

Research Journal of **Microbiology**

ISSN 1816-4935

Effects of Arbuscular Mycorrhizal Inoculation and Fertilizer on Production of *Castanopsis acuminatissima* Saplings for Forest Restoration in Northern Thailand

P. Nandakwang, S. Elliott, S. Youpensuk and S. Lumyong Department of Biology, Chiang Mai University, 50200, Chiang Mai, Thailand

Abstract: Castanopsis acuminatissima is a native tree used to restore forest in Thailand. To accelerate seedling growth experiments were carried out to determine the efficacy of applying to C. acuminatissima. Arbuscular Mycorrhizal (AM) fungi, produced on sorghum, were used as inoculum to investigate the symbiosis on seedlings. The effects of AM inoculation (Acaulospora elegans, Glomus etunicatum, Glomus mosseae) together with phosphate fertilization (KH₂PO₄) on seedlings in a P-deficient soil were studied under greenhouse conditions. Increasing P-application rates greatly enhanced seedling growth (maximum at 250 mg kg⁻¹ soil). Growth was most rapid with G. etunicatum-colonized plants with P application (40.8 cm), whereas much lower height was found with non-AM plants without P added (14.4 cm). The mycorrhizal effective for C. acuminatissima in previous experiments were confirmed by growing seedlings in a forest soil with slow-release fertilizer (NPK) and combined with AM species under nursery performance conditions. Plant height was significantly enhanced by fertilizer but not by fungi. The greatest height was found in non-AM plants with fertilization (14.5 cm), whereas lower height was found for non-AM plants with no fertilizer added (10.9 cm). AM inoculation greatly enhanced seedling growth in P-deficient soil more than in forest soil due to differences in abilities of AM species to establish a symbiosis. Therefore, in sapling production, the soil properties and level of fertilization should be evaluated keeping secondary effects caused by changed mycorrhizal association.

Key words: Arbuscular mycorrhizal fungi, framework tree species, forest restoration, mycorrhizal seedling production, phosphorus fertilizer

INTRODUCTION

Forest restoration means the re-establishment of the original forest ecosystem that was present before deforestation occurred. The goals of forest restoration are environmental protection and wildlife conservation (Anonymous, 2006). In 1994, the Forest Restoration Research Unit at Chiang Mai University (FORRU), started to investigate the possibility of restoring forests on degraded sites in northern Thailand by adapting the framework species method (first developed in Queensland, Australia) (Goosem and Tucker, 1995; Anonymous, 2006) to local conditions. FORRU screened indigenous forest tree species to select potential candidate framework species for field trials. In the FORRU's research tree nursery, experiments were designed to develop seedling production for high quality planting stock. *Castanopsis acuminatissima* (Bl.) A. DC. (Fagaceae), was confirmed as a potential framework species that could be used to restore seasonally dry tropical forest in northern Thailand but this species grow relatively slowly and difficult to raise in nursery. To solve such problems, studies have been made on modified potting media and fertilizer application (Anonymous, 2006). Arbuscular Mycorrhizal (AM) fungi have form symbiosis with a wide range of forest tree

species (Gai et al., 2006). Such symbioses provide many benefits to host trees and are especially important in development of seedlings grown in nurseries and establishment of saplings planted in deforested sites.

AM symbioses result in increased growth of plants depending on the fungal strains (Pattinson et al., 2004; Youpensuk et al., 2005). AM fungi also protect plants against root pathogens, confer resistance to drought and increase soil aggregation (Dubský et al., 2002; Rilling et al., 2005; Wu et al., 2006). Lack of nutrient availability in tropical soils often limits plant growth. The ability of AM fungi to enhance nutrient absorption, (particularly phosphorus) by hyphal uptake and translocation towards the plant, is an important advantage (Koide and Mosse, 2004). The possibility of using beneficial attributes of AM fungi in planting stock will depend on preliminary assessments of whether inoculation is a suitable management option. AM fungi are obligate symbionts, usually propagated by growing them with living host plants in pot cultures. For starting pot cultures of AM fungi, the combination of appropriate host plant and substrate media for production of mycorrhizal inoculum is crucial (Setiadi, 2000). Pot cultures, which consist of soil, spores and mycorrhizal roots etc., can be used as inoculum for experiments or applied to seedling grown in a nursery or broadcast in the field (Brundrett et al., 1996; Setiadi, 2000; Klironomos and Hart, 2002). Knowledge about the ability of plant species to form symbiosis with AM fungi is very important for restoration success and indicates the need for inoculum in plants cultivated in forest nurseries (Wubet et al., 2003). The purposes of present experiment were to: (1) select appropriate host plants under pot culture conditions for production of indigenous AM fungal inoculum in the nursery, (2) examine the effects of 3 AM species with 6 rates of P application on plant development in P-deficient soil medium under greenhouse conditions and (3) examine the effects of AM fungal inoculation and conventional fertilization on growth of seedlings in forest soil under nursery performance conditions.

MATERIALS AND METHODS

Inoculum Production

The first experiment consisted of 30 treatments with 6 indigenous AM species [Acadospora elegans Trappe and Gerd., A. mellea Spain and Schenck, A. scrobiculata Trappe, Glomus etunicatum Becker and Gerd, G. mosseae (Nicol. and Gerd.) Gerd. and Trappe and Scutellospora heterogama Walker and Sanders] and 5 host plants [maize (Zea mays L.), marigold (Tegetes erecta L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.) and upland rice (Oryza sativa L. cv. Bue Bang)] with 3 replications. The experiment was undertaken in clay pots (22 cm top diameter, 18 cm bottom diameter and 19 cm depth) with drainage hole containing 3 kg P-deficient soil medium (P-deficient soil and coarse sand ratio 2:1), autoclaved twice at 121°C for 30 min with a 2 day interval. The soil pH (H₂O) was 5.98 and contained 0.041% total N (Kjeldahl method), 1.4 mg kg⁻¹ available P (Bray II method) and 44.0 mg kg⁻¹ extractable K (1 M NH₄OAc, pH 7). Seeds were surfacesterilized with 10% sodium hypochlorite for 5 min, rinsed with sterile water and sown in Petri dishes, containing the moist tissue paper for 1 week. Seedlings were transplanted 3 seedlings per pot. AM spores were extracted from the soil samples by wet-sieving and 50% sucrose centrifugation (Brundrett et al., 1996) and collected on a 53 µm sieve. Fifty spores were inoculated into each pot. Seedlings were grown in a greenhouse at the Chiang Mai University (CMU) for 4 months between November 2005 and February 2006. Seedlings were watered once every 2 days with 500 mL of tap water. Twice a month, 80 mL of 4 full strength Hoagland' solution (Hoagland and Arnon, 1950), without P was added to each pot. At harvest, root samples were separated from soil and cleaned with tap water. The root samples were cleared in 10% KOH at 121°C for 15 min and stained with 0.05% trypan blue in lactoglycerol (Brundrett et al., 1996). Thirty stained root segments from each plant (1 cm long) were taken at random and mounted on microscopic slides to assess mycorrhizal colonization (McGonigle et al., 1990). One hundred gram dried soil of all different treatments were used to determine spore density.

Effects of AM fungi with Phosphorus Fertilizer on Seedling Growth in Greenhouse Experiment

The second experiment consisted of 90 pots with 5 inoculation treatments (no inoculation and AM inoculation: A. elegans, G. etunicatum, G. mosseae and mixed AM species) and 6 levels of P application (KH₂PO₄) (at the rates of 0, 50, 100, 150, 200 and 250 mg P kg⁻¹ medium) with 3 replications. Spores of AM species were produced on sorghum pot cultures in P-deficient soil medium as shown above and used for inoculation. The experiment was undertaken in clay pots containing 3 kg autoclaved P-deficient soil medium. Seeds of C. acuminatissima were surface-sterilized with 10% sodium hypochlorite for 10 min, rinsed with sterile water and sown in a plastic tray containing the autoclaved forest soil medium (primary evergreen forest soil, coconut husk and peanut husk ratio 2:1:1). The medium pH (H₂O) was 5.60 and contained 0.628% total N, 15.8 mg kg⁻¹ available P and 132.0 mg kg extractable K. Three month-old seedlings (5-6 cm tall) were transplanted one seedling per pot. In each AM treatment, 150 spores were inoculated into each pot. Seedlings were grown in a greenhouse at the CMU for 6 months between December 2005 and March 2006. Seedlings were watered once every 2 days with 500 mL of tap water. Two weeks after transplanting, 6 levels of KH₂PO₄ were added to each treatment. Twice a month, 80 mL of 4 full strength Hoagland' solution without P was added to each pot. At harvest, height and stem diameter of seedlings were measured. Roots were divided into 2 random sub-samples. Shoot samples and one root sub-sample were oven dried at 60°C for 48 h. Dry samples were analyzed for P content by the dry ashing and molybdovanado-phosphoric acid method. The second root sub-sample was used to determine AM colonization and soil sub-samples were assessed for spore density.

Effects of AM fungi with Slow-Release Fertilizer on Seedling Growth in Nursery Sapling Production

The third experiment consisted of 10 treatments with 5 inoculation treatments (no inoculation and AM inoculation: *A. elegans*, *G. etunicatum*, *G. mosseae* and mixed AM species) and 2 levels of slow-release fertilizer (NPK 14-14-14) (at the rates of 0 and 375 mg kg medium) with 28 replications. Slow-release fertilizer has been used successfully at FORRU for many framework species (Anonymous, 2006). The experiment was undertaken in plastic bags (23×6 cm) with drainage holes, containing 800 g autoclaved forest soil medium. Three month-old seedlings of *C. acuminatissima* were transplanted one seedling per bag. In each AM treatment, 150 spores were inoculated into each pot. Slow-release fertilizer was applied in fertilization treatments at the start of the experimental period. Seedlings were grown at the FORRU's nursery for 6 months between April and September 2006. Seedlings were watered once a day with tap water. Every 3 months, slow-release fertilizer was applied to each treatment. At harvest, height and stem diameter of seedlings were measured. Fresh shoot and root samples were treated in the same way as described previously. Dry plant samples were analyzed for P content. Root sub-samples were used to determine colonization percentage and soil sub-samples were assessed for spore density.

Data Analysis

All data were subjected to analysis of variance (ANOVA) for a completely randomized design. Residuals were normally distributed with constant variance. SPSS software version 12.0 was used to conduct the ANOVA. Duncan's Multiple Range Test (p<0.05) was used to compare treatment means.

RESULTS

Inoculum Production of Arbuscular Mycorrhizal Fungi

Four months after starting the pot culture, all 5 host plant species inoculated with 6 AM species had developed mycorrhizas. Spore density and colonization percentage varied greatly among the

Table 1: Spore density of AM fungi (per 100 g dry wt. soil) (n = 3) in pot cultures with 5 host plants inoculated with spores of 6 AM fungal isolates

	Spore densit	y of AM fungi	(spores/100 g soil)			
Host plant	A. elegans	A. mellea	A. scrobiculata	G. etunicatum	G. mosseae	S. heterogama
G. max	426.33dB	13.33 nsC	14.67abC	598.00cdA	40.00dC	9.33bC
O. sativa	1683.33bcA	$14.67 \mathrm{nsD}$	13.33abD	396.00dB	190.00bcC	6.67bD
S. vulgare	2713.33aB	13.33 nsC	16.67abC	6148.67aA	642.67aC	22.67aC
T. erecta	967.67cdB	9.33 nsC	6.00bC	1457.33cA	102.00cdC	11.33abC
Z. mays	1867.33bB	$10.00~\mathrm{nsC}$	19.33aC	3933.33bA	231.33bC	4.67bC
Analysis of varian	ce					
AM species			aje aje aje			
Host plant species			aje aje aje			
AM species \times Host	plant species		aje aje aje			

Means followed by the same letter (s) (lower case within columns and capitals within rows) are not significantly different by Duncan's Multiple Range Test; ns: not significant. ***: significant at p<0.001

Table 2: Root colonization (per 30 root pieces of plant species) (n=3) in pot cultures with 5 host plants inoculated with spores of 6 AM fungal isolates

	AM coloniza	tion (%)				
Host plant	A. elegans	A. mellea	A. scrobiculata	G. etunicatum	G. mosseæ	S. heterogama
G. max	87.95aB	$20.00 \mathrm{nsC}$	14.81 abC	90.00bB	100.00aA	5.00cD
O. sativa	73.00bB	$11.11 \mathrm{nsC}$	3.70abC	100.00aA	95.00bA	3.33cC
S. vulgare	100.00aA	51.85nsC	13.33abD	100.00aA	100.00aA	78.33aB
T. erecta	92.16aAB	73.33 nsB	16.66bC	93.33abAB	100.00aA	25.00bC
Z. mays	93.79aA	55.00nsB	56.67aB	100.00aA	100.00aA	11.66cC
Analysis of vari	iance					
AM species			***			
Host plant specie	es		***			
AM species × H	ost plant species		***			

Means followed by the same letter (s) (lower case within columns and capitals within rows) are not significantly different by Duncan,s Multiple Range Test; ns: not significant. ***: significant at p < 0.001

different host species. Spore density and mycorrhizal colonization were increased by the host species and AM species which interacted (Table 1 and 2). Three fungal species: A. elegans, G. etunicatum and G. mosseae produced significantly the highest spore densities and colonization abilities on S. vulgare and Z. mays. The spore density of these AM species on sorghum was significantly higher than on maize, whereas mycorrhizal colonization on both plants did not differ from each other (93.8-100.0%). The highest spore number were found on sorghum inoculated with G. etunicatum (6148.7 spores/100 g soil), A. elegans (2713.3 spores/100 g soil) and G. mosseae (642.7 spores/100 g soil), respectively. Whilst much lower densities and root colonization of other 3 AM species were found on all host species (Table 1 and 2).

Effects of AM Inoculation with P Application on Growth of $\it C.\ acuminatissima$ in P-Deficient Soil Medium

Growth of *C. acuminatissima* seedlings in the P-deficient soil experiment was highly influenced by both AM inoculation and P-application rates (Table 3). Six months after transplant, plant height, shoot and root dry weights as well as shoot P content were all significantly increased by both factors which interacted, whereas root to shoot ratio and root P content were also increased by both factors but not by their interaction. The only exception was stem diameter, which was only increased by P rates. AM colonization was only increased by fungal inoculation, whereas spore density on the other hand, was increased by both P rates and fungus which interacted (Table 3). Root colonization ranged in the P applied treatments from 36.7-45.4%, which did not differ with P rates (Table 3). In the AM treatments, colonization percentages ranged from 40.1-55.3%. Root colonization in the plants

Table 3: Effects of AM inoculation and P application (KH₂PO₄) on growth of *C. acuminatissima* seedlings grown in P-deficient soil medium and root colonization and spore density of AM fungi in plant rhizoshere (n = 3)

	Plant	Stem	Shoot dry weight	Root dry weight
Treatments	height (cm)	diameter (cm)	(g plant ⁻¹)	(g plant ⁻¹)
AM inoculation				
Uninoculation	17.89c	0.23ns	0.66c	0.89d
A. elegans	24.25b	$0.24 \mathrm{ns}$	1.40ab	2.59a
G. etunicatum	27.36a	0.23ns	1.60a	2.08bc
G. mosse ae	22.44b	0.24ns	1.1 <i>7</i> b	2.04c
Mixed species	19.85c	0.22 ns	0.84c	2.04a
P applied (mg P kg-1mediu	ım)			
0	15.29d	0.21c	0.54c	1.36c
50	16.30d	0.21c	0.58c	1.51c
100	19.87c	0.22bc	0.77c	1.67c
150	25.80b	0.23bc	1.49b	2.33b
200	32.11a	0.24b	1.3 <i>6</i> b	2.39b
250	17.86a	0.27a	2.07a	2.77a
Analysis of variance				
AM inoculation	***	ns	***	***
P applied	***	***	***	***
AM inoculation × P applied	***	ns	**	*

	Root to shoot ratio (dry weight)	Shoot P content (mg plant ⁻¹)	Root P content (mg plant ⁻¹)	Root colonization (%)	Spore density (spores/100g soil)
AM inoculation					
Uninoculation	1.44c	0.20c	0.22d	0.00c	0.00d
A. elegans	2.26b	0.64a	0.76a	53.72a	23.11c
G. etunicatum	1.86bc	0.74a	0.67ab	55.33a	31.83b
G. mosse ae	2.28b	0.4 2 b	0.50bc	55.26a	33.50ab
Mixed species	2.83a	0.40b	0.45c	40.10b	38.33a
P applied (mg P kg ⁻¹ me	edium)				
0	2.68a	0.15c	0.25c	43.92ns	24.20abc
50	2.73a	0.18c	0.29c	45.39ns	28.07a
100	2.37ab	0.23c	0.32c	38.14ns	27.00ab
150	1.81bc	0.61b	0.62b	41.47 ns	30.07a
200	1.89bc	0.52b	0.63b	39.64ns	21.93bc
250	1.35c	1.21a	1.02a	36.71ns	20.87c
Analysis of variance					
AM inoculation	***	***	ste ste ste	***	ale aleale
P applied	**	***	***	ns	ale ale
AM inoculation × P appl	ied ns	***	0.074	ns	*

Means in the same column followed by different letter(s) are significantly different by ANOVA and Duncan, s Multiple Range test. *, **, ***: Significant at p < 0.05, 0.01, 0.001, respectively; ns: not significant

inoculated with the single species of AM fungi was significantly higher than for the mixed species inoculum. Spore density was significantly increased by P rates and AM fungi which interacted. Spore density in the P applied treatments ranged from 20.9-30.1 spores/100 g soil which reached maximum at 150 mg kg⁻¹soil (30.1 spores/100 g soil) and continued to decrease with the lowest at 250 mg kg soil (20.9 spores/100 g soil). Spore density ranged from 23.1-38.3 spores/100 g soil and the highest density was found in plants inoculated with mixed AM species.

P applications were highly beneficial for growth parameters of plants as measure by height, stem diameter (Table 4), dry weights (Table 5) and P contents (Table 6) and AM inoculations also had significant effects on plant growth. Six months after transplant, non-AM plants grown in P-deficient soil exhibited increasing either height or shoot dry weight to increasing P rates, whereas the other growth parameters showed no such differences. Contrast with all growth parameters of AM plants, tended to increase with increasing P rates (maximum at 250 mg P kg⁻¹) and mycorrhizal enhancement varied with the different kinds of AM species. In P applied treatments, seedlings generally grew very little and no significant differences between AM plants and non-AM plants were observed for plant height, stem diameter and P contents, whereas dry weights of AM plants significantly trended to be higher than non-AM plants.

Table 4: Height and diameter (n = 3) of *C. acuminatissima* seedlings grown in P-deficient soil medium containing increasing P application with AM inoculation

increasing P application	on with AM inocu	ılation			
	Plant height (cn	1)			
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseæ	Mixed species
P applied (mg P kg ⁻¹ medium)					
0	14.44bNS	16.56cNS	15.59bNS	14.84cNS	15.02cNS
50	16.19bNS	18.02cNS	15.97bNS	16.05cNS	15.26cNS
100	18.13bNS	22.12bcNS	18.56bNS	22.19bNS	18.35bcNS
150	17.76bB	27.05bB	39.19aA	25.69bB	19.28bcB
200	17.89bC	26.81bAB	33.97acA	24.03bB	21.21bBC
250	22.92aC	34.95aAB	40.85aA	31.81aABC	30.00aBC
	Stem diameter (
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseæ	Mixed species
P applied (mg P kg ⁻¹ medium)					
0	0.22 nsNS	0.21bNS	0.22 nsNS	0.19bNS	0.21 nsNS
50	0.22 nsNS	0.21bNS	0.219nsNS	0.21bNS	0.21nsNS
100	0.22 nsNS	0.20bNS	0.23 nsNS	0.24abNS	0.22nsNS
150	0.22 nsNS	0.24bNS	0.25nsNS	0.25abNS	0.20 nsNS
200	0.23nsNS	0.23bNS	0.25nsNS	0.24abNS	0.25nsNS
250	0.24nsB	0.32aA	$0.24 \mathrm{nsB}$	0.29aA	0.24 nsB

Means followed by the same letter (lower case within columns and capitals within rows) are not significantly different by Duncan's Multiple Range Test; ns: not significant

Table 5: Shoot and root dry weights (n = 3) of *C. acuminatissima* seedlings grown in P-deficient soil medium containing increasing P application with AM inoculation

containing increasin	Shoot dry weigh					
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseæ	Mixed species	
P applied (mg kg ⁻¹ KH ₂ PO ₄)						
0	0.45bB	0.76bA	0.67bAB	0.42dB	0.42cB	
50	0. 54b AB	0.83bA	0.51bAB	0.53cdAB	0.46bcB	
100	0.65bNS	0.82bNS	0.91bNS	0.96cNS	0.51bcNS	
150	0.62bB	1.81abAB	2.63aA	1.45bAB	0.96bB	
200	0.62bD	1.64abAB	2.136aA	1.46bBC	0.94bCD	
250	1.07aC	2.58aAB	2.74aA	2.18aAB	1.77aBC	
	Root dry weigh (g plant ⁻¹)					
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseae	Mixed species	
P applied (mg kg ⁻¹ KH ₂ PO ₄)						
0	0.96 nsB	1.77 nsA	1.54bAB	1.48cAB	1.05cB	
50	0.78nsC	2.28nsA	1.63bB	1.53cB	1.35bcB	
100	$0.91 \mathrm{nsB}$	1.93nsA	1.42bAB	2.15bA	1.96bA	
100 150	0.91nsB 0.76nsC	1.93nsA 3.13nsAB	1.42bAB 3.51aA	2.15bA 2.34bAB	1.96bA 1.89bBC	

Means followed by the same letter (lower case within columns and capitals within rows) are not significantly different by Duncan's Multiple Range Test; ns: Not significant

AM inoculation significantly increased plant height over non-inoculated controls were found in *A. elegans* at 200-250 mg P kg⁻¹, *G. etunicatum* at 150-250 mg P kg and *G. mosseae* at 200 mg P kg⁻¹. The maximum height was 1.52 and 1.78 fold higher than the control in *A. elegans* and *G. etunicatum* at 250 mg P kg⁻¹, respectively, whereas, height of *G. etunicatum* plants was the highest (40.8 cm) (Table 4). Stem diameter was only influenced by P rates. Stem diameter had a 1.45 and 1.32 fold increase over control with no P added in *A. elegans* and *G. mosseae* at 250 mg P kg⁻¹, respectively, which did not differ from one another (0.3 cm) (Table 4).

Only A. elegans plants at the lowest P rate significantly had a higher shoot dry weight than non-AM plants and other AM plants. Whilst at high P rates, AM inoculation significantly increased over

Table 6: Shoot and root P contents (n = 3) of *C. acuminatissima* seedlings grown in P-deficient soil medium containing increasing P application with AM inoculation

increasing P applica	tion with AM inoc	culation				
	Shoot P content	(mg plant ⁻¹)				
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseæ	Mixed species	
P applied (mg kg ⁻¹ KH ₂ PO ₄)						
0	0.12 nsNS	0.21cNS	0.15bNS	0.11bNS	0.14cNS	
50	0.13 nsB	0.25cA	0.19bAB	0.15bAB	0.16cAB	
100	$0.20 \mathrm{nsNS}$	0.20cNS	0.33bNS	0.24bNS	0.17cNS	
150	$0.19 \mathrm{nsB}$	0.76bAB	1.23aA	0.31bB	0.57bB	
200	0.16nsC	0.71bB	1.02aA	0.30bC	0.42bBC	
250	$0.40 \mathrm{nsB}$	1.70aA	1.55aA	1.44aA	0.96aAB	
	Root P content (mg plant ⁻¹)					
Treatments	Uninoculation	A. elegans	G. etunicatum	G. mosseæ	Mixed species	
P applied (mg kg ⁻¹ KH ₂ PO ₄)					_	
0	0.21nsNS	0.29bNS	0.30bNS	0.23bNS	0.20dNS	
50	$0.21 \mathrm{nsC}$	0.40bA	0.35bAB	0.26bBC	0.21dC	
100	0.22nsNS	0.34bNS	0.35bNS	0.38bNS	0.31cdNS	
150	0.23 nsB	0.94abA	0.98abA	0.54bAB	0.43cAB	
200	$0.20 \mathrm{nsB}$	1.05abA	0.85abAB	0.40bAB	0.64bAB	
250	0.26nsB	1.54aA	1.18aA	1.22aA	0.89aAB	

Means followed by the same letter (s) (lower case within columns and capitals within rows) are not significantly different by Duncan's Multiple Range Test; ns: not significant

non-AM plants were found in most fungus treatments, except for mixed fungal species. At 250 mg P kg⁻¹, the maximal shoot biomass exhibited 2.41, 2.56 and 2.34 fold increase over control in *A. elegans*, *G. etunicatum* and *G. mosseae*, respectively, whereas *G. etunicatum* plants gave the highest shoot biomass (2.7 g plant⁻¹) (Table 5). *A. elegans* plants with no P added also had a significantly higher root dry weight than non-AM plants and other AM plants. AM inoculation significantly increased over non-AM plants were found in all fungus treatments at the first 50 mg P kg⁻¹ and continued to increase with further increase in the level of P rates. Root biomass reached their maximum at 250 mg P kg⁻¹ and exhibited 3.04, 3.05, 2.58 and 2.82 fold increase over non-inoculated controls in *A. elegans* and *G. etunicatum G. mosseae* and mixed AM species, respectively, which did not differ from one another (2.8-3.4 g plant⁻¹) (Table 5).

At 50 mg P kg⁻¹, AM inoculation significantly increased shoot P content over non-AM plants was only found in *A. elegans*. Whilst at higher P rates, AM inoculation significantly increased shoot P content were found in *A. elegans* at 200-250 mg P kg⁻¹, *G. etunicatum* at 150-250 mg P kg and *G. mosseae* at 250 mg P kg⁻¹. At the highest rate, the maximal shoot P content exhibited 3.04, 3.05, 2.58 and 2.82 fold increase over non-AM plants in *A. elegans* and *G. etunicatum* and *G. mosseae*, respectively which did not differ from one another (1.4-1.7 mg plant⁻¹) (Table 6). Fungal inoculation significantly increased root P content over non-inoculated controls were found in *A. elegans* and *G. etunicatum* at first 50 mg P kg⁻¹ and still increased at 150 mg P kg⁻¹. Whilst at 200 mg P kg⁻¹, only root P content of *A. elegans* plants were significant increased over controls. At 250 mg P kg⁻¹, root P content of most AM plants exhibited 5.92, 4.54 and 4.69 fold increase over non-AM plants in *A. elegans*, *G. etunicatum* and *G. mosseae*, respectively which did not differ from one another (1.2-1.5 mg plant⁻¹) (Table 6).

Effects of AM Inoculation with Slow-Release Fertilizer on Growth of *C. acuminatissima* in Forest Soil Medium

Growth of *C. acuminatissima* seedlings in the forest soil measured for 6 months showed consistent effects of slow-release fertilization throughout the experiment (Table 7). Plant height, dry weights and P contents were increased by fertilizer but not by AM fungi. However, fertilization effects

Table 7: Effects of AM inoculation and slow-release fertilizer application on growth of C. acuminatissima seedlings grown

in forest soil medium	n and root colo	nization and spo	re density of Al	A fungi in plant rl	nizoshere (n = 28)
	Plant	Stem	Shoo	ot dry weight	Root dry weight
Treatments	height (cm)	diameter	(cm) (g pl	lant ⁻¹)	(g plant ⁻¹)
Uninoculated	10.89cd	0.15cd		0.39bcd	0.62bcd
Uninoculated+Fertilizer	14.54a	0.16bc		0.58ab	0.78ab
A. elegans	10.89cd			0.25d	0.51d
A. elegans+Fertilizer	r 11.41bcd 0.16bc			0.62a	0.61bcd
G. etunicatum				0.43abcd	0.64bcd
G. etunicatum+Fertilizer	12.73abc	0.17b		0.42abcd	0.76ab
G. mosseae	10.04d	0.15bcc	1	0.35cd	0.57cd
G. mosseae+Fertilizer	13.13ab	0.16bc		0.62a	0.83a
Mixed species	11.52bcd	0.16bc		0.39bcd	0.63bcd
Mixed species+Fertilizer	13.05ab	0.20a	(0.52abc	0.70abc
Analysis of variance					
AM inoculation	0.075	*	n	-	0.061
Fertilization	ohe ohe ohe	ate ate ate	słe:	***	ope ope ope
AM inoculation × Fertilization	ns	ns	0.	.053	ns
	Root to	CI LD	D + D	D .	a 1 '
		Shoot P	Root P	Root	Spore density
	shoot ratio	content	content	Root colonization	(spores
Treatments					
Treatments Uninoculated	shoot ratio	content	content	colonization	(spores
	shoot ratio (dry weight)	content (mg plant ⁻¹)	content (mg plant ⁻¹)	colonization (%)	(spores 100 g ⁻¹ soil)
Uninoculated	shoot ratio (dry weight) 1.83bc	content (mg plant ⁻¹) 0.05cd	content (mg plant ⁻¹) 0.04c	colonization (%) 0.00f	(spores 100 g ⁻¹ soil) 0.00f
Uninoculated Uninoculated+Fertilizer	shoot ratio (dry weight) 1.83bc 1.77cd	content (mg plant ⁻¹) 0.05cd 0.13b	content (mg plant ⁻¹) 0.04c 0.10a	colonization (%) 0.00f 0.00f	(spores 100 g ⁻¹ soil) 0.00f 0.00f
Uninoculated Uninoculated+Fertilizer A. elegans	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d	content (mg plant ⁻¹) 0.04c 0.10a 0.03c	colonization (%) 0.00f 0.00f 52.56d	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a	colonization (%) 0.00f 0.00f 52.56d 79.52a	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e	(spores 100 g ⁻¹ soil) 0.00f 0.00f 0.00f 22.43e 57.71ab 20.86e
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd 1.89bc	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c 0.12a	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer G. mosseae G. mosseae+Fertilizer Mixed species	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc 0.04d	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c 38.38e	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e 42.28d
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer G. mosseae G. mosseae+Fertilizer	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd 1.89bc	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc 0.04d 0.15ab	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c 0.12a	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c 38.38e 77.58ab	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e 42.28d 49.14cd
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer G. mosseae G. mosseae+Fertilizer Mixed species Mixed species+Fertilizer Analysis of variance	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd 1.89bc 1.65cd	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc 0.04d 0.15ab 0.07cd	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c 0.12a 0.05bc	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c 38.38e 77.58ab 58.87cd 68.32bc	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e 42.28d 49.14cd 65.14ab 74.57a
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer G. mosseae G. mosseae+Fertilizer Mixed species Mixed species Mixed species+Fertilizer Analysis of variance AM inoculation	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd 1.89bc 1.65cd 1.77cd	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc 0.04d 0.15ab 0.07cd 0.16ab	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c 0.12a 0.05bc 0.12a	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c 38.38e 77.58ab 58.87cd 68.32bc ****	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e 42.28d 49.14cd 65.14ab 74.57a
Uninoculated Uninoculated+Fertilizer A. elegans A. elegans+Fertilizer G. etunicatum G. etunicatum+Fertilizer G. mosseae G. mosseae+Fertilizer Mixed species Mixed species+Fertilizer Analysis of variance	shoot ratio (dry weight) 1.83bc 1.77cd 2.58a 1.14d 2.44ab 1.95bc 1.72cd 1.89bc 1.65cd 1.77cd	content (mg plant ⁻¹) 0.05cd 0.13b 0.03d 0.19a 0.04d 0.10bc 0.04d 0.15ab 0.07cd 0.16ab	content (mg plant ⁻¹) 0.04c 0.10a 0.03c 0.10a 0.03c 0.09ab 0.03c 0.12a 0.05bc 0.12a	colonization (%) 0.00f 0.00f 52.56d 79.52a 41.96e 65.30c 38.38e 77.58ab 58.87cd 68.32bc	(spores 100 g ⁻¹ soil) 0.00f 0.00f 22.43e 57.71ab 20.86e 16.14e 42.28d 49.14cd 65.14ab 74.57a

Means in the same column followed by different letter (s) are significantly different by ANOVA and Duncan, s Multiple Range Test. * , **, ***: Significant at p<0.05, 0.01, 0.001 respectively; ns: Not significant

on growth parameters were slightly higher it increased growth than non-AM plants without fertilization (controls). Plant growth was highest in all fertilization treatments for plant height (14.5 cm), shoot and root dry weights (0.6 and 0.8 g plant⁻¹, respectively) and shoot and root P contents (0.2 and 0.1 mg plant⁻¹, respectively). Whilst significant mycorrhizal effects were only found in stem diameter, which fungal-fertilizer interactions were not found (Table 7). Stem diameter of G. etmicatum and mixed AM species plants with fertilization were highly increased by AM fungi, whereas the highest diameter was found in AM plants with fertilization (0.2 cm). Root colonization and spore density were increased by both fungus species and fertilizer, which interacted (Table 7). Colonization percentages of all AM plants with fertilization were higher than without fertilization. The percentages were high, ranging from 38.4-79.5%, with the highest percentage found in A. elegans plants. Spores in fungal treatments with fertilization, generally recovered in higher number than without fertilization. The spore number ranged from 16.1-74.6 spores/100 g soil and the highest density was found in mixed AM species with fertilization.

DISCUSSION

Pot cultures, using host plants grown in soil diluted with sterile sand, are most commonly used to propagate AM fungi (Brundrett et al., 1996). In our present study, all 6 indigenous AM fungi were recovered from all 5 host plant pot cultures. Variation in spore density and mycorrhizal colonization was increased by host plants and AM fungi. Results presented here for spore density and root colonization are in agreement with those found in the greenhouse and the field showing that AM species, host plant species and soil conditions have been reported to effect on mycorrhizal formation and sporulation in pot cultures (Brundrett et al., 1996; Liu and Wang, 2003). From our observation, most plants inoculated with small to medium sized spores of Glomus and Acaulospora species was generally more successful than inoculation with the larger sized spores of Scutellospora species. The spore abundance must be related to their sporogenous characteristics. It has been reported that Glomus and Acaulospora species usually produce more spores than Gigaspora and Scutellospora species in the same environment conditions, because smaller spores require a short time to produce spores than large spores (Hepper, 1984; Bever et al., 1996). The high success rates of spore density and colonization percentage of at least 3 of 6 AM species were observed on sorghum and maize suggested that these plants are favorable hosts especially for A. elegans, G. etunicatum and G. mosseae compared to other hosts tested. Thus, sorghum and maize pot culture-produced spores as inoculum in P-deficient soil medium are more suitable for large scale production as well as for research purposes and nursery practice.

In the greenhouse experiment, growth of non-AM plants was very stunted in P-deficient soil medium (available P 1.4 ppm). Applying additional P fertilizer to non-AM plants could enhance growth of plants. However, even with the different allotments of P fertilizer, all AM species greatly stimulated plant growth with bigger size than non-AM plants in this unsuitable soil condition. Enhancement effects on plant growth, tended to increase with increasing P rates and more efficiency varied with the different kinds of AM species. Phosphorus responses for the plant growth agreed with that reported for other AM plants grown in a controlled environment (Siqueira et al., 1998a; Youpensuk et al., 2005), thereby confirming mycorrhizal nutritional benefits and the strong interrelationship between P supply and mycorrhizal response under nutrient-stressed conditions. AM inoculation had slightly effects on seedling growth when plants received low P rates at planting, whereas strongly effects were found at higher P rates. The present results suggested that addition 250 mg P kg⁻¹ to C. acuminatissima seedlings was suitable to produce either non-AM plants or AM plants in P-deficient soil. Although, non-AM plants at maximal P rate were higher than at minimal rate but still significantly lower than AM plants at the same P addition. The greatest height of AM plants was found in G. etunicatum plants with 250 mg P kg⁻¹, exhibited 1.8 fold over non-AM plants. Contrast with stem diameter of seedlings was not improved by the mycorrhizal symbiosis but diameter was also greatest with the highest P added, exhibited 1.5 fold increase over control with no P added. The Mycorrhizal Dependence (MD) of C. acuminatissima was high and trended to increase with applying fertilizer into P-deficient soil. In the absence of fertilizer, maximum MD exhibited 43.1% when fertilized with 150 mg P kg⁻¹, maximum MD exhibited 75.9% (data not shown). P-deficient plants lacking AM symbiosis tend to have a high root to shoot ratios usually associated with nutrientstressed plants (Pacovsky et al., 1986). Whilst, root to shoot ratios of AM plants in our study were higher than for non-AM plants, especially in the absence of P fertilizer or low P rates, the higher ratios probably resulted in mycorrhizal stimulation of root growth for improving P acquisition under limiting P condition. Plants characterized as inefficient at acquiring soil P, may substantially improve P acquisition by morphological and physical adaptations include changes in P and dry matter partitioning that favor growth of roots over shoots and the induction of a high-affinity P uptake and transport system in roots during the development (Cogliatti and Clarkson, 1983; Marschner et al., 1996).

P contents in AM plants were significantly increased with levels of P application. AM fungi most likely increased nutrient uptake from the soil due to the external hyphae can exploring greater soil volume and delivering nutrients to the host plants (Joner and Jakobsen, 1995; Koide and Mosse, 2004). Root colonization of plant species in many greenhouse experiments is diminished by high soil

P availability and concomitant enhanced P concentration in plant tissues (Vaast *et al.*, 1996; Youpensuk *et al.*, 2005). Contrasting with this suppressive effect observed with AM colonization in *C. acuminatissima* was not differed by increasing P levels application while P status remained unaffected. This experiment showed that AM inoculation of *C. acuminatissima* seedlings produces large plants with improved P status, thus confirming the high AM-dependency of host plant. This study also indicates the tolerance abilities of selected AM species on P-application rates, resulting from their abilities to promote plant P accumulation.

In the nursery experiment, seedlings grown in forest soil medium with slow-release fertilizer applied were slightly bigger than controls. Most AM plants without fertilizer added grew poorly with growth parameters similar to those of non-AM plants. Plant height, shoot and root dry weights and shoot and root P contents were increased by fertilizer but not by mycorrhiza, whereas only stem diameter was increased by both factors. Higher stem diameter of G. etunicatum and mixed AM species plants with fertilization may result from direct fungal efficiency effects or fungal-fertilizer interactions in such soil condition. AM colonization and P concentrations of C. acuminatissima seedlings were quite high with slow-release fertilizer added. This may be fertilization effect on P accumulation through its influence on AM symbiosis. Heavy application of P fertilizer or sufficient P condition at planting may reduce mycorrhizal formation, sporulation and the MD of host and thus mycorrhizal effectiveness for the seedling growth (Siqueira et al., 1998b). From our observation, growth of AM plants grown in forest soil was less than grown in P-deficient soil. This may the result of plants responding well to mycorrhizas in low or moderate P soils are regarded as mycorrhizal dependent. That is, they depend on mycorrhiza to show their full potential (Haselwandter and Bowen, 1996). The components of forest soil medium (available P 15.8 ppm) were rich in both organic and inorganic nutrients. Thus, AM fungi may be loose their function on stimulating plant growth in this nutrient condition. High dissolved inorganic nutrients in tropical forest soil may make AM fungi unnecessary to meet nutrient (Maffia et al., 1993). The consistent effects of AM fungi on plant growth were diminished or disappeared with nutrient abundance in the soil. Strongly mycorrhizal effects on external P requirement for maximal growth of seedlings were high and consistent in nutrient poor soil but were diminished and varied unpredictably with levels of fertilizer and P requirement of individual plant species. Phosphorus is not only a suppressed factor on AM symbiosis. Further, Youpensuk et al. (2005) reports that application of high rates of P or N can depressed AM colonization and spore formation. C. acuminatissima seedling grown in forest soil medium with nutrient abundance did not respond to AM inoculation although root colonization was high. Without fertilizer added, all AM plants were still equal size with non-AM plants. It may be resulted in reduction of AM symbiosis caused decreasing nutrient uptake ability for growth of mycorrhizal plants.

In addition, mycorrhizal inoculation with selected AM fungi and application of optimal P rate on early plant development are highly advantageous for high quality sapling production in forest tree nurseries and sapling establishment in low nutrient soils in forest restoration areas in Thailand. All AM species tested were greatly effective in promoting growth parameters of AM seedling in nutrient poor medium, but diminished their function in nutrient abundant medium. Differential responses of AM seedlings in these experiments appear to be related to nutrient available (inorganic and organic forms) in medium and form of fertilizer (easy soluble or slow-releasing) by plant and AM fungi. Therefore, the success of AM technology will depend upon dependent mycorrhizal host, optimal soil condition and well-adapted effective fungal strains.

ACKNOWLEDGMENTS

The authors wish to acknowledge financial support from Chiang Mai University Graduate School and Pibulsongkram Rajabhat University for partial support to the first author's Ph.D. study. This

research was supported by the Thailand Research Fund DBG4980004. The authors are grateful Mr. Sittichai Lordkaew and Mrs. Kanjanaporn Lordkaew for plant analysis and the Multiple Cropping Centre, Faculty of Agriculture, Chiang Mai University for experimental facilities.

REFERENCES

- Anonymous, 2006. How to Plant a Forest: The Principles and Practice of Restoring Tropical Forests. Forest Restoration Research Unit. 1st Edn. Chiang Mai University, Thailand FORRU, pp. 200.
- Bever, J.D., J.B. Morton, J. Antonovics and P.A. Schultz, 1996. Host-dependent sporulation and species diversity of *Arbuscular mycorrhizal* fungi in a mown grassland. J. Ecol., 84: 71-82.
- Brundrett, M., N. Bougher, B. Dell, T. Grove and N. Malajczuk, 1996. Working with mycorrhizas in forestry and agriculture. ACIAR monograph 32, ACIAR, Canberra, Australia, pp. 374.
- Cogliatti, D.H. and D.T. Clarkson, 1983. Physiological changes in potato plants during development and recovery from phosphate stress. Plant Physoil., 58: 287-294.
- Dubský, M., F. Šrámek and M. Vosátka, 2002. Inoculation of cyclamen (*Cyclamen persicum*) and poinsettia (*Euphorbia pulcherrima*) with arbuscular mycorrhizal fungi and *Trichoderma harzianum*. Rostlinná Výroba, 48: 63-68.
- Gai, J.P., P. Christie, G. Feng and X.L. Li, 2006. Twenty years of research on community composition and species distribution of arbuscular mycorrhizal fungi. Mycorrhiza, 16: 229-239.
- Goosem, S.P. and N.I.J. Tucker, 1995. Repairing the Rainforest-Theory and Practice of Rainforest Reestablishment in North Queensland's Wet Tropics. Wet Tropics Management Authority, Cairns, pp: 71.
- Haselwandter, K. and G.D. Bowen, 1996. Mycorrhizal relations in trees for agroforestry and land rehabilitation. For. Ecol. Manage., 81: 1-17.
- Hepper, C.M., 1984. Isolation and Culture of VA Mycorrhizal (VAM) Fungi. In: VA Mycorrhizae. Powell, C.L. and D.J. Bagyaraj (Eds.), CRC Press, Florida, USA, pp. 95-112.
- Hoagland, D.R. and D.I. Arnon, 1950. The water culture method for growing plants without soil. California Agricultural Experimental Station Circular No. 347. University of California, Berkeley.
- Joner, E.J. and I. Jakobsen, 1995. Growth and extracellular phosphatase activity of *Arbuscular mycorrhizal* hyphae as influenced by soil organic matter. Soil Biol. Biochem., 27: 1153-1159.
- Klironomos, J.N. and M.M. Hart, 2002. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza, 12: 181-184.
- Koide, R.T. and B. Mosse, 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza, 14: 145-163.
- Liu, R. and F. Wang, 2003. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 13: 123-127.
- Maffia, B., N.M. Nadkarni and D.P. Janos, 1993. Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza, 4: 5-9.
- Marschner, H., E. Kirby and I. Cakmak, 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot., 47: 1255-1263.
- McGonigle, T.P., D.G. Evans and M.H. Miller, 1990. Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiment. New Phytol., 116: 629-636.
- Pacovsky, R.S., G.J. Bethlenfalvay and E.A. Paul, 1986. Comparisons between P-fertilized and mycorrhizal plants. Crop Sci., 26: 151-156.
- Pattinson, G.S., K.A. Hammill, B.G. Sutton and P.A. McGee, 2004. Growth and survival of seedlings of native plants in an improverished and highly disturbed soil following inoculation with arbuscular mycorrhizal fungi. Mycorrhiza, 14: 339-346.

- Rilling, M.C., E.R. Lutgen, P.W. Ramsey, N. Klironomos and J.E. Gannon, 2005. Microbiota accompanying different arbuscular mycorrhizal isolates influence soil aggregation. Pedobiologia, 49: 251-259.
- Setiadi, Y., 2000. Mycorrhizal Seedling Production for Enhancing Rehabilitation of Degraded Forest in Indonesia. In: Forest Restoration for Wildlife Conservation. Elliott, S., J. Kerby, D. Blakesley, K. Hardwick, K. Woods and V. Anusarnsunthorn (Eds.). Chiang Mai University, Thailand, pp: 235-243.
- Siqueira, J.O., M.A.C. Carneiro, N. Curi, S.C.S. Rosado and A.C. Davide, 1998a. Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional group in Southeastern Brazil. For. Ecol. Manage., 107: 241-252.
- Siqueira, J.O., O.J. Saggin-Júnior, W.W. Flores-Aylas and P.T.G. Guimarães, 1998b. Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza, 7: 293-300.
- Vaast, P.H., R.J. Zasoski and C.S. Bledsoe, 1996. Effects of vesicular-arbuscular mycorrhizal inoculation at different soil P availabilities on growth and nutrient uptake of *in vitro* propagated coffee (Coffea arabica L.) plants. Mycorrhiza, 6: 493-497.
- Wu, Q., R. Xia and Z. Hu, 2006. Effect of arbuscular mycorrhiza on the drought tolerance of *Poncirus trifoliate* seedlings. Front. For. China, 1: 100-104.
- Wubet, T., I. Kottke, D. Teketay and F. Oberwinkler, 2003. Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For. Ecol. Manage., 179: 387-399.
- Youpensuk, S., B. Rerkasem, B. Dell and S. Lumyong, 2005. Effects of arbuscular mycorrhizal fungi fallow enriching tree (*Macaranga denticulata*). Fungal. Divers., 18: 189-199.