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Abstract
Background and Objective: A comprehensive, phylogeny of genus Streptomyces  is needed for a better understanding of their ecology
as well as for facilitating their bioprospecting. 16S-rRNA-based phylogenetic reconstruction does not guarantee well-resolved and robust
trees that reflect the overall relationship between Streptomyces  species, therefore it is necessary to find a region of the genome that best
shows the difference between Streptomyces. The goal of the present study was to produce a more robust phylogeny for Streptomyces
by comparing the phylogenetic trees derived from concatenated gene and single gene sequence data. Methodology: Improvements
in DNA sequencing technologies have resulted in the ability to generate large numbers of high quality draft genomes that have led to
a dramatic increase in the number of publically available genomes and this has allowed researchers to characterize microorganisms using
genomic data. In the present study, a phylogeny of 26 Streptomyces  strains were analyzed using individual genes with more than 1 kb
and compared with a phylogeny of  8 highly informative concatenated genes, for a total of 20 kb. Analyses were performed in MEGA,
which defined the topology of the consensus tree. Results: The results from the concatenated genes showed a much higher power of
discrimination and a much more stable topological structure than the 16S rRNA gene, with clearly better discriminated entities and higher
bootstrap support. Comparing the 23S rRNA gene tree with the concatenated gene tree, it was found that the 23S rRNA tree had
discriminatory power and topological stability similar to the concatenated gene tree. Conclusion:  It is concluded that the 23S gene can
be used as an alternative to 16S  for the identification and classification of streptomycetes at species and intraspecies levels. The inner
fragment of  23S (from 1 to 2 kb) is the most variable region and generated reliable and robust trees.
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INTRODUCTION

Streptomyces species are among the best studied and
characterize organisms, because of their importance in the
production of substances with medical applications1. The
importance of streptomycetes to medicine results from their
known ability to produce over two-thirds of the naturally
derived antibiotics  in  current  use  (and  many  other
pharmaceuticals  such  as  anti-tumour  agents  and
immunosuppressants) through means of complex secondary
metabolic pathways2. Therefore, Streptomyces is one of the
most important sources of bio-active molecules for medicine
and industry3. There have been efforts to establish a
comprehensive, detailed and robust phylogeny of
Streptomyces based on single gene and genomic4. Currently
available phylogenies of the group are based on the 16S rRNA
gene; however, such reconstructions tend to be relatively
unstable and are not guaranteed to reflect the overall
evolutionary history in a complex group, with widespread
horizontal gene transfer, such as Streptomyces4. Despite the
16S  rRNA  sequences  from  almost  all  Streptomyces  type
strains being available in public databases, contributed by
researchers  from  several  countries and the phylogenies
being presented in the literature, many species relationships
within Streptomyces  remain  unclear.  Streptomyces has
become one of the  most  taxonomically  complex groups5,
with the majority of its species sharing highly similar
phenotypes and 16S rRNA sequences6,7. The use of whole
genome  sequences  has been regarded as a promising
avenue for the future of Streptomyces taxonomic and
phylogenetic studies. Since rapid improvements in DNA
sequencing technologies are providing new approaches to
address major questions in the field of microbial taxonomy8-10.
The goal of the present study was to produce a more robust
phylogeny for Streptomyces by comparing the phylogenetic
trees derived from concatenated gene and single gene
sequence data.

MATERIALS AND METHODS

This study  was  conducted  at  the  University of the State
of  Amazonas,  UEA,  in  the  postgraduate Biotechnology
Laboratory, 2016.

Genomes used: The National Center for Biotechnology
Information (NCBI) is well known for the nucleotide sequence
archive, GenBank and sequence analysis tool BLAST.  A total of
26 Streptomyces  genomes  from different species and strains
of interest were randomly retrieved from NCBI and used in this
study, the lineages and the number in GenBank are listed in
the Table 1.

The similarity to Streptomyces griseus NBRC 13350
(AP009493.1) was evaluated through BLASTn (Basic Local
Alignment Search Tool), with genes being selected from the
strains based on size higher than 1 kb and high similarity. The
genes that exhibit a greater similarity are listed in Table 2.
Sequence Manipulation Suite (Reverse Complement)11 was
used to invert the genomes that were reversed.

Phylogenetic analysis: One goal of study was to reevaluate
the phylogenetic relationships of Streptomyces species by
using different genes (Table 2) with the concatenated gene
tree and to compare between the trees generated by the 16S
and 23S rRNA genes. Sequences were aligned using
CLUSTAL_W. To ensure the stability and reliability of
phylogenetic  relationships  among  strains  used  in  this
study, phylogenetic trees were constructed through the
neighbour-joining (NJ) method. Analyses were performed in
MEGA 5.212 and bootstrap13 was calculated to determine
branch support (from 500 resembling). Analyses were
performed for each of the 40 genes (Table 2) so they could be
compared  with  the  tree from the concatenated gene
analysis.

Concatenated gene analysis: For the concatenated gene
phylogenetic analysis, 8 conserved genes sequences (Table 2,

Table 1: Strains of  Streptomyces  used in this study and GenBank accession numbers
Strains GenBank Strains GenBank Strains GenBank
S. cyaneogriseus CP010849 S. iranensis LK022848 S. avermitilis BA000030
S. bingchenggensis CP002047 S. glaucescens CP009438 S. davawensis HE971709
Streptomyces sp. CP003987 S. nodosus CP009313 S. cattleya FQ859185
S. griseus AP009493 S. fulvissimus CP005080 Streptomyces sp. CP003990
S. collinus CP006259 S. hygroscopicus CP003720 S. hygroscopicus CP003275
S. venezuelae FR845719 S. scabiei FN554889 S. albus CP004370
S. lividans CP009124 S. lydicus CP007699 S. albus CP010519
S. violaceusniger CP002994 S. cattleya CP003219 Streptomyces sp. CP002993
S. vietnamensis CP010407 S. albulus CP007574
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highlighted in bold) were individually aligned using Clustal
Omega14 and  after  removing  all  sites  containing gaps, the
8   sequences   were   concatenated   manually   into  one
meta-alignment. The meta-alignment contained a total of
20,000 phylogenetically informative sites. Bootstrap was
calculated for branch support (500 resembling).

RESULTS

After  analysis  of  the  genes   with   more   than   1   kb  of
S. griseus NBRC 13350, it was observed that the aconitate
hydratase, putative succinate dehydrogenase flavoprotein,
RNA polymerase  beta  subunit,    putative   ATP-dependent
Clp protease, putative  ppGpp  synthetase, putative
carbamoyl-phosphate     synthase         large     subunit,
putative mannose-1-phosphate    guanyltransferase,   putative
ATP-dependent helicase and 23S genes, presented better
similarity and higher value of bootstrap and better distribution
of the species in the phylogenetic tree. All gene trees were
compared with the tree of the 8 concatenated genes, with 23S
being the one that showed the best similarity with the
concatenated gene tree.
The alignment of the 16S rRNA gene sequences showed

a high similarity between strains as indicated by the scale bar
in Fig.  1. There was poor topological congruence between the
16S tree and the other trees. Among all trees, bootstrap
supports were the lowest in the 16S tree. Overall, the results
showed that the strains are very closely related (Fig. 1). 
The phylogenetic tree based on the eight concatenated

genes had a different topology than the 16S rRNA gene tree
and most of the 16S rRNA gene clusters were not recovered.
The results from the concatenated genes showed a much
higher power of discrimination and a much more stable
topological structure than the 16S rRNA gene, with clearly
better discriminated entities and higher bootstrap support
(Fig. 2).
Comparing the 23S rRNA gene tree (Fig. 3) with the

concatenated gene tree, it was found that the 23S rRNA tree
had discriminatory  power  and  topological  stability  similar
to the concatenated gene tree. It was  also  found  that  the
23S rRNA gene tree had good resolution and robustness.
Although a few branches were poorly resolved or showed
dissimilar structures when compared to the concatenated
gene tree, it was still efficient in differentiating most of the
strains (Fig. 3). 
The ideal means of identifying and classifying bacteria

would be to compare each genome in a given strain with the
genome of all known species. This cannot be done but the
gene of one organism can be compared with that of any other
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Fig. 1: Phylogenetic relationships among 26 Streptomyces strains based on 16S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence. Strains of clusters I, II and III are highlighted

Fig. 2: Phylogenetic relationships among 26 Streptomyces  strains based on eight concatenated gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence

organism. The 23S gene is around 3 kb, thus it was chose a
partial and less conserved region, an inner fragment of the

gene (between nucleotide 1000 and 2000), which gave
enough resolution to separate closely related Streptomyces 
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Fig. 3: Phylogenetic relationships among 26 Streptomyces strains based on 23S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence

Fig. 4: Phylogenetic relationships among 26 Streptomyces  strains based on partial 23S rRNA gene sequences
The tree was constructed using the NJ method. Numbers at nodes represent levels (%) of bootstrap support from 500 resampled datasets. The bar indicates
1% estimated sequence divergence

species. The 23S inner region tree usually had higher
bootstrap values than those of the complete 23S dataset.
Topologies of both trees of 23S RNA gene were very similar,

but the estimated sequence divergences were different as can
be seen in the bars of Fig. 3 and 4, the latter being shorter,
showing a larger difference between species.
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The partial 23S rRNA tree proved to be the most robust
and viable  phylogenetic  tree  that  differentiated   most
strains in this study, with an identification sequence less than
1000 bp long, to use only one reaction in Sanger sequencing
technology.
Understanding the extent of genetic and functional

diversity among strains of the same or very closely related,
species has become a cornerstone issue for bacterial
systematics, especially for Streptomyces, which produces
important secondary metabolites15. Analysis using 16S rRNA
genes is frequently used to obtain the taxonomic composition
of a microbial community16, 17.

DISCUSSION

Several phylogenetic trees were constructed, using all the
genes of Table 2 plus the 16S and 23S and compared these
trees with the 8 concatenated genes. A variation in the bar
scale was observed, showing the genetic change of the genus
Streptomyces. With more conserved genes and genes with
higher numbers of changes but the distribution of the species
in the phylogenetic tree does not suffer many changes from
one gene to another.
Genes used in molecular systematics should be evaluated

for their phylogenetic performance from previous studies18.
Protein-coding genes aren’t commonly used in the
identification of bacteria and some of them have been used
individually for phylogenetic analyses of Streptomyces4,19

demonstrating that they can give a higher resolution for the
phylogeny of Streptomyces. The 16S rRNA gene tree is
unreliable due to the conflicting topologies obtained and the
low bootstrap support values observed, which might indicate
an incorrect relationship between the Streptomyces strains
studied. Guo et al.6 stated that the 16S rRNA gene is more
appropriate for the discrimination of distantly related
streptomycetes, but is not efficient for closely related strains. 
The 16S rRNA gene sequence has been determined for a

large number of Streptomyces strains. GenBank, the largest
databank of nucleotide sequences has millions of deposited
sequences and accepts any linked name and sequence that is
sent to it. Often, the sequences deposited in GenBank are not
complete or as accurate as they should be. Thus, there are
many deposited sequences that are comparable to an
unknown strain, indicating that many genetically different
strains were being deposited under the same species name.
For phenotypic identification of micro-organisms, it depended
on a database with accurate morphological and biochemical
descriptions of typeor typical, strains and of standard methods
to  determine  these  characteristics  in  the  isolate   to  being

identified20. Similarly, for accurate organism identification
through 23S rRNA gene sequences, it is important to
databases with accurately identified sequences and a high
quality sequence from the isolate to be identified. The 23S
sequences deposited in GenBank are of better quality than the
16S ones, because most are from Streptomyces standard
strains and some have their whole genome described, a better
gene for comparison overall.
Streptomyces is an important group for industrial

microbiology, however, its species are usually difficult to
identify1 and the correct designation of Streptomyces strains
is important to better discriminate between them. The 16S
rRNA gene sequences provide limited identification of
Streptomyces   strains.  An additional important function of
23S rRNA gene sequencing is to provide accurately grouped
organisms, through phylogenetic analyses, for further study.
The 23S rRNA gene sequences are more reliable, allowing for
a more robust, reproducible and accurate bacterial
identification than with the 16S rRNA gene. 
Many other genomic regions have also been used to

examine the phylogenetic relationships among bacteria.
Whole-genome analyses have been tried, but these are still
quite difficult because the genomes are of different sizes and
gene duplication, transfer, deletion, fusion and splitting are
common in them9,21,22. However, it has been observed that the
trees based on genomic data and 23S rRNA gene data are
similar, showing that 23S rRNA sequences can aid in
distinguishing between Streptomyces spp.
Several observations can be made from comparing the

concatenated eight-gene and the 16S rRNA gene trees. First,
the phylogenetic relationships between most strains in this
study are usually different between the two trees. Second, the
eight-gene tree shows a much higher power of discrimination
since most species are clearly discriminated from each other
in it. Third, the topological structure of the eight-gene tree,
which is supported by noticeably higher bootstrap values, is
much more stable than that of the 16S rRNA gene tree, a
similar behavior to that observed by Rong and Huang7. These
observations emphasize the fact that the eight-gene tree is
obviously superior to the 16S rRNA gene tree in both
resolution  power  and  topological stability. Phylogenetic
trees predicted from each of the forty genes were varied,
however, with  slight  differences, thus forming the basis for
the concatenation  of  the  eight  chosen  genes for the
analysis (Fig. 2). The phylogenetic tree based on the eight
concatenated genes had a similar topology to the 23S rRNA
gene tree (Fig. 3),  with most of the branches obtained with
the 23S rRNA gene recovered, but with better discriminated
entities and higher bootstrap support values. The results using
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the internal fragment of 23S for the 26 strains demonstrated
that the phylogeny was generally congruent with that of the
whole gene region and showed much higher power of
discrimination and a stable topological structure. Although a
few branches  presented  dissimilar  taxa,   it   is   still  more
cost-effective using this partial gene sequence of 23S for
everyday use in identification of novel isolates. This technique
is of great biological significance since it provides a tool that
will benefit both ecology and bioprospecting of these
ubiquitous microorganisms. With a primer pair designed for a
partial 23S (F1067 5’-GGGGATAAGCTCCATGGTCG3’ and R2192
5’-AAGTTCTCAGCTTCGCCAC-3’ (Tm 58)), it was possible to
amplify all Streptomyces strains in our laboratory.

Understanding the extent of genetic and functional
diversity among strains of the same or very closely related
species has become a cornerstone issue for bacterial
systematic23,24. With the availability of several genomes, it has
become more attractive to survey the diversity and evolution
of bacteria, since it assists in phylogenetic reconstruction and
evolutionary  studies  by  providing  larger  numbers  of
informative characters, which in turn allows for comparisons
between the history and changes in the genes present in the
genome15,25.

The 23S rRNA gene phylogeny of Streptomyces can
predict the diversity of secondary metabolites from strains,
further supporting the diversity identified by genome
fingerprinting. Moreover, this result demonstrated another
advantage of 23S, since it behaves like the secondary
metabolic pathway genes, it can give an appropriate
prediction of relatedness and diversification of organisms.
With the decrease of sequencing costs, partial sequences of
the 23S rRNA gene can be a source of data for both systematic
research and functional investigation. With the availability of
whole genome sequences, they can be used for defining the
true relationships between Streptomyces species. The
concatenation approach has been used by a number of
phylogenetic studies6,7,15.  The phylogenies obtained from the
23S gene are of great biological significance since they
provide an elaborate taxonomic grouping of streptomycetes
and will benefit both ecology and bioprospecting of these
ubiquitous microorganisms.

CONCLUSION

In this study developed a 23S rRNA gene sequence
analysis scheme for Streptomyces and have shown its
promising potential for refining the phylogeny of this genus.
The scheme was  based  on  an   internal   fragment   of  the
23S rRNA  gene  and can discriminate and define phylogenetic

relationships between diverse and closely related species of
Streptomyces. This can be a valuable tool in the discovery of
novel and commercially important metabolites.

SIGNIFICANCE STATEMENTS

Streptomyces  is one of the most important sources of
bio-active molecules for medicine and industry. There is
currently a difficulty in identifying Streptomyces  at the
species level, especially when the 16S rDNA gene is used,
there is a need to discover other genes that may better
represent the diversity of this important genus. This study will
help  researchers  identify  Streptomyces  strains more
accurately and better organizing this important genus of
bacteria, using the 23S rDNA gene.
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