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Abstract

Background and Objective: A comprehensive, phylogeny of genus Streptomyces is needed for a better understanding of their ecology
aswellas forfacilitating their bioprospecting. 165-rRNA-based phylogenetic reconstruction does not guarantee well-resolved and robust
trees that reflect the overall relationship between Streptomyces species, therefore itis necessary to find a region of the genome that best
shows the difference between Streptomyces. The goal of the present study was to produce a more robust phylogeny for Streptomyces
by comparing the phylogenetic trees derived from concatenated gene and single gene sequence data. Methodology: Improvements
in DNA sequencing technologies have resulted in the ability to generate large numbers of high quality draft genomes that have led to
adramaticincrease in the number of publically available genomes and this has allowed researchers to characterize microorganisms using
genomic data. In the present study, a phylogeny of 26 Streptomyces strains were analyzed using individual genes with more than 1 kb
and compared with a phylogeny of 8 highly informative concatenated genes, for a total of 20 kb. Analyses were performed in MEGA,
which defined the topology of the consensus tree. Results: The results from the concatenated genes showed a much higher power of
discriminationand a much more stable topological structure than the 165 rRNA gene, with clearly better discriminated entities and higher
bootstrap support. Comparing the 23S rRNA gene tree with the concatenated gene tree, it was found that the 23S rRNA tree had
discriminatory power and topological stability similar to the concatenated gene tree. Conclusion: It is concluded that the 23S gene can
be used as an alternative to 16S for the identification and classification of streptomycetes at species and intraspecies levels. The inner
fragment of 23S (from 1 to 2 kb) is the most variable region and generated reliable and robust trees.
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INTRODUCTION

Streptomyces species are among the best studied and
characterize organisms, because of their importance in the
production of substances with medical applications'. The
importance of streptomycetes to medicine results from their
known ability to produce over two-thirds of the naturally
derived antibiotics in current use (and many other
pharmaceuticals such as anti-tumour agents and
immunosuppressants) through means of complex secondary
metabolic pathways? Therefore, Streptomycesis one of the
most important sources of bio-active molecules for medicine
and industry®. There have been efforts to establish a
comprehensive, detailed and robust phylogeny of
Streptomycesbased on single gene and genomic*. Currently
available phylogenies of the group are based on the 16S rRNA
gene; however, such reconstructions tend to be relatively
unstable and are not guaranteed to reflect the overall
evolutionary history in a complex group, with widespread
horizontal gene transfer, such as Streptomyces*. Despite the
16S rRNA sequences from almost all Streptomyces type
strains being available in public databases, contributed by
researchers from several countries and the phylogenies
being presented in the literature, many species relationships
within Streptomyces remain unclear. Streptomyces has
become one of the most taxonomically complex groups?,
with the majority of its species sharing highly similar
phenotypes and 16S rRNA sequences®’. The use of whole
genome sequences has been regarded as a promising
avenue for the future of Streptomyces taxonomic and
phylogenetic studies. Since rapid improvements in DNA
sequencing technologies are providing new approaches to
address major questionsin the field of microbial taxonomy?®°.
The goal of the present study was to produce a more robust
phylogeny for Streptomyces by comparing the phylogenetic
trees derived from concatenated gene and single gene
sequence data.

MATERIALS AND METHODS

This study was conducted at the University of the State
of Amazonas, UEA, in the postgraduate Biotechnology
Laboratory, 2016.

Genomes used: The National Center for Biotechnology
Information (NCBI) is well known for the nucleotide sequence
archive, GenBank and sequence analysis tool BLAST. Atotal of
26 Streptomyces genomes from different species and strains
of interest were randomly retrieved from NCBland used in this
study, the lineages and the number in GenBank are listed in
the Table 1.

The similarity to Streptomyces griseus NBRC 13350
(AP009493.1) was evaluated through BLASTn (Basic Local
Alignment Search Tool), with genes being selected from the
strains based on size higher than 1 kb and high similarity. The
genes that exhibit a greater similarity are listed in Table 2.
Sequence Manipulation Suite (Reverse Complement)'! was
used to invert the genomes that were reversed.

Phylogenetic analysis: One goal of study was to reevaluate
the phylogenetic relationships of Streptomyces species by
using different genes (Table 2) with the concatenated gene
tree and to compare between the trees generated by the 165
and 23S rRNA genes. Sequences were aligned using
CLUSTAL_W. To ensure the stability and reliability of
phylogenetic relationships among strains used in this
study, phylogenetic trees were constructed through the
neighbour-joining (NJ) method. Analyses were performed in
MEGA 5.2'? and bootstrap™ was calculated to determine
branch support (from 500 resembling). Analyses were
performed for each of the 40 genes (Table 2) so they could be
compared with the tree from the concatenated gene
analysis.

Concatenated gene analysis: For the concatenated gene
phylogenetic analysis, 8 conserved genes sequences (Table 2,

Table 1: Strains of Streptomyces used in this study and GenBank accession numbers

Strains GenBank Strains GenBank Strains GenBank
S. cyaneogriseus CP010849 S. iranensis LK022848 S. avermitilis BA000030
S. bingchenggensis CP002047 S. glaucescens CP009438 S. davawensis HE971709
Streptomyces sp. CP003987 S. nodosus CP009313 S. cattleya FQ859185
S, griseus AP009493 S, fulvissimus CP005080 Streptomyces sp. CP003990
S, collinus CP006259 S. hygroscopicus CP003720 S. hygroscopicus CP003275
S. venezuelae FR845719 S. scabier FN554889 S. albus CP004370
S. lividans CP009124 S. lydiicus CP007699 S. albus CP010519
S. violaceusniger CP00299%4 S. cattleya CP003219 Streptomyces sp. CP002993
S. vietnamensis CP010407 S. albulus CP007574
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into one

meta-alignment. The meta-alignment contained a total of
20,000 phylogenetically informative sites. Bootstrap was

Omega' and after removing all sites containing gaps, the
calculated for branch support (500 resembling).

highlighted in bold) were individually aligned using Clustal
8 sequences were concatenated manually

RESULTS
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concatenated gene tree.

The alignment of the 16S rRNA gene sequences showed
a high similarity between strains as indicated by the scale bar
inFig. 1. There was poor topological congruence between the
16S tree and the other trees. Among all trees, bootstrap
supports were the lowest in the 16S tree. Overall, the results

showed that the strains are very closely related (Fig. 1).

The phylogenetic tree based on the eight concatenated
genes had a different topology than the 16S rRNA gene tree
and most of the 16S rRNA gene clusters were not recovered.

The results from the concatenated genes showed a much

higher power of discrimination and a much more stable

topological structure than the 16S rRNA gene, with clearly
better discriminated entities and higher bootstrap support

(Fig. 2).

Comparing the 23S rRNA gene tree (Fig. 3) with the
concatenated gene tree, it was found that the 23S rRNA tree

had discriminatory power and topological stability similar

to the concatenated gene tree. It was also found that the

23S rRNA gene tree had good resolution and robustness.

Although a few branches were poorly resolved or showed

dissimilar structures when compared to the concatenated
gene tree, it was still efficient in differentiating most of the

strains (Fig. 3).

The ideal means of identifying and classifying bacteria

would be to compare each genome in a given strain with the
genome of all known species. This cannot be done but the

gene of one organism can be compared with that of any other
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92—S. griseus AP009493
73 S fulvissimus CPO0S080

100 Streptomyces sp. CP003990
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Fig. 1: Phylogenetic relationships among 26 Streptomyces strains based on 16S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence. Strains of clusters |, Il and Il are highlighted

100 CP003275 S. hygroscopicus
100| | cP0O03720 S hygroscopicus

CP006259 S. collinus
5 CP009438 S. glaucecens
81| 99 CP010849 S. cyaneogriseus
CP9313 S nodosus
100 HE971709 S. davawensis
70| |R‘ BAOO0030 S avermitilis
1 FN554889 S scabiei
CP010519 S albus
CP004370 S albus
1b CP010407 S. vietnamensis
81 FR845719 S. venezud ae
L ﬂ' CP002993 Streptomyces sp.
CP003990 Streptomyces sp.
100 CP005080 S fulvissimus
—MJ—APoosmgs S griseus
100 CP003987 Streptomyces sp.
100 CP007574 S albulus
CP007699 S lydicus

100 LK022848 S. iranesis
100 4100,—: CP002994 S violaceusniger
CP002047 S. bingchenggensis

100 | €Q859185 S cattleya
1 CP003219 S cattleya

——

Fig. 2: Phylogenetic relationships among 26 Streptomyces strains based on eight concatenated gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence

organism. The 23S gene is around 3 kb, thus it was chose a gene (between nucleotide 1000 and 2000), which gave
partial and less conserved region, an inner fragment of the ~ enough resolution to separate closely related Streptomyces
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Fig. 3: Phylogenetic relationships among 26 Streptomyces strains based on 23S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates

1% estimated sequence divergence

100; CP003275 S. hygroscopicus
84 CP003720 S. hygroscopicus
CP009438 S. glaucescens

76 CP009659 S collinus
37 CP010849 S. cyaneogriseus

a4 { HE971709 S davawensis

91 CP009124 S lividans
CP009313 S. nodosus
) CP004370 S albus
n BA000030 S avermitilis
46 FN554889 S scabiei
FR845719 S venezud ae
CP010407 S vietnamensis
LK022848 S iranesis
CP002047 S bingchenggensis
CP002994 S violaceusniger
CP010519 S albus
CP005080 S. fulvissimus
CP003990 Streptomyces sp.
AP0009493 S, griseus

91 CP0002993 Streptomyces sp.
CP007699 S. lydicus
ECPOOBQW Streptomyces sp.
99 CP007574 S albulus
|FQ859185 S cattleya

1CP003219 S cattleya

68

99

0.01

Fig. 4: Phylogenetic relationships among 26 Streptomyces strains based on partial 23S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates

1% estimated sequence divergence

species. The 23S inner region tree usually had higher  buttheestimated sequencedivergenceswere differentas can
bootstrap values than those of the complete 23S dataset. be seen in the bars of Fig. 3 and 4, the latter being shorter,
Topologies of both trees of 23S RNA gene were very similar, ~ showing a larger difference between species.
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The partial 23S rRNA tree proved to be the most robust
and viable phylogenetic tree that differentiated most
strains in this study, with an identification sequence less than
1000 bp long, to use only one reaction in Sanger sequencing
technology.

Understanding the extent of genetic and functional
diversity among strains of the same or very closely related,
species has become a cornerstone issue for bacterial
systematics, especially for Streptomyces, which produces
important secondary metabolites'. Analysis using 16S rRNA
genesisfrequently used to obtain the taxonomic composition
of a microbial community's "7,

DISCUSSION

Several phylogenetic trees were constructed, using all the
genes of Table 2 plus the 16S and 23S and compared these
trees with the 8 concatenated genes. A variation in the bar
scale was observed, showing the genetic change of the genus
Streptomyces. With more conserved genes and genes with
higher numbers of changes but the distribution of the species
in the phylogenetic tree does not suffer many changes from
one gene to another.

Genes used in molecular systematics should be evaluated
for their phylogenetic performance from previous studies'®.
Protein-coding genes aren't commonly used in the
identification of bacteria and some of them have been used
individually for phylogenetic analyses of Streptomyces*'®
demonstrating that they can give a higher resolution for the
phylogeny of Streptomyces. The 16S rRNA gene tree is
unreliable due to the conflicting topologies obtained and the
low bootstrap support values observed, which mightindicate
an incorrect relationship between the Streptomyces strains
studied. Guo et a/® stated that the 16S rRNA gene is more
appropriate for the discrimination of distantly related
streptomycetes, but is not efficient for closely related strains.

The 16S rRNA gene sequence has been determined for a
large number of Streptomyces strains. GenBank, the largest
databank of nucleotide sequences has millions of deposited
sequences and accepts any linked name and sequence that is
sent to it. Often, the sequences deposited in GenBank are not
complete or as accurate as they should be. Thus, there are
many deposited sequences that are comparable to an
unknown strain, indicating that many genetically different
strains were being deposited under the same species name.
For phenotypicidentification of micro-organisms, it depended
on a database with accurate morphological and biochemical
descriptions of typeor typical, strains and of standard methods
to determine these characteristics in the isolate to being

18

identified®. Similarly, for accurate organism identification
through 23S rRNA gene sequences, it is important to
databases with accurately identified sequences and a high
quality sequence from the isolate to be identified. The 23S
sequences deposited in GenBank are of better quality than the
16S ones, because most are from Streptomyces standard
strains and some have their whole genome described, a better
gene for comparison overall.

Streptomyces is an important group for industrial
microbiology, however, its species are usually difficult to
identify’ and the correct designation of Streptomyces strains
is important to better discriminate between them. The 16S
rRNA gene sequences provide limited identification of
Streptomyces strains. An additional important function of
23S rRNA gene sequencing is to provide accurately grouped
organisms, through phylogenetic analyses, for further study.
The 23S rRNA gene sequences are more reliable, allowing for
a more robust, reproducible and accurate bacterial
identification than with the 16S rRNA gene.

Many other genomic regions have also been used to
examine the phylogenetic relationships among bacteria.
Whole-genome analyses have been tried, but these are still
quite difficult because the genomes are of different sizes and
gene duplication, transfer, deletion, fusion and splitting are
common in them?®2'22, However, it has been observed that the
trees based on genomic data and 23S rRNA gene data are
similar, showing that 23S rRNA sequences can aid in
distinguishing between Streptomyces spp.

Several observations can be made from comparing the
concatenated eight-gene and the 16S rRNA gene trees. First,
the phylogenetic relationships between most strains in this
study are usually different between the two trees. Second, the
eight-gene tree shows a much higher power of discrimination
since most species are clearly discriminated from each other
in it. Third, the topological structure of the eight-gene tree,
which is supported by noticeably higher bootstrap values, is
much more stable than that of the 165 rRNA gene tree, a
similar behavior to that observed by Rong and Huang’. These
observations emphasize the fact that the eight-gene tree is
obviously superior to the 16S rRNA gene tree in both
resolution power and topological stability. Phylogenetic
trees predicted from each of the forty genes were varied,
however, with slight differences, thus forming the basis for
the concatenation of the eight chosen genes for the
analysis (Fig. 2). The phylogenetic tree based on the eight
concatenated genes had a similar topology to the 23S rRNA
gene tree (Fig. 3), with most of the branches obtained with
the 23S rRNA gene recovered, but with better discriminated
entities and higher bootstrap supportvalues. The results using
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the internal fragment of 23S for the 26 strains demonstrated
that the phylogeny was generally congruent with that of the
whole gene region and showed much higher power of
discrimination and a stable topological structure. Although a
few branches presented dissimilar taxa, it is still more
cost-effective using this partial gene sequence of 23S for
everyday use in identification of novel isolates. This technique
is of great biological significance since it provides a tool that
will benefit both ecology and bioprospecting of these
ubiquitous microorganisms. With a primer pair designed for a
partial 23S (F1067 5-GGGGATAAGCTCCATGGTCG3'and R2192
5-AAGTTCTCAGCTTCGCCAC-3' (Tm 58)), it was possible to
amplify all Streptomyces strains in our laboratory.

Understanding the extent of genetic and functional
diversity among strains of the same or very closely related
species has become a cornerstone issue for bacterial
systematic?2*. With the availability of several genomes, it has
become more attractive to survey the diversity and evolution
of bacteria, since it assists in phylogenetic reconstruction and
evolutionary studies by providing larger numbers of
informative characters, which in turn allows for comparisons
between the history and changes in the genes present in the
genome',

The 23S rRNA gene phylogeny of Streptomyces can
predict the diversity of secondary metabolites from strains,
further supporting the diversity identified by genome
fingerprinting. Moreover, this result demonstrated another
advantage of 23S, since it behaves like the secondary
metabolic pathway genes, it can give an appropriate
prediction of relatedness and diversification of organisms.
With the decrease of sequencing costs, partial sequences of
the 23S rRNA gene can be a source of data for both systematic
research and functional investigation. With the availability of
whole genome sequences, they can be used for defining the
true relationships between Streptomyces species. The
concatenation approach has been used by a number of
phylogenetic studies®”®. The phylogenies obtained from the
23S gene are of great biological significance since they
provide an elaborate taxonomic grouping of streptomycetes
and will benefit both ecology and bioprospecting of these
ubiquitous microorganisms.

CONCLUSION

In this study developed a 23S rRNA gene sequence
analysis scheme for Streptomyces and have shown its
promising potential for refining the phylogeny of this genus.
The scheme was based on an internal fragment of the
23SrRNA gene and candiscriminate and define phylogenetic
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relationships between diverse and closely related species of
Streptomyces. This can be a valuable tool in the discovery of
novel and commercially important metabolites.

SIGNIFICANCE STATEMENTS

Streptomyces is one of the most important sources of
bio-active molecules for medicine and industry. There is
currently a difficulty in identifying Streptomyces at the
species level, especially when the 16S rDNA gene is used,
there is a need to discover other genes that may better
represent the diversity of this important genus. This study will
help researchers identify Streptomyces strains more
accurately and better organizing this important genus of
bacteria, using the 23S rDNA gene.
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