

Research Journal of **Parasitology**

ISSN 1816-4943

Research Journal of Parasitology 10 (3): 79-91, 2015 ISSN 1816-4943 / DOI: 10.3923/jp.2015.79.91 © 2015 Academic Journals Inc.

Occurrence of *Anisakis* Larvae in Commercial Fish along the Northern Coast of Taiwan

^{1,2}Yun-Jen Chen, ³Chun-Chun Wu and ¹Jui-Sen Yang

Corresponding Author: J.S. Yang, Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan

ABSTRACT

Anisakis larvae of three commercial fish species, including Trichiurus lepturus, Scomber japonicus and Trachurus japonicus, found in the ocean North of Taiwan, were examined. The morphology of the larvae was analyzed using light and scanning electron microscopes, the population dynamics (including prevalence, mean intensity and abundance) were studied and the molecular characteristics of the Anisakid nematodes were identified. The annual prevalence of the larvae in T. lepturus, S. japonicus and T. japonicus were 91, 39 and 89%, respectively. Using light microscopy and scanning electron microscopy demonstrated that the worms in the three species of fish showed no difference in morphological features. The Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) indicated that the larvae from the three species of fish belonged to a single species. However, using phylogenetic analysis in the molecular identification of ribosomal DNA (rDNA) domains ITS-1 (internal transcribed spacer 1) and ITS-2, the larvae in the three species of fish were not of a single species of Anisakis.

Key words: Anisakis, Trichiurus lepturus, Scomber japonicus, Trachurus japonicus

INTRODUCTION

Anisakid nematodes are marine parasites that cause allergic reactions and anisakiasis. Anisakid third-stage larvae (L3) have been reported widely in invertebrates, such as squid and in vertebrates, such as fish (Karl et al., 1994; Moreno-Ancillo et al., 1997). The larvae (L3) are transmitted from crustaceans to squid and fish via the food chain (Klimpel et al., 2004), then infect marine mammals and humans (Gardiner, 1990). The prevalence of Anisakid larvae was 100% for all three host species, including minke whales (Balaenoptera acutorostrata), porpoises (Phocoena phocoena) and long-finned pilot whales (Globicephala melas) in the North Atlantic (Ugland et al., 2004). All wild-caught Pacific salmon (Oncorhynchus spp.) were considered to have Anisakis simplex larvae present. The rate of prevalence is more than 75% in fresh U.S. commercial salmon (Myers, 1979). A. simplex worms were found in salmon throughout the North Atlantic (Beverley-Burton and Pippy, 1978) and detected as existing in 78-97% of smoked herring (Clupea harengus) obtained from a French supermarket (Lagoin, 1980). In Atlantic horse mackerel, Anisakis larvae, including A. simplex s. str., A. pegreffii, A. physeteris, A. typica and Anisakis spp., were found (Mattiucci et al., 2008). In the Mediterranean waters of coastal North Africa, several Anisakis sibling and morphospecies, such as A. simplex s. str., A. pegreffii, A. physeteris, A. typica

¹Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan

 $^{^2} Department of Pathology and Laboratory Medicine, Shin Kong Wu \, Ho-Su \, Memorial \, Hospital, Taipei, Taiwan \, And Memorial \, Hospital, Memorial \, Hospi$

³Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan

and A. simplex s. str., A. pegreffii hybrids, coexisted (Farjallah et al., 2008; Meloni et al., 2011). In Northern Japan and the sea areas in Korea, four Anisakis spp., including A. simplex s. str., A. pegreffii, A. brevispiculata and Anisakis spp. (Type II), were detected in marine fish. A simplex s. str. formed the majority of Anisakis spp. (Quiazon et al., 2009; Sohn et al., 2014). High prevalence of Anisakidae larvae infection was reported in fish from in the East China Sea (Kong et al., 2015). The specific identification of Anisakid larvae L3 was complex, because few morphological characteristics could be used for identification in the larval stage. The morphological features observed using Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were the common characteristics used for larval identification (Pascual et al., 1999; Weerasooriya et al., 1986). Using recent molecular techniques, the assay with Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) amplification of the internal transcribed spacer 1 and 2 (ITS-1 and ITS-2) fragments of ribosomal DNA (rDNA) was used as a test for identifying the worm species (Kijewska et al., 2000; Pontes et al., 2005). Discrimination among the sibling species of A. simplex was performed using PCR-RFLP or sequencing analysis of domain ITS (Abe, 2008).

Anisakid larvae infestation of fresh commercial fish from Taiwan remains indistinct. In this work, the infection of *Anisakis* larvae was surveyed in three commercial fish commonly found in Northern Taiwan waters. Data on the prevalence, mean intensity, abundance, morphological features (LM and SEM) and molecular studies in Anisakid worms in these commercial fish were provided in this study for primary surveying of the infestation and species constitution of the worms.

MATERIALS AND METHODS

Six fish specimens from each of *Trichiurus lepturus* (Linnaea 1758), *Scomber japonicus* (Houttuyn 1782) and *Trachurus japonicus* (Temminck and Schlegel 1844) were collected from a selected fisherman at monthly intervals from the ocean around Keelung Islet, Northern Taiwan (25.1 N- 25.5 N, 121.6 E-122.0 E). Immediately on capture, the live fish were placed in a marine water tank and sent to the laboratory. Each fish was weighed and measured for preanal length (distance between the tip of the upper jaw to the anus) and total length (distance from the tip of the snout to the tip of the longer lobe of the caudal fin). All organs were examined for Anisakine nematodes by using a magnifier with illumination. The prevalence, mean intensity and abundance of Anisakid were studied. The data was statistically analyzed with Scheffe's test.

Morphological features: The worm specimens were washed, stored in a saline solution (0.9% NaCl) at 4°C overnight and then examined or fixed. The live larvae were examined under a light microscope. Additional larvae were primarily fixed with 2.5% glutaraldehyde and 1.6% paraformaldehyde in a 0.1 M phosphate buffer (pH 7.2). After being washed with a phosphate buffer, the specimens were refixed with osmium tetroxide, washed again with a phosphate buffer, dehydrated in an ethanol series, critical-point-dried in CO_2 by using a critical-point dryer (HCP-Z, Hitachi) and coated in a sputter coater (E101, Hitachi). The larvae were examined using an SEM (S-2400, Hitachi) operated at 15 kV.

rDNA cloning and sequence: Anisakid DNAs were isolated from the worms by using a blood-and-tissue genomic mini-kit (Viogene), as Volgelstein and Gillespie (1979) described. Internal Transcribed Spacer (ITS) domains were extracted from the worms from *T. lepturus*, *S. japonicus*

and *T. japonicus*. For cloning, the first and second internal transcribed spacers (ITS-1, ITS-2) of ribosomal DNA (rDNA) were individually amplified by Polymerase Chain Reaction (PCR) with primers NC5 (forward: 5'-GTAGGTGAACCTGCGGAAGGATCATT-3') and NC2 (reverse: 5'-TTAGTTTCTTTTCCTCCGCT-3') (Zhu *et al.*, 2000). In summary, the transcription was conducted using deoxynucleoside triphosphate (dNTP) (10 mM) 2 μ L, primer NC5 (25 mM) 2 μ L, primer NC2 (25 mM) 2 μ L, MgCl₂ (25 mM) 6 μ L, 10×buffer (Mg free) 5 μ L, H₂O 30 μ L, Tag (5 U μ L⁻¹) 1 μ L and genomic DNA (8 μ g μ L⁻¹) 2 μ L as a template. A 50 μ L aliquot of the reaction mixture was performed using the following conditions: 94°C for 5 min, 60°C for 30 sec and 72°C for 90 sec in the first cycle; 94°C for 30 sec, 60°C for 30 sec and 72°C for 5 min.

The ITS domains were extracted from five worms in the three species of fish by using PCR. Two domains, named TL1 and TL2, were separated from the two worms in *T. lepturus*; two domains, named SJ1 and SJ2, from the two worms in *S. japonicus*; and one domain, named TJ1, from a worm in *T. japonicus*.

The domains were analyzed using Restriction Fragment Length Polymorphism (RFLP) in a $15\,\mu\text{L}$ aliquot of rDNA $10\,\mu\text{L}$, 10x reaction buffer $1.5\,\mu\text{L}$, $H_2O\,3\,\mu\text{L}$ and restriction enzymes (0.5 μL), including EcoR I, Hha I, Rsa I, Hinf I and TaqI in 37°C for 4 h. The products from RFLP were analyzed using 2% agarose. The PCR products were quantified using agarose gel electrophoresis and sequenced using an ABI PRISM 377-96 DNA sequencer with an ABI PRISM Bigdye Terminator Cycle Sequencing Ready Reaction Kit at Mission Biotech, Taipei. The ITS domains and its homology from the different worms were compared using Genome Net (http://clustalw.genome.jp/) to examine the Anisakid groups and phylogenesis.

RESULTS

Morphological features: Among the three examined species of fish, *T. lepturus* was the most substantial in the preanal length, ca. 269 mm, followed by *S. japonicus* and *T. japonicus*, ca. 175 mm and ca. 122 mm, respectively (Fig. 1). A distinct stomach was observed in the worm body of *Anisakis* spp. by using light microscopy (Fig. 2). The average worm lengths in the three species

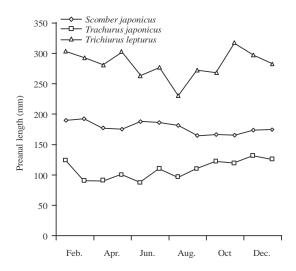


Fig. 1: Monthly preanal length of Scomber japonicus, Trichiurus lepturus and Trachurus japonicus

Res. J. Parasitol., 10 (3): 79-91, 2015

Fig. 2: Light micrograph of Anisakis larva L3 with ventriculus (arrow)

Table 1: Annual infection of Anisakis worms in Scomber japonicus, Trachurus japonicus and Trichiurus lepturus

Parameters	Scomber japonicus	Trachurus japonicus	$Trichiurus\ lepturus$		
Prevalence (%)	91	39	89		
Mean intensity (worms)	39	2	62		
Abundance (worms)	62	3	80		
Worm length (mm)	18.7 ± 5.2^{a}	14.9 ± 6.2^{b}	18.9±3.5 ^a		

^{*}Means with the same letter are not significantly different at p<0.05 with Scheffe's test

of fish, *T. lepturus*, *S. japonicus* and *T. japonicas*, were 18.9, 18.7 and 15.5 mm, respectively (Table 1). The worms were found in the three species on the external wall of the stomach, on the gonads and in the mantle cavity. Two forms of worm, including active-wriggling and static-coiling, were found. During scanning electron microscopy examination, striation was observed along the entire body length of the worms (Fig. 3a). The worms exhibited trilobed dorsal lips and bilobed ventrolateral lips around the mouth. Each lip exhibited indistinct papilla. A boring tooth appeared in the mouth anteroventrally projecting (Fig. 3b). Between the ventrolateral lips, an excretory pore opened from a single excretory duct as a transverse slit (Fig. 3c). The postanal tail was round and with a terminal mucron (Fig. 3d). The worms from the three species of fish showed the same morphological features when light microscopy and scanning electron microscopy were used.

Occurrence: The prevalence of *Anisakis* larvae was the highest (91%) in *S. japonicus*, followed by 89% in *T. lepturus* and 39% in *T. japonicus*. The annual mean intensity (62 worms) and the abundance (80 worms) of the *Anisakis* in *T. lepturus* were the highest among the three species of fish (Table 1). The prevalence in *T. japonicus* was low in spring season (April to June) and no infection in fall (August to October). No infection was found in the *T. lepturus* collected in August (Table 2), although the prevalence in *S. japonicus* was 100%. Monthly mean intensities and abundances of the larvae in *S. japonicus* and *T. lepturus* were higher in the period from February to July than in other months (Fig. 4a-b).

ITS domain analysis: Using a PCR-RFLP assay, 720 and 520 bp were demonstrated after the domains were treated using *EcoRI*; 800 and 590 bp with *HhaI*; 480 bp and 430 bp with *HinfI*; 550, 300 and 220 bp with *RsaI* and 440 and 430 bp with *TagI* (Fig. 5). Using a PCR

Res. J. Parasitol., 10 (3): 79-91, 2015

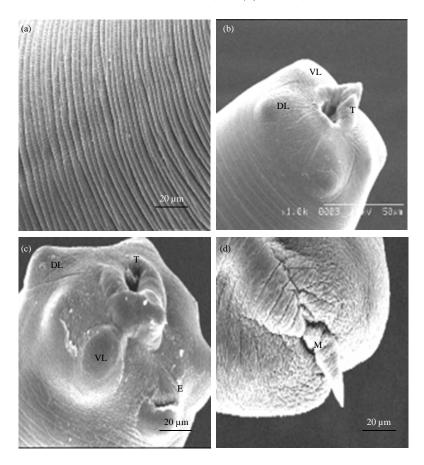


Fig. 3(a-d): Scanning electron micrographs of *Anisakis* worms (a) Skin with transverse striation, (b and c) Anterior extremity and (d) Posterior end, DL: Dorsal lip, VL: Ventrolateral lip, E: Excretory pore, T: Tooth, M: Mucron

 $\underline{\text{Table 2: Monthly prevalence of } Anisakis \text{ worms in } Scomber japonicus, Trachurus japonicus \text{ and } Trichiurus \ lepturus \ lepturus$

	Prevalence (%)				
	Scomber japonicus	Trachurus japonicus	Trichiurus lepturu		
Feb	80	75	100		
Mar	80	37.5	100		
Apr	100	33	100		
May	100	50	100		
Jun	80	17	100		
Jul	100	67	100		
Aug	100	0	0		
Sep	100	0	85		
Oct	67	0	100		
Nov	100	83	100		
Dec	100	83	100		
Jan	83	17	83		
Mean	91	39	89		

^{*}Prevalence = fish infected/fish examined

procedure, ITS domains TL1, TL2, SJ1, SJ2 and TJ1 were obtained, demonstrating 898, 898, 909, 907 and 832 nt, respectively (Fig. 6). There was a marked similarity of the domain sequences between TL1 and TL2 (99%) and between SJ1 and SJ2 (98%). The domain TJ1 sequence

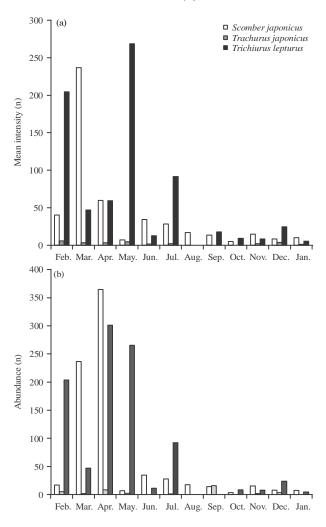


Fig. 4(a-b): Monthly infections of *Anisakis* worms in *Scomber japonicus*, *Trichiurus lepturus* and *Trachurus japonicus* (a) Mean intensity and (b) Mean abundance

Table 3: Homologous comparison (%) of the internal transcribed spacers of ribosomal DNA of Anisakis worms from Trichiurus lepturus (domains: TL1 and TL2), Scomber japonicus, (domains: SJ1 and SJ2) and Trachurus japonicus (domain: TJ1) with Anisakis simplex. Hysterothylacium aduncum and Contracaecum osculatum

Correlation parameters	A. simplex	H. aduncum	C. osculatum	TL1	TL2	SJ1	SJ2	TJ1
A. simplex	100.00	52.85	49.71	19.45	18.37	70.03	69.49	20.18
H. aduncum		100.00	53.20	15.17	14.77	44.69	44.01	21.02
$C.\ osculatum$			100.00	15.95	15.57	47.00	46.33	20.18
TL1				100.00	99.0	13.96	15.07	55.22
TL2					100.00	13.97	15.08	55.23
SJ1						100.00	97.78	19.57
SJ2							100.00	15.20
TJ1								100.00

1: The ITS domains and its homology from the different worms were compared using Genome Net (http://clustalw.genome.jp/). 2: ITS domains of Anisakis simplex, Hysterothylacium aduncum and Contracaecum osculatum cited from (Zhu et al., 2000)

was significantly different from domains TL1, TL2, SJ1 and ST2 (Table 3). Domains SJ1 and SJ2 exhibited a 70% homology to the domain of *A. simplex* and had a 44-47% similarity to that of

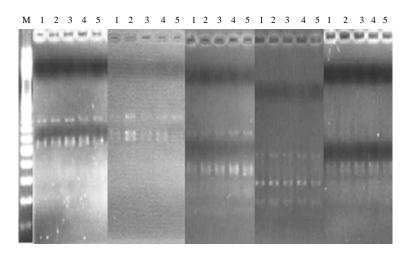


Fig. 5: Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of *Anisakis* worms from *Trichiurus lepturus* (Lane 1: TL1 and Line 2: TL2), *Scomber japonicus*, (Lane 3: SJ1 and Line 4: SJ2) and *Trachurus japonicus* (Lane 5: TJ1). Five restriction enzymes including *EcoRI*, *HhaI*, *HinfI*, *RsaI* and *TaqI* were used. M, molecular weight marker (100 bp interval)

H. aduncum and *C. osculatum*. Phylogenetic analysis revealed the various groups found in the five worms from the three species of fish.

DISCUSSION

Morphological features: A significant difference was found in length among the worms from the three species of fish. *T. japonicus* was the shortest among the three (Fig. 1), containing the shortest worms (Table 1). Mean intensity and abundance in *T. lepturus* and *S. japonicus* were considerably higher than in *T. japonicus* (Table 2). In the three species of fish, larval infection had a positive correlation with fish size. As in a single species, an increase in parasitization with increasing host length was reported in European hake (Valero *et al.*, 2006). The larval burden was strongly related to host length in the species, common blue scad mackerel (Manfredi *et al.*, 2000). However, among various larger fish showed greater degrees of worm infection and had larger worms than smaller fish.

Two forms of the worms, including active-wriggling and static-coiling, were found in the three species on the external wall of the stomach, on the gonads and in the mantle cavity. The great majority of *Anisakis* spp. larvae were located in the cavity, only a minor part in the muscle (Piras *et al.*, 2014).

Anisakis had a marked stomach (Fig. 2), a boring tooth in the mouth, an excretory pore between the ventrolateral lips and a mucron in the posterior end (Fig. 3c-d), but no caeca. The larval specimens from the three species of fish had no morphological difference when examined using light microscopy and scanning electron microscopy.

Occurrence: Infections of *Anisakis* larvae in *T. lepturus* and *S. japonicus* were considerable, approximately 90 %, although the infection in *T. japonicus* was only 39 %. The mean intensity and abundance were extreme in *T. lepturus* and *S. japonicus* (Table 1). The prevalence of Anisakidae larvae infection was 55.4% in *S. japonicus* caught off Korea (Bak *et al.*, 2014). *Scomber japonicus*

TL1TTGCCTTAATTTAGCGGGTAATCAC-GACTGAGC-TGAGGTCAAATAGTATCA TL2TTGCCTTAATTTAGCGGGTAATCAC-GACTGAGC-TGAGGTCAAATAGTATCA SJ1 GGAAAAAGTCTCCCAACGTGCATACCTTC-CATTTGCA-TGTTGTTGTG-AGCCACA SJ2 GATACAAGTCTCCCAACGTGCATACCTTC-CATTTGCA-TGTTGTTGTG-AGCCACA TJ1
TL1 TTTTTGATCACATATACGTCCGTCTTTCCGT-TGCCGTTTCATCTTCCTCCCCCCTTATCT TL2 TTTTTGATCACATATACGTCCGTCTTTCCGT-TGCCGTTTCATCTTCCTCCCCCCTTATCT SJ1 TGGAAACTCGTACACACGTGGTGGCAGCCGTCTGCTGCTTTTTTTT
TL1 TATATGCTGGGTGGTGTTTTATGATATGGCATACTTGACTTTTTTGTTTTG
TL1 -ACCACCCACCTCACCTATATACTATACTATATATATATA
TL1 TTGACT-CCTTTGTTTGTCATCACCAAGGAACGAATCGCCCTATTGACTGT TL2 TTGACT-CCTTTGTTTGTCATCACCAAGGAACGAATCGCCCTATTGACTGT SJ1 CTGCTAATCATCATTGATGAGCAGCAGCTTAAGGCAGAGTCGACCAGACTTAATGAGCCA SJ2 CTGCTAATCATCATTGATGAGCAGCAGCTAAAGGCAGAGTCGAGCAGACTTAATGAGCCA TJ1 TTGACT-CCTTCGTCAG-AATCACTAAGGAACGAACCGCTCTACTGACTGT ** * * * * * * * * * * * * * * * * * *
TL1 GATTGAATCAATCACCACCCACC-CACCATTGCT-TGCCTGACGAATGCTTCTCCA TL2 GATTGAATCAATCACCACCCACC-CACCATTGCT-TGCCTGACGAATGCTTCTCCA SJ1 CGCTAGGTGGCCGCCAAAACCCAAAACACAACCGGTCTATTTGACATTGTTATTTCATTG SJ2 CGCTAGGTGGCCGCCAAAACCCAAAACACACCGGTCTATTTGACATTGTTATTTCATTG TJ1 CCATGAAACACTCACCACCACC-CACCATTGCT-TGCTTGACGAATGCTTCACCG **********************************
TL1 TAAAAACCAAGAATACAGATCACCCAACTTCAACCCTCCCCAGACATACCTGCCGG-AA TL2 TAAAAACCAAGAATACAGATCACCCAACTTCAACCCTCCCCAGACATACCTGCCGG-AA SJ1 TATGTGTTGAAAATGTACAAATCTTGGCGGTGGATCACTCGGTTCGTGGATCGATGA SJ2 TATGTGTTGAAAATGTACAAATCTTGGCGGTGGATCACTCGGTTCGTGGATCGATGA TJ1 TACAAACCAACCATAAAGACCGTTCTCCTTAAATCCACCCTCAGACATACCTGCCGG-AA ** * * * * * * * * * * * * * * * * *
TL1 TGAACGAAATAGATCACTGTGCGTGCGAACTAATTCTGCTCGCTGTGTGTG
TL1 CTAAT-TATTTATCCTGGCTGGCTGCTTTCTCCATCCACCCACCAACCGATTGACCCACC TL2 CTAAT-TATTTATCCTGGCTGGCTGCTTTCTCCATCCACCCACCAACCGATTGACCCACC SJ1 CGAACGCACATTGCGCTATCGGGTTCATTCCCGATGGCACGTCTGGCTGAGGGTCGAATT SJ2 CGAACGCACATTGCGCTATCGGGTTCATTCCCGATGGCACGTCTGGCTGAGGGTCGAATT TJ1 CTATT-TATTTAACCTGGCTGGCTGCTTCCTCCATCCATCCACCAACCGAGCGATCCACCA *******************************
TL1 GCATTTATTTGTTTTTTTCCATACATAGAATGAACTATGTCTGACAGACCGACTGTGTG TL2 GCATTTATTTGTTTTTTTTCCATACATAGAATGAACTATGTCTGACAGACCGACTGTGTG SJ1 ACGGTGAACTGTCTTCACGGTTTTTCTGGACTGTGAAGCATTCGGCAAGC-AATTGC SJ2 ACGGTGAACTGTCTTCACGGTTTTTCTGGACTGTGAAGCATTCGGCAAGC-AATTGC TJ1 ACCATTATACGTTTTCTTTCCACACATAGAATGAACTATGTCTGTC

Fig. 6: Continue

```
SJ1 TGTTGTTGTT-GGTGATT--CTATCATGGACAATATGACGAGCGGTTCCTTGC-TTAG
SJ2 TGTTGTGTT-GGTGATT--CTATCATGGACAATATGACGAGCGGTTCCTTGC-TTAG
TL1 CTGCTGCTCATGATGA-TGATAGC-AGCACAAACGAACGATCTC-CTA-CCATCATCGAT
TL2 CTGCTGCTCATGATGA-TGATAGC-AGCACAAACGAACGATCTC-CTA-CCATCATCGAT
TL1 CGTGACTGAC-GTGCAGA-ACAAGCTACA--GCGTACACACCGCTAGTCGCTGTC-GTTG
{\tt TL2\ CGTGACTGAC-GTGCAGA-ACAAGCTACA--GCGTACACACCGCTAGTCGCTGTC-GTTG}
SJ1 TATAGGTGAG-GTGC-----TTTTG--GTGGTCACAAAAGTGACAAGTAT--GCCA
SJ2 TATAGGTGAG-GTGC-----TTTTG--GTGGTCACAAAAGTGACAAGTAT--GCCA
TL1 -TCAGCACACAGACGCTCACTCGCATCACTGTCTGCTAAACACGCCGCAGATGCTGCAGT
TL2 -TCAGCACACAGACGCTCACTCGCATCACTGTCTGCTAAACACGCCGCAGATGCTGCAGT
SJ1 -TTT-CATAGGGGCAACAACCAGCATACGTGATAAGTTGGCTGGTTGATGAAACGGCAAC
SJ2 -TTT-CATAGGGGCAACAACCAGCATACGTGATAAGTTGGCTGGTTGATGAAACGGCAAC
TL1 GTGTGCGAGTACATGTATGTCACACAAC-TGCAGTGATGGTATGCACGCACGTAGACAGA
TL2 GTGTGCGAGTACATGTATGTCACACAAC-TGCAGTGATGGTATGCACGCACGTAGACAGA
TJ1 GCCTGCCGCGCGTGCGTACTACTCTGCGTGTGACTCCCACCTGCATGTG-----
TL1 CTCGTCGTCTGA--TGATCGATCAGATCATCTCGCCGCTCTCACACACATA-
TL2 CTCGTCGTCTGA--TGATCGATCAGATCATCTCGCCGCTCTCACACACATA-
S.I.1 ATTACCCGCTGAATTTAAGCATATAATTAGCGAGAGGGGGGGAAAATAAAAA
SJ2 ATTACCCGCTGAATTTAAGCATATAATTAGCGAGAGGAAAACAACCAAAT--
```

Fig. 6: Comparison in the internal transcribed spacers (ITS domains) of ribosomal DNA of *Anisakis* worms from *Trichiurus lepturus* (TL1 and TL2), *Scomber japonicus*, (SJ1 and SJ2) and *Trachurus japonicus* (TJ1)

and *T. lepturus* survives on small fish, squid and crustaceans. Anisakid third-stage larvae (L3) were found widely in squid (Pascual *et al.*, 1999). All squid likely carry and transmit anisakines (Guerra *et al.*, 1993). Sticklebacks *Gasterosteus aculeatus*, were naturally infected with larvae of *A. simplex* in brackish coastal waters through eating either a crustacean host or third-stage larvae (L3) from fish (Koie, 2001). Pelagic and mesopelagic fish and invertebrates were considered intermediate or paratenic hosts of Anisakid larvae L3 (Klimpel *et al.*, 2007). L2 larvae in small fish, squid and crustaceans developed into L3 worms. L3 larvae infected *T. lepturus* and *S. japonicus* when the fish consumed small fish, squid and crustaceans. The study found a notably higher prevalence of Anisakidae larvae infection in *T. lepturus* and *S. japonicus* along the northern coast of Taiwan.

ITS domain analysis: The PCR amplification of ITS1 and ITS2 regions, followed by RFLP, was used to distinguish species of the genera *Anisakis* and *Pseudoterranova* (La Rosa *et al.*, 2006). When examined using PCR-RFLP assay, the larvae from the three species of fish had the same pattern in gel electrophoresis (Fig. 7). The morphological characteristics and PCR-RFLP assay

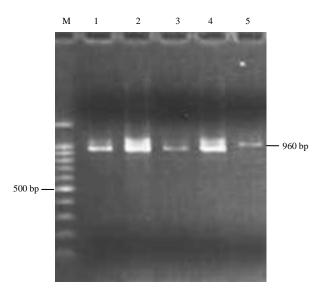


Fig. 7: Polymerase Chain Reaction (PCR) gel electrophoresis of genomic DNA of *Anisakis* worms from *Trichiurus lepturus* (Lane 1: TL1 and Line 2: TL2), *Scomber japonicus*, (Lane 3: SJ1 and Line 4: SJ2) and *Trachurus japonicus* (Lane 5: TJ1). M: Molecular weight marker (100 bp interval)

showed that the larvae in the three species of fish constituted one genus of Anisakis. The molecular assay was used for identification of A. simplex (Kijewska et al., 2000). In this work, sequences of rDNA fragment ITS-1 and ITS-2 were used for identifying Anisakid larvae from the three species of fish. Larvae from the same fish showed high homologous ITS domains. The domains TL1 and TL2, had the same insert of 898 bp. The domains SJ1 and SJ2 had the insert of 909 and 907 bp, respectively (Fig. 6). The sequence identity between TL1 and TL2 was 99% and that between SJ1 and SJ2 was 97%. The results suggested that the larvae in the same fish constituted a single species. The ITS insert showed that the larvae from the three species of fish were various groups or subspecies. Anisakis was not a single species but a complex composed of several sibling species: A. brevispiculata, A. pegreffii, A. physeteris, A. simplex s. str., A. simplex C, A. typica and Anisakis spp. (Type II) (Abe, 2008; Chen et al., 2008; Farjallah et al., 2008; Mattiucci et al., 2008; Quiazon et al., 2009). The diversity of the Anisakis species along the North African coasts of the Mediterranean Sea indicated that several Anisakis sibling and morphospecies coexisted (Farjallah et al., 2008). In Japan, S. japonicus was infected by A. simplex and A. pegreffii larvae, together with a few larvae of other anisakid species (Arizono et al., 2012). Anisakis typica, recombinant genotype of A. simplex s. s. and A. pegreffii, H. amoyense and H. fabri were identified in East China Sea (Kong et al., 2015). The domains SJ1 and SJ2 of the larvae in S. japonicus were 70% homologous to that of A. simplex (Table 3). The domains TL1, TL2 and TJ1 of the larvae in T. lepturus and T. japonicus were minimally homologous (ca. 20%) to that of A. simplex. The domain TJ1 had a 55% homology to domains TL1 and TL2. Phylogenetic analysis demonstrated that the larvae from T. lepturus T. japonicus and S. japonicus constituted various groups. This finding supports the hypothesis of host-parasite coevolutionary relationships suggested for Anisakis spp. and their cetacean hosts (Mattiucci et al., 2009). The fish are possibly infected by different groups of the worm found in its various prey. The worms found in the three species of fish in the ocean around Keelung Islet in Northern Taiwan, might be different subspecies or sibling species instead of a single species of *Anisakis*. Further studies are necessary for assessing the diversity of larval anisakid nematodes.

ACKNOWLEDGMENTS

The EM works were performed at the Center for Electron Microscopy, Institute of Marine Biology, National Taiwan Ocean University, Taiwan.

REFERENCES

- Abe, N., 2008. Application of the PCR-sequence-specific primers for the discrimination among larval *Anisakis simplex* complex. Parasitol. Res., 102: 1073-1075.
- Arizono, N., M. Yamada, T. Tegoshi and M. Yoshikawa, 2012. *Anisakis simplex* sensu stricto and *Anisakis pegreffii*: Biological characteristics and pathogenetic potential in human anisakiasis. Foodborne Pathog. Dis., 9: 517-521.
- Bak, T.J., C.H. Jeon and J.H. Kim, 2014. Occurrence of anisakid nematode larvae in chub mackerel (*Scomber japonicas*) caught off Korea. Int. J. Food Microbiol., 191: 149-156.
- Beverley-Burton, M. and J.H.C. Pippy, 1978. Distribution, prevalence and mean numbers of larval *Anisakis simplex* (Nematoda: Ascaridoidea) in Atlantic salmon, *Salmo salar* L. and their use as biological indicators of host stocks. Envir. Biol. Fishes, 3: 211-222.
- Chen, Q., H.Q. Yu, Z.R. Lun, X.G. Chen, H.Q. Song, R.Q. Lin and X.Q. Zhu, 2008. Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential. Parasitol. Res., 104: 79-84.
- Farjallah, S., B.B. Slimane, M. Busi, L. Paggi and N. Amor *et al.*, 2008. Occurrence and molecular identification of *Anisakis* spp. from the North African coasts of Mediterranean Sea. Parasitol. Res., 102: 371-379.
- Gardiner, M.A., 1990. Survival of *Anisakis* in cold smoked salmon. Can. Inst. Food Sci. Technol. J., 23: 143-144.
- Guerra, A., E. Simon and A.F. Gonzalez, 1993. Cephalopods in the Diet of the Swordfish, *Xiphias gladius*, from the North-Eastern Atlantic Ocean. In: Recent Advances in Cephalopod Fisheries Biology, Okutani, T., R.K. O'dor and T. Kubodera (Eds.). Tokai University Press, Tokyo, ISBN-13: 9784486012337, pp: 159-164.
- Karl, H., A. Roepstorff, H.H. Huss and B. Bloemsma, 1994. Survival of *Anisakis* larvae in marinated herring fillets. Int. Food Sci. Technol., 29: 661-670.
- Kijewska, A., M. Slominska, G. Wegrzyn and J. Rokicki, 2000. A PCR-RFLP assay for identification of *Anisakis simplex* from different geographical regions. Mol. Cell Probes, 14: 349-354.
- Klimpel, S., H.W. Palm, S. Ruckert and U. Piatkowski, 2004. The life cycle of *Anisakis simplex* in the Norwegian deep (northern North Sea). Parasitol. Res., 94: 1-9.
- Klimpel, S., E. Kellermanns, H.W. Palm and F. Moravec, 2007. Zoogeography of fish parasites of the pearlside (*Maurolicus muelleri*), with genetic evidence of *Anisakis simplex* (s.s.) from the mid-atlantic ridge. Mar. Biol., 152: 725-732.
- Koie, K., 2001. Experimental infections of copepods and sticklebacks *Gasterosteus aculeatus* with small ensheathed and large third-stage larvae of *Anisakis simplex* (Nematoda, Ascaridoidea, Anisakidae). Parasitol. Res., 87: 32-36.

- Kong, Q., L. Fan, J. Zhang, N. Akao and K. Dong *et al.*, 2015. Molecular identification of *Anisakis* and *Hysterothylacium* larvae in marine fishes from the East China Sea and the Pacific coast of central Japan. Int. J. Food Microbiol., 199: 1-7.
- La Rosa, G., S. D'Amelio and E. Pozio, 2006. Molecular Identification of Nematode Worms From Seafood (*Anisakis* spp. and *Pseudoterranova* spp.) and Meat (*Trichinella* spp.). In: Food-Borne Pathogens: Methods and Protocols, Adley, C.C. (Ed.). Humana Press, Totowa, New Jersey, USA., ISBN-13: 9781592599905, pp: 217-232.
- Lagoin, Y., 1980. Infection of humans by the nematode *Anisakis simplex* in herrings. Bull. Acad. Vet. France, 53: 139-146.
- Manfredi, M.T., G. Crosa, P. Galli and S. Ganduglia, 2000. Distribution of *Anisakis simplex* in fish caught in the Ligurian Sea. Parasitol. Res., 86: 551-553.
- Mattiucci, S., V. Farina, N. Campbell, K. Mackenzie and P. Ramos *et al.*, 2008. *Anisakis* spp. larvae (Nematoda: Anisakidae) from Atlantic horse mackerel: Their genetic identification and use as biological tags for host stock characterization. Fish Res., 89: 146-151.
- Mattiucci, S., M. Paoletti and S.C. Webb, 2009. *Anisakis nascettii* n. spp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: Morphological description, genetic relationships between congeners and ecological data. Syst. Parasitol., 74: 119-217.
- Meloni, M., G. Angelucci, P. Merella, R. Siddi, C. Deiana, G. Orru and F. Salati, 2011. Molecular characterization of *Anisakis* larvae from fish caught off Sardinia. J. Parasitol., 97: 908-914.
- Moreno-Ancillo, A., M.T. Caballero, R. Cabanas, J. Contreras and J.A. Martin-Barroso *et al.*, 1997. Allergic reactions to *Anisakis* simplex parasitizing seafood. Ann. Allerg. Asthma Immunol., 79: 246-250.
- Myers, B.J., 1979. Anisakine nematodes in fresh commercial fish from waters along the Washington, Oregon and California coasts. J. Food Prot., 42: 380-384.
- Pascual, S., A.F. Gonzalez, C. Arias and A. Guerra, 1999. Larval *Anisakis simplex* B (Nematoda: Ascaridoidea) of short-finned squid (Cephalopoda: Ommastrephidae) in north-west Spain. J. Mar. Biol. Assoc. UK., 79: 65-72.
- Piras, M.C., T. Tedde, G. Garippa, S. Virgilio, D. Sanna, S. Farjallah and P. Merella, 2014. Molecular and epidemiological data on *Anisakis* spp. (Nematoda: Anisakidae) in commercial fish caught off northern Sardinia (western Mediterranean Sea). Vet. Parasitol., 203: 237-240.
- Pontes, T., S. D'Amelio, G. Costa and L. Paggi, 2005. Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. J. Parasitol., 91: 1430-1434.
- Quiazon, K.M.A., T. Yoshinaga, M.D. Santos and K. Ogawa, 2009. Identification of larval *Anisakis* spp. (Nematoda: Anisakidae) in alaska pollock (*Theragra chalcogramma*) in Northern Japan using morphological and molecular markers. J. Parasitol., 95: 1227-1232.
- Sohn, W.M., J.M. Kang and B.K. Na, 2014. Molecular analysis of *Anisakis* type I larvae in marine fish from three different sea areas in Korea. Korean J. Parasitol., 52: 383-389.
- Ugland, K.I., E. Stromnes, B. Berland and P.E. Aspholm, 2004. Growth, fecundity and sex ratio of adult whaleworm (*Anisakis simplex*; Nematoda, Ascaridoidea, Anisakidae) in three whale species from the North-East Atlantic. Parasitol. Res., 92: 484-489.
- Valero, A., M.M. Lopez-Cuello, R. Benitez and F.J. Adroher, 2006. Anisakis spp. In European hake, Merluccius merluccius (L.) from the Atlantic off north-west Africa and the Mediterranean off southern Spain. Acta. Parasitol., 51: 209-212.

- Volgelstein, B. and D. Gillespie, 1979. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA., 76: 615-619.
- Weerasooriya, M.V., T. Fujino, Y. Ishii and N. Kagei, 1986. The value of external morphology in the identification of larval anisakid nematodes: A scanning electron microscope study. Parasitol. Res., 72: 765-778.
- Zhu, X., S. D'Amelio, L. Paggi and R.B. Gasser, 2000. Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the *Contracaecum osculatum* complex (Nematoda: *Ascaridoidea*: *Anisakidae*). Parasitol. Res., 86: 677-683.