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ABSTRACT 
Oxidative stress is the outcome of an imbalance between the production and neutralization of

reactive oxygen and nitrogen species (RONS) such that the antioxidant capacity of cell is
overwhelmed. The present review briefly summarized the underlying role of overwhelming levels
of RONS in the pathophysiology of diabetes mellitus (DM). The review is based on using keywords
to obtain information from publications in PubMed,  ScienceDirect and  Google  Scholar  from 1970-
2015. The primary causative factor of oxidative stress in DM is hyperglycemia, which operates via
several mechanisms. However, the individual contribution of other intermediary factors to
hyperoxidative stress remains undefined, in terms of the dose response relationship between
hyperglycemia and overall oxidative stress in DM. Intuitively, the inhibition and/or scavenging of
intracellular free radical formation provide a therapeutic strategy to prevent oxidative stress and
ensuing pathologic conditions. The integration of antioxidants formulations into conventional
therapeutic interventions, either by ingestion of natural antioxidants or through dietary
supplementation should be encouraged for a holistic approach to the management and prevention
of DM and complications associated with the pathology.
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INTRODUCTION 
Oxidative stress is the outcome of an imbalance between the production and neutralization of

reactive oxygen and nitrogen species (RONS) such that the antioxidant capacity of cell is
overwhelmed (Shin et  al.,  2001;  Styskal  et  al.,  2012;  Sellamuthu  et al., 2013;  Poljsak  and
Fink, 2014). Ordinarily, the peculiar molecular configuration of oxygen (O2) confers a very slow
reactivity between O2 and biomolecules. Two main factors make O2 kinetically insert; the spin
restriction imposed by its triplet state and the negative standard potential for one electron
reduction of O2 to superoxide radical (O2

•G). However, O2 possesses the attributes of free radicals
in that it has two unpaired electrons with parallel spin in different  -anti-bonding orbitals that is
responsible for its paramagnetic properties and relative stability (Pollack and Leeuwenburgh, 2000;
Poljsak and Fink, 2014). Spin restriction can be overcome by single electron exchange that converts
O2 to strong oxidizing agent (Rotilio et al., 2000; Thannickal and Fanburg, 2000). Therefore, the
activation of O2 by specific enzymes is achieved by the presence, at the active site, of either flavins
or reduced transition metals such as iron (Fe2+) and copper (Cu2+), which donates single electron
to O2 (Rotilio et al., 2000). In the case of metalloproteins, a varying degree of electron transfer from
the metallic moiety to O2 is possible. On this basis, metalloproteins can behave either as O2 carriers
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(hemoglobin, hemocyanin, hemerythrin, myoglobin), where reversible interaction with O2 occurs,
or as O2 reductants. Studies showed that autoxidation of oxy-hemoglobin elicit the generation of
free radicals (Moussa, 2008). 

Electron transfer to O2 is catalyzed by oxidases for production of chemical energy or oxidation
of substrates. These enzymes, located in different subcellular compartments (mitochondria,
endoplasmic reticulum, peroxisomes) are potential sources of partially reduced Cu2+ derivatives in
biological milieu. Cytosolic enzymes {xanthine oxidase, NADPH oxidases, lipoxygenase,
cyclooxygenase (COX), cytochrome P450 enzymes and aldehyde oxidase}, uncoupled endothelial
nitric  oxide  synthase  (eNOS)  and  other  hemoproteins  also  produce  O2

•G during  catalysis
(Yung et al., 2006; Alfadda and Sallam, 2012; Styskal et al., 2012). The mitochondrial electron
transport chain reduces O2-O2

•G at ubiquinone and NADH dehydrogenase sites, whereas;
microsomal cytochrome P450 and its reductases produce O2

•G during xenobiotic biotransformation
(Desco et al., 2002; Wright et al., 2006; Sugatani et al., 2006; Bajaj and Khan, 2012). The “Leaky”
inner mitochondrial membrane electron transport chain directly reacts with O2 to generate O2

•G,
which dismutase to form hydrogen peroxide (H2O2), which can further react to form the hydroxyl
radical (•!OH) (Pollack and Leeuwenburgh, 2000; Alfadda and Sallam, 2012; Styskal et al., 2012).
Additionally, the mitochondrial outer membrane enzyme, monoamine oxidase, catalyzes the
oxidative deamination of biogenic amines and it’s a quantitatively large source of H2O2 that
contributes to increase in steady state concentrations of reactive species within both the
mitochondrial matrix and cytosol (Cadenas and Davies, 2000). Specifically, O2

•G is the primary
radical formed by the reduction of O2 leading to secondary radicals or reactive oxygen species  (ROS)
such as H2O2 and •!OH in the mitochondria (Pollack and Leeuwenburgh, 2000; Styskal et al., 2012).
Although, the cause-effect relationship remains tentative, there appears to be a strong association
between mitochondrial dysfunction and chronic metabolic diseases such as Type II diabetes
mellitus (T2DM) and obesity (Alfadda and Sallam, 2012). The origin, enzymatic pathways of ROS
and their oxidized products, as well as their enzymatic inactivation pathways in T2DM have
previously been summarized (Hayden and Tyagi, 2004). 

The RONS have been implicated in the pathophysiology of various disease states, including
diabetes  mellitus (DM) and long-term development of associated complications (Hayden  and
Tyagi, 2004; Wright et al., 2006; Giacco et al., 2010; Alfadda and Sallam, 2012; Bajaj and Khan,
2012). Oxidative tissue damage is mediated by activating a number of cellular stress-sensitive
pathways, which include nuclear factor-9B (NF- 9B), p38 mitogen-activated protein kinase, NH2-
terminal Jun kinases/stress-activated protein kinases and hexosamines (Evans et al., 2003).
Consequently, imbalance between cellular generation and scavenging capacity of free radicals
elicits tissue damage associated with DM pathology (Betteridge, 2000; Bajaj and Khan, 2012;
Styskal et al., 2012). Also, incidents of oxidative stress-induced neurological disorders mediated by
inhibition of enzymatic activities connected with neurotransmission have been reported in
experimental diabetic rats (Ashokkumar et al., 2006; Ghareeb and Hussen, 2008; Alipour et al.,
2012). As a follow up to these findings, it is obvious that understanding the relationship between
oxidative stress and DM pathology has the potentials to expand the therapeutic intervention
options against the pathogenesis and progression of the disease. Therefore, the present review
briefly summarized the underlying role of overwhelming levels of RONS in the pathophysiology of
DM. The review is based on using keywords to obtained information from publications in PubMed,
ScienceDirect and Google Scholar from 1970-2015.
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Oxidative damage and modification of macromolecules: The radicals (O2
•G, •!OH, NO¯, 1O2,

RO¯2, ¯ONOO) and pro-radicals (H2O2, HOCl, RS and O3) are extremely reactive molecules. In
biological systems, RONS cause substantial damage/modification to functional and structural
macromolecules (lipids, nucleic acids and proteins), as well as modulation of activity of antioxidant
enzymes (Poljsak and Fink, 2014). Oxidative attack of polyunsaturated fatty acids  (PUFAs) gives
rise to peroxided molecules, which subsequently breakdown to form reactive metabolites. For the
fact that lipids are the major components of biological membranes, fluidity and permeability of
these supra-molecules are severely affected, together with membrane  protein  functionality
(Poljsak and Fink, 2014). The reactive aldehydes are cytotoxic products of lipid peroxidation.
Specifically, 4-hydroxynonenal (HNE) causes long-lasting biological consequences by covalent
modification of macromolecules, whereas at physiological levels, HNE is considered as second
messengers of free radicals and signaling molecules. Report showed that HNE and related reactive
aldehydes may play critical roles in the pathophysiology of DM, in terms of the pathogenesis,
progression and complications of the disease (Jaganjac et al., 2013).

Base modification, scission of deoxyribose rings, strand breaks and ultimately, chromosomal
aberration are outcomes of oxidative damage to nucleic acids. Oxidative challenge on proteins leads
to the modification of amino acids side chains with the introduction of carbonyl groups, or oxidation
of sulphydryl groups with consequent cross linking and aggregation of protein molecules. The
presence of oxidative modifications ultimately results in increased susceptibility of modified
proteins to specific proteases, enzyme deactivation, or conversely, unwarranted activation of
enzymes (Desco et al., 2002; Poljsak and Fink, 2014). 

There appears to be a direct mechanistic link between oxidative stress and the etiology of DM
through the accumulation of oxidative damage to critical macromolecules. Several studies have
established  an  association between increased carbonylation and nitrosylation of proteins in
insulin-sensitive tissues and T2DM (Kaneki et al., 2007; Grimsrud et al., 2008; Muellenbach et al.,
2008). In another study, evidence showed that oxidation of specific proteins compromised their
function  in  vitro  (Levine,  1983;  Levine  et  al., 1999) and there is a correlation between
increasing oxidative stress and diminished protein folding and function in different animal models
(Pierce et al., 2008; Perez-Matute et al., 2009). 

Oxidative stress is as a result of free radicals generated during autoxidation of glucose in DM
(Aronson and Rayfield, 2002; Evans et al., 2003). Overall, DM is characterized by raised level of
oxidative stress with associated increased generation of glycoxidation products, notably, HbA1c

above   the   benchmark   plasma  value  <7%  (Hayden  and   Tyagi,  2004;  Wright  et  al., 2006;
El-Wassef et al., 2012). The presence of hyperglycemia promotes increase in intracellular levels of
advanced glycation end products (AGEs) (Wolf and Ziyadeh, 2007; Di Naso et al., 2011;
Musabayane, 2012). Furthermore, auto-oxidation of glucose generates ROS, such as O2

•G, H2O2  and
•!OH (Bajaj and Khan, 2012; Moussa, 2008), which in turn, accelerate lipid peroxidation with
corresponding accumulation of advanced lipoxidation end products (ALEs) and more free radicals
(Rolo and Palmeira, 2006; Jaganjac et al., 2013). Increased levels of ROS in T2DM also contribute
to a hypercoagulable state and evidence suggests that accumulation of oxidation products occur
prior to the development of DM (Matteucci and Giampietro, 2000). 

Antioxidants such as the flavonoids prevent the formation of AGEs by impeding the glucose
dependent formation of Amadori, Schiff bases or Milliard products, which are intermediary
products leading to the formation of AGEs (Keaney and Loscalzo, 1999; Musabayane, 2012).
Likewise,  disruptions  of  AGEs cross linkages by drugs such as alagebrium or inhibition of AGE
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signal transduction pathway can substantially prevent the accumulation and formation of AGEs,
respectively (Hartog et al., 2007). The option of shielding or obliteration  of  AGEs’  receptor
(RAGE), expression of RAGE antisense cDNA  or  anti-RAGE  ribozyme  may reverse
atherosclerosis in experimental animals (Ihara et al., 2007; Giacco et al., 2010). Also, notable
inhibitors (amino guanidine and pyridoxamine) of AGEs formation exhibit reno-protective effects
in diabetic animals (Lassila et al., 2004; Hartog et al., 2007).

Mechanisms of hyperglycemia induced production of oxygen free radicals: Hyperglycemia
is  known  to  cause  elevation  in  plasma  free  radical concentrations (Hammes et al., 1997;
Cimato et al., 2008). The production of free radicals is engendered by uncontrolled hyperglycemia,
which may occur via several routes (Rolo and Palmeira, 2006; Giacco et  al.,  2010;  Bajaj  and
Khan, 2012): (1) increased glycolysis (Vaag et al., 1992), (2) intercellular activation of sorbitol
(polyol)  pathway  (Williamson  et   al.,  1993;  Di Naso et al., 2011), (3) autoxidation of glucose
(Wolff et al., 1991), (4) protein kinase C (PKC) dependent activation  of  NAD(P)H  oxidase
(Inoguchi et al., 2003), (5) increased hexosamine pathway flux (Rolo and Palmeira, 2006), (6)
increased intracellular formation of AGEs (Giacco et al., 2010), (7) increased expression of receptor
for AGEs and its activating ligands (Giacco et al., 2010) and (8) non-enzymatic protein glycation
(Ceriello et al., 1992). The overall rate of formation of oxidative products leading to oxidative tissue
damage is summarized in Fig. 1.

Hyperglycemia appears to enhance non-oxidative catabolism of glucose to lactate, which is
associated  with  increase  in  NADH/NAD+  ratio  (Vaag et al., 1992; Williamson et al., 1993).
Under the condition of accelerated glycolysis, oxidation of glyceraldehyde 3-phosphate (GAP) to 1,
3-biphosphoglycerate (1, 3-DPG) by glyceraldehyde 3-phosphate dehydrogenase is coupled to
reduction of NAD+ to NADH and appears to become the rate  limiting  step  in  glycolysis
(Kobayashi and Neely, 1979). In the cytosol, NADH is oxidized to NAD+ by lactate dehydrogenase 
(LDH) with concomitant reduction of pyruvate to lactate.

Fig. 1: Relationship between rates of oxidant generation, antioxidant activity, oxidative stress and
oxidative damage in diabetes, RAGE: Receptor for AGEs (Aronson and Rayfield, 2002)
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Thus,  increase in the ratio of NADH/NAD+ reflects increased lactate/pyruvate ratio
(Williamson et al., 1993). The mechanism by which increased rate of glycolysis increases free
cytosolic NADH/NAD+ ratio (redox imbalance) suggest disequilibrium between the rate of oxidation
of  GAP  to  1,  3-DPG  and  the rate of reduction of pyruvate to lactate (Kobayashi and Neely,
1979). Thus, enhanced glycolysis as a result of hyperglycemia is associated with increase in
NADH/NAD+ ratio due to impaired oxidation of NADH to NAD+.

The increase in glucose flux via sorbitol pathway (a pathway of a minor significant under
normal glycemic condition) elicits one of the major metabolic disturbances associated with diabetic
hyperglycemia (Ciuchi et al., 1996). In this pathway, glucose is reduced to sorbitol by aldose
reductase (AR) coupled with oxidation of NADH/NAD+ (Dallak et al., 2008). Subsequently, sorbitol
is oxidized to fructose by NADH dependent sorbitol dehydrogenase (SDH) (Cameron et al., 1997;
Giacco et al., 2010). Previous studies have suggested several hypotheses for tissue injury
engendered by increased sorbitol pathway activity, thus:

The decreased availability of NADPH, which is required for maintenance  of reduced
glutathione (GSH), is oxidized to NADP+ by the reduction of glucose to sorbitol by AR pathway
(Tilton et al., 1995). Furthermore, the competition between AR and glutathione reductase (GSH-R)
for NADPH cofactor further depletes intracellular GSH (Ciuchi et al., 1996). Attention has been
focused on GSH depletion, because it dictates levels of cellular ROS production and accumulation,
which in turn have a bearing on extent of oxidative tissue damage in DM (Brownlee, 1994).
Increased ratio of NADH/NAD+ is connected with accelerated oxidation of sorbitol to fructose by
NADH dependent SDH (Tesfamariam and Cohen, 1992; Brownlee, 2001). Consequently, NADH
molecules generated in the cytosol by oxidation of sorbitol to fructose are eventually conveyed to
the mitochondria and oxidized by respiratory chain reaction that result in production of O2

•G and
other ROS (Williamson et al., 1993; Ceriello et al., 1996). Thus, an increase in the cytosolic NADH
may be accompanied by increased load of mitochondrial NADH, which in turn, leads to increased
ROS generation.

In a cell-free system under physiological conditions, glucose can be auto-oxidized to H2O2,
through enediol tautomer formation, which elicits the accumulation of reactive intermediate such
as •!OH and O2

•G and ketoaldehydes (Brownlee et al., 1988; Packer, 1993). Transition metals such
as Fe2+ promote auto-oxidation of glucose and therefore, are crucial in these reaction cascades
(Packer, 1993). Several studies have equally shown that auto-oxidation of glucose in this manner
are responsible for increased levels of ROS in DM (Monnier, 1990; Santini et al., 1997). 

Non-enzymatic glycation is a spontaneous reaction between glucose and amino groups of
proteins in which reversible Shift bases and more stable Amadori products are formed (Aronson
and Rayfield, 2002). The AGEs are produced by auto-oxidation of Amadori product (Keaney and
Loscalzo, 1999; Ahmed, 2005; Rolo and Palmeira, 2006). Glucotoxicity is elicited through the
binding of AGEs to RAGEs, which have been identified in endothelial cells, monocots/macrophages,
mesangial cells, neurons and smooth muscle cells (Aronson and Rayfield, 2002; Inoguchi et al.,
2003; Hayden and Tyagi, 2004; Yonekura et al., 2005; Wright et al., 2006). The presence of AGEs
elicits poor matrix protein flexibility as a result of formation of cross-links among extracellular
matrix proteins, which leads  to  abnormal  interactions  with  other  matrix  components
(Yonekura et al., 2005). Additionally, the interaction of AGEs with endothelial surface RAGEs
promote intracellular oxidative stress via the activation of AR of polyol-sorbitol pathways,
activation of PKC isoforms and transforming growth factor-β (TGF-β) as well as activation of
nuclear factor (NF-9B) (Aronson and Rayfield, 2002; Evans et al., 2003). The activation of NF-9B
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promotes increase in expression of a variety of cytokines such as tumor necrosis factors (TNF-α and
TNF-β), interleukins (IL) 1, 6, 8 and 18 and interferon-γ, even in the presence of intact antioxidant
mechanisms, which may engender overt diabetic nephropathy with associated glomerulosclerosis
(Esposito et al., 2002; Aronson and Rayfield, 2002; Inoguchi et al., 2003; Hayden and Tyagi, 2004;
Basta et al., 2004; Wright et al., 2006; Styskal et al., 2012). 

Also, increased cellular uptake of glucose stimulates PKC activity (Lee et al., 1989) which,
amongst other effects, activates peroxidase enzymes and the COX pathway (Lee et al.,  1989;
Feener and King, 1997; Golbidi et al., 2012), with resultant overproduction of RONS. The process
leading to this pathology is further enhanced and amplified, when antioxidant defense mechanisms
are compromised (Bierhaus et al., 1997). 

Mechanisms of hyperinsulinemia induced production of oxygen free radicals: Decline in
physical fitness, increase in body fatness and upper body fat distribution are frequently associated
with   hyperinsulinemia   and  insulin  resistance  (DeFronzo  and  Ferrannini,  1991).  Several 
lines of evidence indicated that hyperinsulinemia promoted the generation of free radicals by
NADPH-dependent  mechanism,   which   involved   the   activation   of     phosphatidylinositol 3'-
kinase  and  stimulation  of  proliferative  extracellular signal-regulated  kinases  (ERK-1- and
ERK-2)-dependent pathways (Ceolotto et al., 2004). Furthermore, Krieger-Brauer and Kather
(1992)  reported  that  prolong  exposure  of  human  adipocytes  to  insulin  caused a time- and
dose-dependent accumulation of H2O2 in vitro. This effect, which has been linked to the presence
of a membrane-bound NADPH oxidase, was observed to persist after cell disruption and devoid of
ATP utilization; an indication that the receptor-kinase activity step was bypassed. In addition,
increased insulin concentration in rats following intra-peritoneal injection of dextrose has been
reported to be associated with increased free radical production (Habib et al., 1994).

Fasting hyperinsulinemia is considered to be a hallmark of insulin resistance (DeFronzo and
Ferrannini, 1991) and there is a relationship between insulin resistance and plasma free radical
concentration (Ceriello, 1995, 2000). Factors that contribute to the elevation of free radicals and
pathogenesis of insulin resistant DM are as follows:

C Hyperinsulinemia overdrive of the sympathetic nervous system (Rowe et al., 1981). Specifically,
catecholamine increases free radical production through induction of metabolic rate and
auto-oxidation pathway in DM (Singal et al., 1983)

C Insulin resistance is associated with elevated fasting plasma non-esterified fatty acid (NEFA)
concentration (DeFronzo and Ferrannini, 1991; Randle et al., 1994)

Toborek and Henning (1994) showed that NEFA caused raised levels of oxidative stress in
cultured endothelial cells following initial decreased level of GSH after 6h of incubation. It is
worthwhile to note that the complexity of these multitudes of findings suggests that the generation
of free radicals may represent a potential mechanism by which chronic hyperinsulinemia activates
proliferative events and down-regulates metabolic signals (Ceolotto et al., 2004).

Oxidative stress induced lipid peroxidation in diabetes mellitus: Lipid peroxidation has
been implicated in the pathogenesis of many degenerative disorders (Armstrong et al., 1982)
including naturally occurring and chemically induced DM (Rerup, 1970; Nishigaki et al., 1981;
Higuchi, 1982). Lipid peroxidation is the primary cellular damage resulting from free radical
reactivity of which cellular lipid structures are mostly affected (Toborek et al., 1992; Ahmed, 2005).
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Oxidative deterioration of PUFAs of cellular membrane phospholipids, via intermediate radical
reactions involves the production of hydroperoxides (Rungby et al., 1992; Cameron et al., 1994). The
chain reactions are associated with the generation of highly toxic peroxyl radicals (RO2G) in a cycle
of reactions that generate new lipid hydroperoxides (LHP) because of the proximity of PUFAs in
biomembranes (Kajanachumpol et al., 1997; Betteridge, 2000). 

Also, both radical and non-radical oxidants can induce lipid peroxidation in lipoproteins,
particularly those that contain PUFAs. For instance, peroxynitrite (¯ONOO) is particularly a
powerful oxidant of low-density lipoproteins (LDL) (Violi et al., 1999). Similarly, in vitro studies
have revealed the presence of oxidized LDL (ox-LDL) fractions with identifiable auto-antibodies
against ox-LDL in plasma of Type I DM (T1DM) patients, which suggest that the oxidation LDL
can as well occurs in DM in vivo (Jain et al., 1998). Accordingly, Maejima et al. (2001) noted raised
levels of ̄ ONOO in T2DM patients. Additionally, LDL receptor does not recognize ox-LDL and are
subsequently taken up by scavenger receptors in macrophages to form foam cells, which leads to
atherosclerotic plaques (Boullier et al., 2001; Aronson and Rayfield, 2002).

Early evidence that suggested lipid peroxidation in DM was reported by Sato et al. (1979), in
which they noted that the levels of lipid peroxides in plasma of DM patients were significantly
higher than that of normal subjects. Likewise, levels of plasma lipid peroxides of DM patients with
angiopathy were relatively higher than that of DM patients. They further inferred that raised level
of lipid peroxides was among other several factors that initiates atherosclerosis in DM. In another
study, Davison et al. (2002) used electron spin resonance (ESR) spectroscopy in conjunction with
alpha-phenyl-tert-butylnitrone spin trapping to measure pre- and post-exercise free radical
concentration in the venous blood of young male patients suffering from T1DM in order to ascertain
their susceptibility to rest and exercise-induced oxidative stress. They suggested that greater
concentration of oxidants and LHP were as a result of glucose auto-oxidation couple with lower rate
of exercise-induced oxidation of major lipid soluble antioxidant; α-tocopherol in DM. Furthermore,
they noted that ESR-detected radicals, in the course of the investigation, were secondary species
derived from decomposition of LHP, which were major initial reaction products following free
radical attack on biomembranes.

The underlying mechanisms of the formation of LHP and biologically active metabolites,
together with their effect on cellular structure and function are becoming of increasing importance
in understanding the pathogenesis and management of DM (Crabbe, 1987). For instance,
lipoxygenase products, especially 12(S)-HETE and 15(S)-HETE, are involved in the pathogenesis
of several diseases including DM (Bajaj and Khan, 2012). The LHPs are produced from a variety
of PUFAs precursors via intermediate radical reactions involving O2 and metal cations (Fe2+ and
Cu2+). The reactions generate highly reactive and cytotoxic lipid radicals. Extracellular LHP are
transported in the systemic circulation by low- and high-density lipoproteins (Nishigaki et al.,
1981). When released locally, LHP elicits structural damage to variety of biomolecules. For
instance, the formation of LHP and their metabolites are important in ophthalmic medicine in that
the retinal portion of eye is particularly sensitive to oxidative stress. Additionally, a steady
irreversible decline in electroretinogram is observed in streptozotocin (STZ)-induced diabetic rats
(Pautler and Ennis, 1980), when synthetic LHP was injected into the vitreous chamber of
experimental animals (Armstrong et al., 1982). Fortunately, LHP induced oxidative damage to
biomolecules is ameliorated by lipid and water-soluble antioxidants, as well as by specific
antioxidant enzymes. 
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Oxidative stress indicators in diabetes mellitus: The concept of raised level of oxidative stress
(increased generation of free radicals) in DM was derived principally from in vitro experiments
(Wolff, 1993; Schiekofer et al., 2003; Wright et al., 2006). One of such investigations involved the
use of cultured human umbilical vein endothelial cells incubated in variable glucose concentrations
followed by monitoring the generation of ROS by a measure of cellular level of nitrotyrosine
(Quagliaro et al., 2003; Wright et al., 2006). 

Early observations have focused attention in understanding underlying mechanisms that may
be relevant to atherogenesis in patients suffering from T2DM and in obesity. Persons suffering from
T2DM and/or obese individual exhibit raised level of oxidative stress and inflammatory response
(Jorns et al., 1999; Alfadda and Sallam, 2012), which from reports have been linked to increased
cellular levels of inflammatory cytokines, TGF-β and insulin-like growth factor binding protein
(IGFBP)-3 (Jorns et al., 1999; Wright et al., 2006; Bajaj and Khan, 2012). Raised level of oxidative
stress in T2DM is indicated by an increase in ROS generation by circulating mononuclear cells,
increased lipid peroxidation (Nishigaki et al., 1981), protein carbonylation (Aljada et al., 1995),
nitro-tyrosine formation (Aydin et al., 2001) and DNA damage (Dandona et al., 1996; Shin et al.,
2001; El-Wassef et al., 2012; Styskal et al., 2012). Importantly, even pre-DM individuals showed
elevated 8-hydroxyguanosine, which suggested that oxidative damage to DNA is present even
before the clinical development of DM (Styskal et al., 2012). Recently, raised level of oxidative
stress was also demonstrated in the obese as reflected in increased lipid peroxidation, protein
carbonylation and ortho-tyrosine and meta-tyrosine formation in DM individuals (Keaney and
Loscalzo, 1999; Cumaoglu et al., 2007; Cimato et al., 2008; Chis et al., 2009; Styskal et al., 2012).
However, the levels of these oxidative stress indicators, as well as generation of ROS by leucocytes,
were reversed following restriction to 1,000 calories/day for 4 weeks (Dandona et al., 2001).

The primary causative factor of oxidative stress in DM is hyperglycemia, which operates via,
several mechanisms (Fig. 2). However, the individual contribution of other intermediary factors to
hyperoxidative stress remains undefined, in terms of the dose response relationship between
hyperglycemia and overall oxidative stress in DM.

Fig. 2: Pathogenesis of hyperoxidative stress in non-insulin dependent diabetes. In boxes are
shown mechanisms that are directly related to hyperglycemia. In circles are some
mechanisms that result from the reaction of free radicals e.g. superoxide (O2

•G) with
lipoproteins (e.g. small, dense low- density lipoprotein) and nitric oxide (NO¯), oxidized LDL
(ox-LDL), peroxynitrite (¯ONOO) 

99



Int. J. Biol. Chem., 9 (3): 92-109, 2015

In the presence of elevated calcium levels in endothelial cell, hyperglycemia stimulates the
synthesis of NO¯ (Cohen, 1993; Poston and Taylor, 1995), in which in the presence of O2

•G, NO¯ is
converted to highly potent oxidant ̄ ONOO that promotes endothelial cell damage and endothelial
dysfunction (Beckman et al., 1990; Landmesser et al., 2003). Hyperglycemia causes paradoxical
increase in the generation of NO¯ but low availability of NO¯ (Santilli et al., 2004; Wright et al.,
2006), which appears to activate NF- 9B and thereby engendering increased expression of inducible
nitric oxide synthase (iNOS) (Spitaler and Graier, 2002). However, Santilli et al. (2004) noted that
low availability of NO¯ is attributable to uncoupling  of  receptor-mediated  signal  transduction
(El-Missiry  et  al.,  2004) and is the primary causative factor of endothelial dysfunction and
diabetic angiopathy. In addition, overwhelming levels of O2

•G directly,  inactivates  two  critical
anti-atherosclerotic enzymes (eNOS and prostacyclin synthase) and consequently, precipitate
defective angiogenesis (Giacco et al., 2010).

Although, there are extreme difficulties in measuring free radicals in vivo, some evidence in
support of the notion of raised level of oxidative stress in DM and its association with poor
metabolic control and coronary heart disease has been derived from observations in patients with
DM (Griffin et al., 1997). Raised level of oxidative stress may provide a plausible pathophysiologic
basis  for  the  direct  link  between  hyperglycemia  and  increased cardiovascular risk in DM
(Lehto et al., 1997). There is persuasive evidence and definitive clinical proof that oxidative stress
is associated with the pathogenesis  and  progression  of  atherosclerosis  in  both  diabetic  and
non-diabetic subjects (Aronson and Rayfield, 2002). Insulin resistance and raised level of oxidative
stress have been observed in obese T2DM patients (Skrha et al., 1996). 

There is a relationship between plasma malondialdehyde (MDA) concentration and
hyperglycemia (Hayden and  Tyagi,  2004;  Chikezie  and  Uwakwe,  2014).  Earlier  reports  by
Sato et al. (1979) noted increased level of TBARS in blood samples of patients with poorly controlled
DM and diabetic angiopathy. The elevation in TBARS concentration is considered to be an indicator
of marked organ or tissue degeneration (El-Missiry et al., 2004). Also, elevation of TBARS
concentration provides an indirect measurement of level of lipid peroxidation and alterations in
erythrocyte antioxidant enzyme activities in diabetic patients (Arai et al., 1987; Sharma et al.,
2000) as observed in heart, pancreas and blood of STZ induced diabetic rats (Kakkar et al., 1995).
In another instance, TBARS is considered as an indicator of free radical production. An increase
in TBARS level in liver may therefore be due to raised level of oxidative stress that might promote
DNA and protein alterations (Wolff et al., 1991), including; changes in the enzyme activities
implicated in lipid metabolism and free radicals scavenging process (Douillet et al., 1998). 

Raised level of oxidative stress accounts for low erythrocytes count because of low levels of
erythrocyte GSH coupled with increased utilization of GSH, in efforts to ameliorate oxidative stress
associated with diabetic erythrocytes (Jain and McVie, 1994). Consequently, pathophysiology of DM
promotes oxidative damages of phospholipids and associated biomolecules of erythrocyte
membrane. This is supported by the fact that erythrocytes of diabetic patients are more susceptible
to lipid peroxidation when treated with H2O2 in vitro (Matkovics et al., 1982; Uzel et al., 1987). In
addition, low hematocrit (PCV) percentage may be attributed to the reduction  in  the  total red
blood cell count due to failure in blood  osmoregulation  and  elevation  of  plasma  osmolarity
(Evan-Wong and Davidson, 1983). 

Diabetes mellitus induced alterations in antioxidant enzymes activities: Several studies
on tissue levels of activity of enzymatic antioxidant systems are characterized with divergent
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results. For instance, studies using STZ-treated diabetic rats close to three decades ago showed that
increase in pancreatic superoxide dismutase (SOD) activity might be an adaptive response to low
pancreatic SOD level, whereas reduction in SOD activity in liver and kidney has direct linkage with
the damaging effect of free radicals on the enzyme (Wohaieb and Godin, 1987). In another report,
Pieper et al. (1995) demonstrated that in experimental DM, the activity of CAT was elevated in
vascular tissues, whereas no significant alterations in the activity of other major antioxidant
enzymes {SOD and glutathione peroxidase (GSH-Px)} were noted. Ojiako et al. (2015) reported that
levels of renal and hepatocyte antioxidant enzymes (GPOx, SOD, CAT) and low molecular weight
antioxidant (LMWA) (GSH/GSSG ratio) were altered in alloxan-induced hyperglycemic rats. In
addition, Wohaieb and Godin (1987) reported increased CAT and SOD activities in pancreatic
tissues of DM rats, whereas the hepatocytes showed generalized low CAT, SOD and GSH-Px
activities. They noted that increase in both CAT and SOD activities occurred in tissues with the
lowest antioxidant enzymatic activities (pancreas) before onset of DM. Thus, suggesting a
compensatory response to an increase in endogenous oxidant radicals in the pancreas of DM rats.
Decreased tissue concentrations of antioxidants, such as vitamin E, SOD and CAT, have also been
demonstrated in vitro (Wohaieb and Godin, 1987).

Low levels of GSH in erythrocytes of DM subjects is as a result of low activities of the enzymes
involved in GSH synthesis (γ-glutamylcystein synthetase) and/or in the export of oxidized
glutathione (GSSG) out of the cell (Murakami et al., 1989) as well as enhanced sorbitol pathway
(Ciuchi et al., 1996). In addition, low activity of GSSG-R, which acts to reduce GSSG to GSH, has
also been reported in DM (Tagami et al., 1992). Murakami et al. (1989) and Matkovics et al. (1998)
reported low level of activity of GSSG-R in erythrocyte haemolysate of STZ-induced DM rats, which
they attributed to be the effect of enzyme glycation in uncontrolled hyperglycemia (Jain and McVie,
1994). Also, earlier reports showed significant reduction in the level of activity  of  erythrocyte
GSH-Px in diabetic children and adolescents when compared with that of the control subjects
(Dominguez et al., 1998). These previous reports attributed low level of activity of  erythrocyte
GSH-Px to low blood GSH content in DM subjects, since GSH is a  substrate  and  cofactor  for
GSH-Px activity. Therefore, low GSH content resulted in corresponding low GSH-Px activity and
propensity to elicit oxidative stress. Accordingly, enzyme inactivation either through glycation
process (Arai et al., 1987) or under conditions of increased oxidative stress also contribute to low
GSH-Px activity (Lyons, 1991). 

Antioxidant defenses mechanisms are often impaired in DM with corresponding hyperoxidative
stress (Rolo and Palmeira, 2006; Bajaj and Khan, 2012). Furthermore, there is evidence to suggest
that DM induces alterations in the  activities  of  antioxidant  enzymes  in  various  tissues
(Oberley, 1988; Ojiako et al., 2015). Theoretically, alterations in antioxidant enzyme activity are
consequences of oxidative stress, glycation of antioxidant enzymes/proteins and disturbances in
micronutrient status in DM (Szaleczky et al., 1999; Kang, 2003; Yuan et al., 2010). 

CONCLUSION
The critical roles of overwhelming cellular levels of RONS play in the pathophysiology of DM

have been incontrovertibly established. Intuitively, the inhibition and/or scavenging of intracellular
free radical formation provide a therapeutic strategy to ameliorate oxidative stress and prevent
ensuing pathologic complications associated with DM. Therefore, the integration of antioxidants
formulations into conventional therapeutic interventions, both by ingestion of natural antioxidants
or   through   dietary   supplementation,  should  be  encouraged  for  a  holistic  approach  to  the
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management and prevention of DM and associated complications. However, despite the obvious
usefulness and potential merit/advantages of antioxidant pharmacotherapy, there is still the need
to investigate and evaluate the efficacy and safety scores of this therapeutic strategy. Moreover,
previous studies on the effect of certain LMWAs on endothelial dysfunction in T2DM revealed
contradictory results. Besides, the query of whether antioxidants could have beneficial effect by
reducing the risks associated with DM, especially, cardiovascular disease has remained unresolved
and inconclusive. 

Finally, another novel approach to DM therapy is to provoke over-expression of antioxidant
enzymes in a tissue-specific manner, as exemplified in genetic mutant mice model, to serve as
control measure against the development of metabolic diseases associated with oxidative stress
(Styskal et al., 2012). This proposed DM therapy shared similar concepts with the reports of
Alfadda and Sallam (2012) in which they noted that activation of transcription nuclear factor,
nuclear factor-erythroid 2-related factor 2 (Nrf2) induced several antioxidant and detoxification
genes in patients with lung cancer. Unfortunately, the metabolic fallouts and effect of this proposed
therapeutic approach on general haemostasis of DM individuals is yet to be elucidated.
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