H. Alexander, P.V. Grice and A.D. Evans, 2005. Does organic farming benefit biodiversity. Biol. Conserv., 122: 113-130.
- Hudson, H.J., 1971. Fungal Saprophytism Studies in Biology. Edward Arnold Publisher, London.
- ICRISAT and APRLP., 2003. Vermicompost: Conversion of Organic Waste into Valuable Manure. ICRISAT and APRLP., India, pp. 4.
- Jackson, M.L., 1973. Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India.
 Jadhaw, A.D., S.C. Talashikhar and A.G. Pawar, 1997. Influence of the conjunctive use of FYM vermicompost and urea on growth and nutrient uptake in rice. J. Maharastra Agric. Univ., 22: 249-250.
- Kannan, P., A. Sarvanan, S. Krishnakumar and S.K. Natrajan, 2005. Biological properties of soil as influenced by different organic manure. Res. J. Agric. Biol. Sci., 1: 181-183.
- Karmegan, N. and T. Daniel, 2000. Effect of biodigested slurry and vermicompost on the growth and yield of cowpea. Environ. Ecol., 18: 367-370.
- Katayama, A., H.Y. Hu, M. Nozawa, H. Yamakawa and K. Fujie, 1998. Longterm changes in microbial community structure in soils subjected to different fertilizing practices revealed by quinine profile analysis. Soil. Sci. Plant Nutr., 44: 559-569.
- Lal, R., 1998. Soil Quality and Agricultural Sustainability. In: Soil Quality and Agricultural Sustainability, Lal, R. (Ed.). Ann Arbor Press, Chelsea, pp. 3-12.
- Li, Z., C. Yangliang and Y. Tinghzhen, 2000. Ecological distribution and seasonal changes of soil microorganism in pure and mixed plantation. J. For. Res., 11: 106-108.
- Madge, D.S., 1965. Leaf fall and litter disappearance in a tropical forest. Pedobiologia, 5: 273-288.
- Mandal, A., A.K. Patra, D. Singh, A. Swarup and R.E. Mastro, 2007. Effect of long term application of manure and fertilizer on biological and biochemical activities in soil during crop development stage. Bioresour. Technol., 98: 3585-3592.
- Marinari, S., G. Masciandaro, B. Ceccanti and S. Grero, 2000. Influence of organic and mineral fertilizers on soil biological and physical properties. Bioresour. Technol., 72: 9-17.
- Marschner, P., E. Kandeler and B. Marschner, 2003. Structure and function of the soil microbial community in a long term fertilizer experiment. Soil Biol. Biochem., 35: 453-461.
- Muller, M.M., V. Sundman, O. Saoinvara and A. Meriloinoe, 1988. Effect of chemical composition on the release of nitrogen from agricultural plant materials decomposing in soil under field condition. Biol. Fertil. Soils, 6: 78-83.
- Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean, 1954. Estimation of available phosphorus in soil by extraction by sodium bicarbonate. US Dept. Agric. Circ., 939: 1-19.
- Otten, W. and C.A. Gilligan, 1998. Effect of physical conditions on the spatial and temporal dynamics of the soil borne fungal pathogen *Rhizoctonia solani*. New Phytol., 138: 629-637.
- Otten, W., K. Harris, I.M. Young, K. Ritz and C.A. Gilligan, 2004. Preferential spread of the pathogenic fungus *Rhizoctonia solani* through structured soil. Soil Biol. Biochem., 36: 203-210.

- Pandey, R.R., A.P. Chaturvedi and R.S. Dwivedi, 1991. Ecology of microfungi in soil profile of guava orchard with reference to edaphic factors. Proc. Nat. Acad. Sci. Ind., 61: 97-107.
- Pascual, J.A., C. Garcia, T. Hernandez, J.L. Moreno and M. Ros, 2000. Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol. Biochem., 32: 1877-1883.
- Piqueres, A.P., V.E. Hermann, C. Alabouvette and C. Steinberg, 2006. Response of soil microbial communities to compost amendments. Soil Biol. Biochem., 38: 460-470.
- Randhawa, P.S., L.M. Condron, H.J. Di, S. Sinaj and R.D. McLenaghen, 2005. Effect of green manure addition on soil organic phosphorous mineralization. Nutr. Cycl. Agroecosyst., 73: 181-189.
- Reichardt, W., A. Briones, R. Jesus and B. Padse, 2001. Microbial population shifts in experimental rice system. Applied Soil Ecol., 17: 151-163.
- Rezacova, V., P. Baldrian, H. Hrselova, J. Larsen and M. Gryndler, 2007. Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbial., 52: 415-422.
- Saksena, S.B., 1955. Ecological factors governing the distribution of micro soil fungi in forest soil of Sagar. J. Ind. Bot. Soc., 34: 262-298.
- Shiralipour, A., D.B. Mc-Connel and W.H. Smith, 1992. Physical and chemical properties of soil as affected by municipal solid waste compost application. Biomass Bioenergy, 3: 261-266.
- Singh, S., N. Ghosal and K.P. Singh, 2007. Variation in soil microbial biomass and crop root due to different resource quality input in a tropical dryland agroecosystem. Soil Biol. Chem., 39: 76-83.
- Stark, C., L.M. Condron, A. Stewart, H.J. Di and M. O'Callaghan, 2007. Influence of organic and mineral amendments on microbial soil properties and processes. Applied Soil Ecol., 35: 79-93.
- Subbiah, B.V. and G.L. Asija, 1956. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci., 25: 259-260.
- Toyota, K., K. Riz, S. Kuninaga and M. Kimura, 1999. Impact of furnigation with metam sodium upon soil microgial community structure in two Japanese soils. Soil Sci. Plant Nutr., 45: 207-223.
- Wada, S. and K. Toyota, 2004. Effect of organic amendment on the resistance and resilience of furnigated soils. Proceeding of EURO SOIL 2004, Oct. 7-8, Freiburg, Germany, pp. 4-12.
- Walkley, A. and I.A. Black, 1934. An examination of the methods of determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37: 29-38.
- Zaller, J.G. and U. Koepke, 2004. Effect of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol. Fertil. Soils, 40: 222-229.