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ABSTRACT

Choline dehydrogenase catalyzes the oxidation of choline to glycine betaine via betaine
aldehyde in glycine betaine biosynthesis. Glycine betaine 1s a compatible solute, able to restore and
maintain osmotic balance of living cells under stress. In this study, choline dehydrogenase (betA)
gene encoding for glycine betaine biosynthesis in Kscherichia colt isolated from salted shark
(Seoliodon sp.) was cloned and sequenced. The betd gene sequence reported in this study contains
several base substitutions with that of reported sequences in GenBank, resulting in the altered
amino acid sequences of the translated proteins.
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INTRODUCTION

Microorganisms are often exposed to the changes in environmentalparameters (Csonka, 1989;
Lucht and Bremer, 1994). To cope with the environment stress, bacteria accumulate osmotically
active compatible solutes, including: potassium, proline, glutamie acid, glutamine, ¢-amnobutyric
acid, ectoine and betaine (Poolman and Glaasker, 1998). Among the compatible solutes, glycine
betaine is a effective osmoprotectant (Wood ef al., 2001). Glycinebetaine (N, N, N-trimethylglveine)
is a quaternary ammonium compound that cceurs naturally in a wide variety of plants, animals and
microorganisms (Rhodes and Hanson, 1993). Numerous in vitro experiments have indicated that
betaine acts as an osmoprotectant by stabilizing both the quaternary structure of proteins and
cellular membrane against the adverse effects of high salinity and extreme temperatures
{Gorham, 1995). Biosynthesis of betaine is catalyzedin a single step reaction by choline oxidase in
soll bacterium, Arthrobacter globiformis (Ikuta et al., 1977). In higher plants, such as spinach
(Rathinasabapathi et «l., 1997), sugar beet and amaranth (Russell ef al, 1998) betaine
biosynthesis 1s catalyzed by choline monooxygenase in combination with betaine aldehyde
dehydrogenase. In K. coli, the biosynthetic pathway for the production of glycine betaine from
choline has been well characterized at the genetic level (.andfald and Strom, 1986). It has been
shown that four genes encoding choline dehydrogenase (betd), betaine aldehyde dehydrogenase
{betB), a putative regulator (betl) and a choline transporter (betT) are clustered in the bet opercon
{Andresen ef al., 1988), The enzymes involved in the biosynthesis of betaine from bacteria and
plants have been functionally characterized (Weretilnyk and Hanson, 1990; Gadda and
MecAllister-Wilkins, 2003).
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Recently, bacterial glycine betaine synthesizing enzymes have become a major target in
developing stress tolerant crop plants of economic interest. Previous studies reports the resistance
towards salinity and low temperature in transgenic tobacco expressing the two E. coli genes betA
and betB (Holmstrom et al., 2000), signifying the practical applications of choline dehydrogenase.
Choline dehydrogenase (betd) of K. colt catalyses the first step inglycine betaine biocsynthesis, the
oxidation of choline. However, this enzyme also catalyses the second step, the dehydrogenation of
betaine aldehyde to betaine (LLandfald and Strom, 1986). Choline dehydrogenase catalyzes the four
electron oxidation of choline to glycine betaine via a betaine aldehyvde intermediate (Tsuge et al.,
1980). Only nominal studiesin characterization of choline dehydregenase from E. coli have been
reported to date. In this study, we report the characterization and structural analysis of choline
dehydrogenase in K. coli. Moreover, the sequence analysis of choline dehydrogenase from our
isolate shows several base substitutions with that of reported sequences in GenBank, resulting in
the altered amino acid sequences of the translated proteins.

MATERIALS AND METHODS

Bacterial strains and plasmids: Escherichia coli was isolated from salted shark (Seoliodon sp.)
procured from retail fish markets in Cochin, Kerala, India in 2004 September. Microbial
identification and bicchemical characterization of K. coli was carried out as per [U.5. Food and
Drug Administration (USFDA)]. Kscherichia coli JM109 and plasmid pTZB7R/T (MBI Fermentas,
Hanover, Maryland, USA) were used as transformation host and cloning vector, respectively.

DNA extraction and gene amplification: Genomic DNA extraction from &. coli was performed
following the method of Ausubel ef al. (1994). Plasmid DNA was recovered from the transformed
clones by alkali lysis method (Sambrook and Russell, 2001). A pair of primers bAF
(5'-CGTATGCAATTTGACTACATCATT-3 and bAR (5'-GCATCATTTTTTCGCTCTCACCG-37)
were designed to amplify the betd gene. PCR amplification was carried out with 30 cycles of 1 min
at 94°C, 1.5 min at 50°C and 2 min at 72°C. Additional extension was carried out for 5 min at 72°C
using high fidelity PCR enzyme mix (MBI Fermentas).

Cloning and sequencing: The betA gene amplicon was purified using FPerfectprep Gel Cleanup
Kit (EKppendorf, Germany) and cloned into pTZB7R/T according to the manufacture's instructions.
The pTZ5TRIT-betA construct was transformed into &, eoli JM109 (recAl, endAl, gyrA96, thi-1,
hsdR17 (rK-mk+), eld-(merd-), supEd4, relAl, Alac-proAB)F' [traD36, proAB+, lac Iq,
lacZAMI15]. Positive transformants were selected for PCR amplification with vector primers
M13f-M13r (MBI Fermentas) and the clones with the correct insert as judged by size were
sequenced on ABI PRISM 377 genetic analyzer (Applied Biosystems Inc., Foster City, CA, USA).

In silico sequence analysis: The nucleotide sequences obtained were analysed with the available
database sequences by BLAST analysis using the NCBI (http://fwww.ncbi.nlm.nih.gov). The
sequences were aligned and clustered using CLUSTAL-X version 1.81 (Thempson et al., 1997). The
output alignments were imported into the GeneDoc program (http:/fwww.psc.edu/biomed/genedoc/)
and BioKdit version 7.05 program (www.mbio.ncsu.edu/Biockdit/) to calculate the percent identities
among the nucleotide and amino acid sequences. The molecular masses and the theoretical pl
values of the  polypeptides were  predicted  using  the ProtParam  tool
(http:/iwww.expasy.orgltools/protparam.html). The secondary structure prediction was performed

using the PROTEAN program (DNASTAR, Inc, Madison, USA).
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RESULTS AND DISCUSSION

Cloning and sequence analysis: Based on the sequence analysis, it was previously reported that
the betd gene of K. colt codes for choline dehydrogenase (Lamark et al., 1991). To date, only
minimum reports on the characterization of choline dehydrogenase has been reported (Tsuge ef al.,
1980; Gadda and McAllister-Wilkins, 2003). As the first step towards the funectional
characterization of choline dehydrogenase, in this study we cloned and characterized the betd gene
from K. coli cells under the control of inducible promaoter.

The choline dehydrogenase encodes the polypeptides comprised of 556 amino acids with the
calculated molecular masses of 61848 Da., based on the in silico estimates. The betd gene coded
for choline dehydrogenase was PCR amplified and is found to have the polynucleotides of 1871 bp
length (Fig. 1). The betd amplicon was purified from agarose gel, ligated in pTZ57R/T cloning
vector and transformed into E. coli JM109, Plasmid pTZE7R/T with betd gene insert was confirmed
by nucleotide sequencing. The nucleotide sequence of betd gene was submitted to GenBank and
have been given accession no. FJ823260,

The irn stlico sequence analysis of betA gene revealed a total of thirty-one base substitutions at
the nuclectide level (Fig. 2) with that of the sequences deposited in the GenBank {accession nos.
XB2905 and M77738). However, only two of these changes translated into change of amino acids.
The differences were observed at positions 133 and 452, which resulted in the amino acid
substitution of valine with methionine and of threonine with valine residue, respectively (Fig. 3).
No internal stop codons were observed due to the base substitution in the gene. Upon BLAST
analysis it was found that the deduced amino acid sequence of betd was highly homologous to
choline dehydrogenase of reported strains; 99% identity with K. coli {accession no. X52905) and
98% identity with E. coli (accession no. M77738). To authenticate the nucleotide variation in the
betA sequence of our isolate, the gene was yet again PCR amplified from the genomic DNA with
Tag DNA polymerase (Dynazyme 11, Espoo, Finland). The underlying principle for this strategy
was that feasible misincorporations of nucleotides in gene amplification might cecur at different
positions by using different DNA polymerases and PCR protocols. The PCR product was cloned in
pDrive vector (Qiagen, Germany) and sequenced. The nucleotide sequence of the betd gene ligated
in pDrive was the same as dogged using pTZ57R/T-betA cassette. This result confirms that the base
divergence was conserved in the genome and not due to the external parameters.

Evaluation of the deduced amine acid sequence of betd gene with reported choline

dehydrogenase sequences in the database revealed a maximum similarity. However, the sequence
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Fig. 1. Agarose gel electrophoresis of betd gene. Lane 1: betA amplicon; Lane M: DNA molecular

welght marker
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Fig. 2: BicEdit analysis of nucleotide substitutions of choline dehydrogenase (betA) in E. coli
[FJ8232680] (this study), with betA genes from K. coli straing [X52905 and M77738]
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Fig. 3: BioKdit analysis of amino acid substitutions of cheline dehydrogenase (betd) in K. coli
[FJ823260] (this study), with betA genes from K. coli strains [X52905 and M77738]
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Fig. 4: Secondary structure prediction of choline dehydrogenase using PROTEAN

analysis of betA of our isolate showed several base substitutions with that of reported sequences,

resulting in the altered amino acid sequences of the translated proteins.

Secondary structure prediction analysis: The secondary structure of choline dehydrogenase
was predicted to have the alpha-helical structure with maximum hydrophilic molecules. The
prediction analysis also revealed the presence of much acidic amino acids, regions with high

antigenicity and very high backbone chain flexibility (Fig. 4). Upon analysis of befd protein, the
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Fig. 5: Secondary structure analysis using PROTEAN. The analysis was performed using choline
dehydrogenase from K. coli [FJ823260] (this study) and from . coli strains [X52905 and
MT7738]

predicted charge at pH 7.0 was 15.45 with the isoelectric point of 5.52, Common amino acids include
58% glycine, 45% alanine, 41% glutamie acid, 40% leucine, 37% arginine, 33% praline and 30%
each of iscleucine and aspartic acid.

The secondary structure prediction results also exhibited considerable similarity with the
reparted choline dehydrogenases from £ coli strains. Upon structural analysis, both Chou-Fasman
and Garnier-Robson prediction of alpha helix structures showed a maximum similarity. These
results suggested that the active domains of the enzyme from our isolate have the considerable
identity with the database reports (Fig. 5).

In conclusion, this study represents the first instance in which the choline dehydrogenase in
. coli 1sclated from salted fish has been cloned and characterized in detail. Moreover, the
determination of protein structure modification due to the nucleotide substitutions will certainly
provide the basis for performing site-directed mutagenesis to improve the production and
configuration of the csmolytes of biotechnological interest. This, in turn, has great potential in
biotechnoloegical applications aimed at stress tolerancein crop plants of economic interest.
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