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Synthetic Lethality in Anticancer Drug Discovery and Target Identification

'Zhongsheng Guo and “Bingliang Fang
'Division of Surgical Oncelogy, University of Pittsburgh Cancer Institute,
University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
*Department of Thoracic and Cardiovascular Surgery,
The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA

Abstract: Background: The concept of synthetic lethality (which arises when simultaneous mutations in two
or more genes lead to cell death but a mutation in only one of the genes does not) has been exploited to
develop new genotype-selective anticancer agents, identify novel therapeutic targets and characterize genes
assoclated with treatment responses. This review discusses recent advances in anticancer drug discovery and
target identification with synthetic lethal approaches. Results: We first discuss about the concept and
mechanisms of synthetic lethality to facilitate the understanding of using this concept as a research platform
1n various areas of anticancer studies. We then focused on recent advance m the discovery of novel anticancer
agents, 1dentification of genetic lethal partners of oncogenes and characterization of genes associated with
treatment responses based on the principle of synthetic lethality. Conclusion: Information obtained about
synthetic lethal interactions among genes and/or between genes and therapeutic agents provides insights into
the molecular mechamsms of some anticancer agents and biological processes and has potential implications

for targeted therapy, personalized therapy and the rational design of combinatorial treatment for cancers.
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INTRODUCTION

Functional deregulation of several key signaling
pathways as a result of genetic and epigenetic alterations
is believed to be the driving force behind carcinogenesis
and progression of cancers (Ding et al, 2008;
Wood ef al., 2007). This fimetional deregulation provides
an opportunity for targeted cancer therapies. Small
molecules and antibodies that directly inlubit critical
nodes m oncogenmic signaling networks-such as
trastuzumab against human epidermal growth factor
receptor 2 (HER2) (Leyland-Tones, 2002); erlotinib,
gefitinib and cetuximab against epidermal growth factor
receptor (EGFR) (Lynch et al, 2004, Adams and
Weiner, 2005); imatinib against the BCR-ABIL fusion
protein (Druker et al., 1996) and sorafenib against Raf
kinase and vascular endothelial growth factor receptor
(Wilhelm et al, 2004) have already been used to treat
various cancers m humans. Nevertheless, many critical
nodes in oncogenic signaling networlks may not be
targeted by small molecules. For example, functional loss
In tumor suppressor genes caused by gene deletions may
not be restored through small molecules. Moreover, the
functions of some oncogene products, such as Ras and

c-Myc, have been found to be difficult to modulate
directly through small molecules (Hartwell et al., 1997).
The concept of synthetic lethality may provide a new
platform for anticancer drug development and an
opportunity to eliminate malighant cells by indirectly
targeting cancer-driving molecules that otherwise cannot
be targeted by small molecules (Hartwell ef al., 1997,
Kaelin, 2005, Chan and Giaccia, 2011). This synthetic
lethality strategy should yield agents with high selectivity
against cancer cells with the altered genotype and is
expected to minimize treatment-induced toxicity to normal
cells, thereby improving the safety of therapeutics.

THE CONCEPT OF SYNTHETIC LETHALITY

The term “synthetic lethality” was originally used to
refer to a lethal phenotype caused by mutations in two
genes; two genes are synthetic lethal when cells or
living orgamsms with mutations in only one of the two
genes are viable but the combination of both mutations
is lethal (Dobzhansky, 1946). By evaluating the effects of
homozygous mutations on viability i Drosophila,
Dobzhansky noticed that some homozygous mutations
resulted in organisms with normal viability when they
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Fig. 1: Diagram of synthetic lethality. (a) The essential
biological function E relies on signaling pathways
A and B. A functional change in either of these
pathways, such as a mutation in Al or a disruption
of B1, B2 or B3 by the compounds Cheml1, Chem?2
or Chem3, respectively, 1s msufficient to cause
cell death. However, the simultaneous presence
of an A1 mutation and a compound disrupting B1,
B2 or B3 induces dysfunction of E and results in
cell death (b) Synthetic lethal interactions
between components of signals A and B
existed separately but became lethal or semilethal
(viability reduced but not completely abolished) when
combined with a second homozygous mutation
(Dobzhansky, 1946). Dobzhansky called this lethal or
semilethal phenotype of double homozygotes “synthetic
lethal” or “synthetic semilethal” (Dobzhansky, 1946).
Subsequently, synthetic lethality and semi-lethality
were used to determine functional nteraction and
compensation among genes (Lucchesi, 196%). Several
models of mteractions of genes or proteins have been
proposed to account for synthetic lethality (Kaelin, 2005,
Meur and Gentleman, 2008; Qoi et al., 2006), including the
presence of homologous genes or protein 1somers derived
from the same ancestral gene (paralogs), subunits of an
essential multiprotein complex, components of a single
linear essential pathway and components of parallel
pathways that together regulate an essential biological
function. Figure 1 illustrates synthetic lethality induced
by components in parallel pathways. Assume that the
biological function of protein E which is essential for cell
survival, relies on signals A and B. Signal A 15 transduced
via proteins Al, A2 and A3, whereas signal B 1s
transduced via proteins B1, B2 and B3 and then to E. An
abnormality occurring in  either signal pathway is
msufficient to cause dysfunction of E; therefore, the cell
1s viable. However, simultaneous abnormalities m both
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signal pathways lead to the dysfunction of E and thus to
cell death. Tn this case, Al is synthetic lethal with B1, B2
or B3 but not with A2 or A3 and vice versa.

Studies m yeast revealed that synthetic lethal
interactions occurred significantly more frequently
between genes with the same mutant phenotype, between
genes encoding protems with the same subcellular
localization and between genes involved in similar
biological processes or bridging bioprocesses
(Tong et al., 2001; Tong et al., 2004, Ye et al., 2005;
Costanzo ef al., 2010). On average, each gene might have
more than 30 synthetic lethal interactions (Tong et af.,
2004, Pan et al., 2006, Lin et al, 2008). Moreover,
synthetic lethality may also occur as a result of
gamn-of-function mutations and 1s then called synthetic
dosage lethality (Kroll ef al., 1996; Measday et af., 2005).
Indeed, RAS oncogene can induce either cell
transformation or apoptosis, depending on cell type
and context (Tanaka et al., 1994; Serrano ef al., 1997).
Expression of oncogenic R4S in primary human or rodent
cells often results in apoptosis or senescence, whereas
expression of oncogenic RAS in immortal cells or cells
with mactivation of p53, pl6 or the transcriptional
activator interferon regulatory factor 1 leads to
transformation and tumorigenesis (Tanaka et al., 1994,
Serrano et al., 1997). Oncogene-induced apoptosis and/or
senescence were also observed for MYC (Hoffman and
Liebermarm, 2008; Hemann et al., 2005), STATS and E2F 1
(Mallette et al., 2007), suggesting that normal cells have
barriers to safeguard against malignant transformation.
When cancer cells become dependent on elevated activity
of an oncogene for survival, oncogene addiction occurs
(Ehrenreiter ef al., 2009, Wise et al, 2008). Then,
inhibiting downstream molecules in a single linear
pathway of the oncogene to which the cells are addicted
may also mduce synthetic lethality.

ANTICANCER DRUG DISCOVERY AND
DEVELOPMENT

The selective killing of BRAF mutant cancer cells by
Mitogen-activated Protein (MAP) kinase kinase (MEK)
inhibitors (Solit et af., 2006; Corcoran et al., 2010) could
be explained as a synthetic lethality caused by mnhibition
of the downstream component in a single linear essential
pathway because of oncogene addiction.
constitutively active mutations of the BRAF gene have
been identified in hurman cancers (Davies ef al., 2002). The
exquisite dependence of BRAF mutant or other RAF
isoform active tumors on MEK activity may provide a
personalized therapeutic strategy for patients with this
type of cancer (Solit et al., 2006, Villanueva et al., 2010).

Various
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On the other hand, knowledge of parallel molecular
pathways development of
anticancer drugs based on synthetic lethality. An example
1s selective killing of BRCAI and BRCAZ2 mutant cancer
cells by poly(ADP-ribose) polymerase 1 (PARPI)
inhibitors. BRCA! and BRCAZ are tumor suppressor
genes important for DNA Double-Strand Break (DSB)
repair by homologous recombination, possibly by
interacting with and recruiting RADS51 to the DNA DSBs
(Chen et al., 1998; Patel et al., 1998). Loss-of-function
mutations in these genes predispose carriers to breast,
ovarian and other types of cancers (Antomou et al., 2003,
Thompson et al., 2002). In contrast, PARP] is required for
the assembly or stability of nuclear foci of the
Single-Strand  Break (35B) repair  protein
KRCC1 (El-Khamisy et al., 2003) and to facilitate repair of
DNA S58Bs. PARPI may not be directly involved in DSB
repair and homologous recombination as PARP1™*
embryonic stem cells and embryonic fibroblasts exhibited
normal repair of DNA DSBs and RAD51  foa
formation (Yang et al., 2004). Nevertheless, PARP1™ mice
DNA  SSB  repair
homologous recombination, sister chromatid exchange
and clromosome mstability (Yang et 2004,
De Murcia et al., 1997).

Two groups simultaneously reported that defects in
BRCAI and BRCAZ2 genes in some breast and ovarian
cancer cells make them highly sensitive to small-molecule
PARP inhibitors (Bryant ef al., 2005, Farmer et al., 2005).
BRCA mutant cells are 1000 times more sensitive to
PARPI than are BRCA wild-type cells (Farmer ef al., 2005).
Moreover, nanoparticle mediated delivery of PARP1
specific siIRNA resulted in induction of apoptosis in
Breal -deficient ovarian tumor cells both in vitro and in
vivo and prolonged the survival of mice bearing tumors
derived from Breal -deficient ovarian cancer cells but not
from Breal wild-type cells (Goldberg et al., 2011). This
proof-of-concept result led to phase T ¢linical trials of an
orally active PARP1 mhibitor, olaparib (AZD2281), in
cancer patients with or without BRCA! or BRCAZ
mutations (Fong et al., 2009, 2010). The results showed
that durable objective antitumor activity was observed
only m confirmed carriers of BRCAI or BRCAZ mutations.
The follow-up multicenter phase II climcal trials in
patients with BRCAT or BRCAZ2 mutations and advanced
breast cancer or recurent ovarian cancer also showed
promising results (Tutt et af., 2010).

Nevertheless, genetic interactions remain unknown
for most cancer related genes. Thus, synthetic lethality
screening is an approach to identify cytotoxic agents
targeted to cancer cells with mutations in a particular
oncogene or tumor suppressor gene. Using the human
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colon cancer cell line DLD-1 which contains the mutant
K-Ras allele and its isogenic derivative in which the
mutant K-Ras allele has been deleted by homologous
recombination, Torrance et al. (2001) performed synthetic
lethality screening on 30,000 compounds and identified 2
compounds, triphenyl tetrazolium and a sulfinyl cytidine
derivative which demonstrated approximately sixfold
selectivity for cell lines contaiming mutant XKRAS
(Torrance et «al., 2001). Similarly, using immortalized
humen fibroblasts with or without the mutant HRAS gene,
Stockwell’s group performed synthetic lethality screening
on 23, 550 compounds and found that camptothecin and
a new compound named erastin were more effective in
killimg HRAS-expressing cells than their isogenic
counterparts (Dolma e# al., 2003). Subsequently, erastin
was found to exlubit lethal selectivity n human tumor
cells harboring mutations in the ARAS, KRAS or BRAF
oncogenes by acting on mitochondrial voltage-dependent
anion chamnels and inducing oxidative cell death
(Yagoda et al., 2007). STF-62247, a small molecule that 1s
synthetic lethal for the wvon Hippel-Lindau tumor
Suppressor  gene (VHL), was 1dentified by
Turcotte et al. ( 2008) after screening 64, 000 compounds
on renal cancer cells with mutant or wild-type VHL.
STF-62247 selectively suppresses PHL mutant tumor cell
growth through autophagy induction, possibly by acting
on Golgi trafficking pathways (Turcotte et al., 2008).

We used immortalized human ovarian epithelial cells
(designated T29) and their tumorigenic derivatives
transformed with either mutant HRAS (T29Ht1 ) or mutant
KRAS (T29Kt1) (Liu et al., 2004) to screen a chemical
library consisting of 10,000 compounds. We 1dentified a
compound, designated oncrasin-1 that was not toxic to
T29 or T29Htl cells at any of the doses tested but
induced apoptosis in T29Ktl cells at a wide range of
doses (Guo et al., 2008). Oncrasin-1 was also effective
against several human lung cancer cells that harbor KRAS
mutations (Guo et al., 2008). Molecular characterization
revealed that oncrasin-1 suppressed phosphorylation of
the C-terminal domam (CTD) of the largest
subunit of RNA  polymerase 1T (RNAP TII) and
mduced co-aggregation of protemn kinase C iota (PKCv)

and splicing factors into megaspliceosomes  in
sensitive  cells (Guo et al, 2009). Interestingly, a
Ras-dependent  pathway  that  regulates CTD

phosphorylation or function was reported m cardiac
myocytes (Abdellatif et al, 1998) and in yeast
(Chang et al., 2004). Mutations compromising the
function of the CTD were synthetic lethal in yeast with
elevated levels of Ras activity (Howard et af, 2002).
Evidence also indicates that oncogene-transformed cells,
such as c-Myc-transformed cells, were more sensitive than
their normal counterparts to RNAP 1T inhibitors,
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suggesting that RNAP TT may serve as a therapeutic
target for anticancer therapy (Koumemns and Giaccia,
1997).

Compound optimization through synthesis and
analysis of analogues led to the identification of several
compounds that are more effective than oncrasin-1 in
inducing apoptosis in a subset of cancer cells. One of
these, NSC-741909, was found to suppress the growth of
a subset of NCI-60 cancer cell lines, including those with
mutations in KRAS and PIK3CA. Mechanistic studies
by reverse-phase protein microarray revealed that
NSC-741909 treatment led to sustained activation of c-Jun
N-terminal Kinase (JNK) by suppressing their
dephosphorylation, possibly by inducing oxidative stress
and inactivating MAP kinase phosphatases (Wei et al.,
2009; Wei et al., 2010). It is also interesting that cancer
cells with increased Akt (Nogueira ef af., 2008) or Ras
(Trachootham et al., 2006) oncoprotein activity can be
selectively killed through oxidative apoptosis.

TARGET IDENTIFICATION

Using the human colon cancer KR4S mutant cell line
DLD-1 and its sogenic derivative with the mutant KRAS
gene distupted, Elledge’s group screened a library of
about 75,000 retroviral shRNAs targeting 32,293 unique
human transcripts and identified 368 KRAS synthetic
lethal candidate genes with a stringent cutoff and 1613
genes with relaxed statistical criteria (Luo ef al., 2009).
Genes involved in the regulation of several biclogical
processes pathways, including
metabolism, ribosome biogenesis, protein neddylation or

or nucleic  acid
sumoylation, RNA splicing, the cell cycle, mitosis and
proteasome complexes, were found to be required as
additional support to maintain the Ras oncogenic state
(Luo et al., 2009). In particular, KRAS mutant cells are
hypersensitive to mhibition of PLK]1, a serine/threonine
protein kinase that has important functions throughout
the M phase of the cell cycle, including the regulation of
centrosome maturation, spindle assembly, mitotic exit and
cytokinesis (Petronczki ef al, 2008). Small-molecule
inhibitors that disrupt mitosis, including paclitaxel and the
PLKI1 inhibitor BI-2536 (Steegmaier et al., 2007), were
found to be synthetic lethal in Ras mutant
(Luo et al., 2009).

Using the murine K-ras-induced lung cancer cell lines
LKR10 and TLKR13 (Johnson et al., 2001), Vicent et al.
( 2010) performed an #n vitro proliferation screen and an

cells

in vivo tumorigenesis screen on a shRNA library
containing genes associated with the KRAS gene
expression signature (Sweet-Cordero et al., 2004), genes
previously implicated as K-Ras effectors and potential
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transcriptional regulators and they identified 23 genes
required for K-ras-mediated tumorigenesis (Vicent et al.,
2010). The transcription factor Wilms’ tumor 1 (Wtl), one
of the genes 1dentified, was found to be a critical regulator
of senescence and proliferation in cells expressing
oncogenic K-ras. Silencing of Wtl in cells expressing
activated K-ras triggered senescence im vitro and
suppressed tumor growth in vive (Vicent ef al., 2010). In
K-ras mutant mouse tumor cells, senescence was also
induced by ablation of CDK4 but not by ablation of CDK2
or CDK6 (Puyol et al., 2010).

Scholl et al. (2009) performed synthetic lethality
screening with shRNA constructs targeting 1011 human
genes, including most known and putative protein kinase
genes and a selection of protemn phosphatase genes and
known cancer-related genes, on 8 human cancer cell lines
with mutant or wild-type KRAS and on normal human
fibroblasts and immortalized human mammary epithelial
cells. The results showed that STK33 which encodes a
putative member of the calcium/calmodulin-dependent
protein kinase subfamily of serine/threonine protein
kinases, is required for the swrvival of several KRAS
mutant and KRAS-dependent (1.e., with impaired viability
after KRAS knockdown) cancer cell lines. The viability of
KRAS wild-type, NRAS mutant or KRAS mutant but
KRAS-independent (i.e., KRAS knockdown did not impair
viability) cancer cells was not affected by S7K33
knockdown (Scholl et ai, 2009). Mechanistic
characterization showed that the catalytic activity of
STK33 is essential for maintaining S6K1 activity in mutant
KRAS-dependent cells (Scholl et al, 2009). SéKl1
suppresses mitochondrial apoptosis by phosphorylation
and inactivation of the BH3-only pro-apoptotic protein
BAD (Harada et al., 2001, Zha et al., 1996). Suppression
of STK33 decreased BAD phosphorylation and promoted
mitochondria-mediated apoptosis (Scholl et al., 2009).

TBK1, a noncanonical kB kinase that regulates the
stability of TkB (Chien et al., 2006), was another synthetic
lethal partner for muatnt KR4S identified by shRNA
screemung (Barbie ef al., 2009). Using a similar shRNA
library to that used by Scholl et al. (2009), Barbie et al.
(2009} screened 19 cell lines with or without mutant KRAS
allele and identified 45 synthetic lethal partners for mutant
KRAS, one of which was TBKI. Suppression of TBK!
induced apoptosis in KRAS-dependent cancer cells but
not in KRAS-independent cancer cells (Barbie et al., 2009).
Analysis of expression profiles lung
adenocarcinomas revealed that most KRAS mutant tumors
showed RAS signature activation and co-expression of
the NF-xB signature. Interestingly, 30 of 109 KRAS
wild-type tumors also showed RAS and NF-xB signature
co-activation (Barbie et al., 2009). In vitro study revealed

of human
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that KRAS wild-type and KRAS-dependent (KRAS si RNA
susceptible) cancer cells were also susceptible to TBK1
mtubition, suggesting that a subset of XRAS wild-type
tumors depend on TBK1 and NF-kB signaling for
survival. Suppression of TBKI in KRAS mutant cancer
cells restored cytoplasmic levels of TkB, reduced the total
and nuclear c-Rel levels and downregulated BCL-XL
(Barbie et al., 2009).

Indeed, a study of susceptibility to shRNA-mediated
KRAS depletion in lung and pancreatic cancer cell lines
showed that cancer cell lines harboring KRAS mutations
can be broadly classified mto KRAS-dependent and
KRAS-independent groups (Singh er al, 2009). Gene
expression profiling analysis revealed that a 46-gene
signature could be used to segregate the two groups.
Levels of genes encoding Syk tyrosine kinase (SYK),
integrin b6 subunit (/7GB6) and the RON receptor
tyrosine kinase (AMSTIR) and a gene named ANKRIDZ22,
with unknown function, were relatively ligh 1n
KRAS-dependent lung and pancreatic cancer cell lines
(Singh et al., 2009). Knockdown of those four genes
induced growth inhibition in KR4S-dependent cell lines
but not in KR4S-independent cell lines. Moreover,
KRAS-dependent cell lines showed substantially greater
sensitivity to a small-molecule inhibitor of Syk (R406)
(Braselmann et al., 2006) than did KR4S-independent cell
lines.

GENES ASSOCIATED WITH TREATMENT
RESPONSE

The tumor suppressor gene p53 1s mactivated n
about 50% of human cancers because of genetic
mutations (Vogelstem ef af, 2000). A recent study
showed that Ataxia Telangiectasia Mutated (ATM) kinase
directly modulated p53-mediated apoptosis or cell cycle
arrest (Tiang et al., 2009). In cells and tumors that lacked
a functional p33 pathway, inactivation of ATM or its
downstream molecule CHK2 was sufficient to globally
sensitize the cells to genotoxic chemotherapy with
cisplatin or doxorubicin (Tiang et al., 2009). In contrast, in
P53 wild-type cells, inhibition of ATM or CHK2 resulted
mm a substantial survival benefit, suggesting that a
combination of cisplatin and doxorubicin with mhibitors
of ATM and CHK2 could benefit patients with p53 mutant
tumors. Several clinical trials of CHK1/CHK2 inhibitors in
combination with genotoxic agents for cancer treatment
are currently under way (Bolderson et al., 2009).

A study to investigate TRATL-induced apoptosis in
Hela cells after knockdown of 510 genes encoding known
and predicted kinases, proteins with known functions in
TRAIL-mediated signaling pathways or protemns with
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unknown functions led to the identification of several
genes whose knockdown either enhanced or mhbited
TRAIL-mediated apoptosis (Aza-Blanc et al, 2003).
siRNA against PAK] and AKTI strongly enhanced
TRAIL activity, whereas siRNA agamst MYC or the WNT
transducer TCF4 inhibited TRATL-induced apoptosis,
suggesting that PAK1 and AKT1 overexpression may
cause TRAIL resistance and that the MYC and WNT
pathways are required for TRAIL-mediated apoptosis
(Aza-Blanc et al., 2003). RNAI screening also identified
topoisomerase levels as critical factors in determining
response to doxorubicin or camptothecin treatment
in vitro and in vivo (Burgess et al., 2008).

Whitehurst ef al. (2007) performed synthetic lethality
screening for gene targets that specifically reduce cell
viability in the presence of an otherwise sublethal dose of
paclitaxel in the human non-small-cell lung cancer line
NCI-H1155. They used a library of more than 84, 000
chemically synthesized siRNAs targeting 21, 127 unique
human genes and applied highly stringent statistical
criteria to identify a set of 87 candidate genes whose
knocldown sensitizes cells to paclitaxel. Several of those
targets sensitized lung cancer cells to paclitaxel more than
1000 fold. The candidates included multiple genes
encoding core components of the proteasome and
proteins mvolved i the function of microtubules,
posttranslational  modification, cell adhesion and
cancer/testis antigens (Whitehurst et «l., 2007). This
observation indicates the possible benefit of
combinatorial therapeutic regimens of paclitaxel plus the
proteasome inhibitor bortezomib and the possible
resistance of tumors with high levels of cancer/testis
antigens to paclitaxel treatment. Nevertheless, clinical
trials of paclitaxel plus bortezomib showed that such a
combination may also increase toxicity (Croghan et al.,
2010, Cresta et al., 2008).

Astsaturov et al, 2010 used a siRNA library
targeting 638 genes encoding proteins with evidence of
functional interaction with the EGFR signaling network,
including those transcriptionally responsive to inhibition
or stimulation of EGFR, to screen for genes associated
with response to EGFR inhibitors; their study identified 61
genes whose knockdown sensitized the A431 cervical
adenocarcimoma cell line to the EGFR mhibitors erlotimb
or cetuximab (Astsaturov et al., 2010). Most of those
genes
interacting network, including kinases and phosphatases.
Nevertheless, when 45 of those genes were tested m 7
other cell lines for sensitization to erlotinib or cetuximab,
none of them sensitized all tested cell lines, although
several of them sensitized 3-5 of the cell lines
(Astsaturov et al., 2010), suggesting that synthetic
lethality is highly dependent on cell context.

encode proteins connected in a physically
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CHALLENGES AND PERSPECTIVES

The Dbiological  functions of  compounds
identified through cell-based synthetic lethality screemung
are likely to be unknown. Identifying the cellular targets
of these compounds 1s challenging and tine-consuming.
To identify targets of those compounds, some chemical
biology approaches may be used, mcluding conjugating
compounds to bictin or resin beads and performing
affinity-based target precipitation and subsequent protein
identification by mass spectrometry analysis (Godl et al.,
2003; Yagoda et al., 2007, Bantscheff et af., 2007).
However, conjugating and immobilizing a small compound
may change its biological function and protein binding
specificity. Alternatively, target proteins may be enriched
by protecting the targets from protease-mediated
degradation through binding of unmodified compounds
to their targets (Lomemck et al., 2009). The results may
depend on the efficiency and specificity of the protection.

Note that synthetic lethal interaction may be highly
dependent on cell context. Cell lines harboring the same
mutant oncogene or tumor suppressor gene may not have
the same synthetic lethal partner, as exemplified by KR4S
mutant cancer cell lines which have KRAS-dependent and
KRAS-independent subgroups (Singh et al., 2009).
Different genetic and epigenetic alterations m other gene
loci may account for this variation. Moreover, some KRAS
wild-type cancer cells may be susceptible to a synthetic
lethal partner of mutant KRAS as about 30% of KRAS
wild-type tumors may have a molecular signature similar
to that of KRAS-mutant tumors (Barbie et al., 2009). A
possible explanation 15 that, even mn the absence of a Ras
mutation, increased Ras activity in human cancers
frequently results from gene amplification (Hoa et al.,
2002, Filmus and Buick, 1985), overexpression
(Coleman et al., 1994), an mcrease mn upstream signals
from tyrosine kinase growth factor receptors, such as
HER?2 (Ehrhardt et al., 2004), overexpression of other
oncogenes, such as ¢-Myc (Bild et al, 2006), or a
decrease m microRNA, such as let-7 miRNA family
members (Johnson et al., 2005). Therefore, once a
synthetic lethal agent or gene partner 1s 1dentified through
screening, further characterization in more cell lines is
warranted to delineate mechanisms and other factors that
may contribute to the observed synthetic lethality.

CONCLUSION

Synthetic lethality has been emplored as research
tools to 1dentify genetic interaction among genes in yeast.
In combination with siRNA technology, synthetic
lethality 1s a useful research platform for identification of
lethal partners of oncogenes and tumor suppressor genes
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in mammalian cells. Such synthetic lethal partners may
serve as potential therapeutic targets for future diug
development. Moreover, synthetic lethality screen is
becoming a useful approach in identifying genes that
sensitize cells to chemotherapy or radiotherapy or small
molecules that selectively induce cell death
subset of mutant cancer cells. The development of
genotype-selective anticancer agents and advances of
our knowledge about networks of genetic interactions 1s
expected to impact on personalized anticancer therapy
and facilitate the rational design of combinatorial therapy
to enhance therapeutic efficacy.
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